/* $NetBSD: ddp_usrreq.c,v 1.8 2003/02/26 07:53:05 matt Exp $ */ /* * Copyright (c) 1990,1991 Regents of The University of Michigan. * All Rights Reserved. * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby granted, * provided that the above copyright notice appears in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation, and that the name of The University * of Michigan not be used in advertising or publicity pertaining to * distribution of the software without specific, written prior * permission. This software is supplied as is without expressed or * implied warranties of any kind. * * This product includes software developed by the University of * California, Berkeley and its contributors. * * Research Systems Unix Group * The University of Michigan * c/o Wesley Craig * 535 W. William Street * Ann Arbor, Michigan * +1-313-764-2278 * netatalk@umich.edu */ #include __KERNEL_RCSID(0, "$NetBSD: ddp_usrreq.c,v 1.8 2003/02/26 07:53:05 matt Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void at_pcbdisconnect __P((struct ddpcb *)); static void at_sockaddr __P((struct ddpcb *, struct mbuf *)); static int at_pcbsetaddr __P((struct ddpcb *, struct mbuf *, struct proc *)); static int at_pcbconnect __P((struct ddpcb *, struct mbuf *, struct proc *)); static void at_pcbdetach __P((struct socket *, struct ddpcb *)); static int at_pcballoc __P((struct socket *)); struct ifqueue atintrq1, atintrq2; struct ddpcb *ddp_ports[ATPORT_LAST]; struct ddpcb *ddpcb = NULL; struct ddpstat ddpstat; struct at_ifaddrhead at_ifaddr; /* Here as inited in this file */ u_long ddp_sendspace = DDP_MAXSZ; /* Max ddp size + 1 (ddp_type) */ u_long ddp_recvspace = 25 * (587 + sizeof(struct sockaddr_at)); #ifdef MBUFTRACE struct mowner atalk_rx_mowner = { "atalk", "rx" }; struct mowner atalk_tx_mowner = { "atalk", "tx" }; #endif /* ARGSUSED */ int ddp_usrreq(so, req, m, addr, rights, p) struct socket *so; int req; struct mbuf *m; struct mbuf *addr; struct mbuf *rights; struct proc *p; { struct ddpcb *ddp; int error = 0; ddp = sotoddpcb(so); if (req == PRU_CONTROL) { return (at_control((long) m, (caddr_t) addr, (struct ifnet *) rights, (struct proc *) p)); } if (req == PRU_PURGEIF) { at_purgeif((struct ifnet *) rights); return (0); } if (rights && rights->m_len) { error = EINVAL; goto release; } if (ddp == NULL && req != PRU_ATTACH) { error = EINVAL; goto release; } switch (req) { case PRU_ATTACH: if (ddp != NULL) { error = EINVAL; break; } if ((error = at_pcballoc(so)) != 0) { break; } error = soreserve(so, ddp_sendspace, ddp_recvspace); break; case PRU_DETACH: at_pcbdetach(so, ddp); break; case PRU_BIND: error = at_pcbsetaddr(ddp, addr, p); break; case PRU_SOCKADDR: at_sockaddr(ddp, addr); break; case PRU_CONNECT: if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT) { error = EISCONN; break; } error = at_pcbconnect(ddp, addr, p); if (error == 0) soisconnected(so); break; case PRU_DISCONNECT: if (ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE) { error = ENOTCONN; break; } at_pcbdisconnect(ddp); soisdisconnected(so); break; case PRU_SHUTDOWN: socantsendmore(so); break; case PRU_SEND:{ int s = 0; if (addr) { if (ddp->ddp_fsat.sat_port != ATADDR_ANYPORT) { error = EISCONN; break; } s = splnet(); error = at_pcbconnect(ddp, addr, p); if (error) { splx(s); break; } } else { if (ddp->ddp_fsat.sat_port == ATADDR_ANYPORT) { error = ENOTCONN; break; } } error = ddp_output(m, ddp); m = NULL; if (addr) { at_pcbdisconnect(ddp); splx(s); } } break; case PRU_ABORT: soisdisconnected(so); at_pcbdetach(so, ddp); break; case PRU_LISTEN: case PRU_CONNECT2: case PRU_ACCEPT: case PRU_SENDOOB: case PRU_FASTTIMO: case PRU_SLOWTIMO: case PRU_PROTORCV: case PRU_PROTOSEND: error = EOPNOTSUPP; break; case PRU_RCVD: case PRU_RCVOOB: /* * Don't mfree. Good architecture... */ return (EOPNOTSUPP); case PRU_SENSE: /* * 1. Don't return block size. * 2. Don't mfree. */ return (0); default: error = EOPNOTSUPP; } release: if (m != NULL) { m_freem(m); } return (error); } static void at_sockaddr(ddp, addr) struct ddpcb *ddp; struct mbuf *addr; { struct sockaddr_at *sat; addr->m_len = sizeof(struct sockaddr_at); sat = mtod(addr, struct sockaddr_at *); *sat = ddp->ddp_lsat; } static int at_pcbsetaddr(ddp, addr, p) struct ddpcb *ddp; struct mbuf *addr; struct proc *p; { struct sockaddr_at lsat, *sat; struct at_ifaddr *aa; struct ddpcb *ddpp; if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT) { /* shouldn't be bound */ return (EINVAL); } if (addr != 0) { /* validate passed address */ sat = mtod(addr, struct sockaddr_at *); if (addr->m_len != sizeof(*sat)) return (EINVAL); if (sat->sat_family != AF_APPLETALK) return (EAFNOSUPPORT); if (sat->sat_addr.s_node != ATADDR_ANYNODE || sat->sat_addr.s_net != ATADDR_ANYNET) { for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { if ((sat->sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) && (sat->sat_addr.s_node == AA_SAT(aa)->sat_addr.s_node)) break; } if (!aa) return (EADDRNOTAVAIL); } if (sat->sat_port != ATADDR_ANYPORT) { if (sat->sat_port < ATPORT_FIRST || sat->sat_port >= ATPORT_LAST) return (EINVAL); if (sat->sat_port < ATPORT_RESERVED && suser(p->p_ucred, &p->p_acflag)) return (EACCES); } } else { bzero((caddr_t) & lsat, sizeof(struct sockaddr_at)); lsat.sat_len = sizeof(struct sockaddr_at); lsat.sat_addr.s_node = ATADDR_ANYNODE; lsat.sat_addr.s_net = ATADDR_ANYNET; lsat.sat_family = AF_APPLETALK; sat = &lsat; } if (sat->sat_addr.s_node == ATADDR_ANYNODE && sat->sat_addr.s_net == ATADDR_ANYNET) { if (at_ifaddr.tqh_first == NULL) return (EADDRNOTAVAIL); sat->sat_addr = AA_SAT(at_ifaddr.tqh_first)->sat_addr; } ddp->ddp_lsat = *sat; /* * Choose port. */ if (sat->sat_port == ATADDR_ANYPORT) { for (sat->sat_port = ATPORT_RESERVED; sat->sat_port < ATPORT_LAST; sat->sat_port++) { if (ddp_ports[sat->sat_port - 1] == 0) break; } if (sat->sat_port == ATPORT_LAST) { return (EADDRNOTAVAIL); } ddp->ddp_lsat.sat_port = sat->sat_port; ddp_ports[sat->sat_port - 1] = ddp; } else { for (ddpp = ddp_ports[sat->sat_port - 1]; ddpp; ddpp = ddpp->ddp_pnext) { if (ddpp->ddp_lsat.sat_addr.s_net == sat->sat_addr.s_net && ddpp->ddp_lsat.sat_addr.s_node == sat->sat_addr.s_node) break; } if (ddpp != NULL) return (EADDRINUSE); ddp->ddp_pnext = ddp_ports[sat->sat_port - 1]; ddp_ports[sat->sat_port - 1] = ddp; if (ddp->ddp_pnext) ddp->ddp_pnext->ddp_pprev = ddp; } return 0; } static int at_pcbconnect(ddp, addr, p) struct ddpcb *ddp; struct mbuf *addr; struct proc *p; { struct sockaddr_at *sat = mtod(addr, struct sockaddr_at *); struct route *ro; struct at_ifaddr *aa = 0; struct ifnet *ifp; u_short hintnet = 0, net; if (addr->m_len != sizeof(*sat)) return (EINVAL); if (sat->sat_family != AF_APPLETALK) { return (EAFNOSUPPORT); } /* * Under phase 2, network 0 means "the network". We take "the * network" to mean the network the control block is bound to. * If the control block is not bound, there is an error. */ if (sat->sat_addr.s_net == ATADDR_ANYNET && sat->sat_addr.s_node != ATADDR_ANYNODE) { if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) { return (EADDRNOTAVAIL); } hintnet = ddp->ddp_lsat.sat_addr.s_net; } ro = &ddp->ddp_route; /* * If we've got an old route for this pcb, check that it is valid. * If we've changed our address, we may have an old "good looking" * route here. Attempt to detect it. */ if (ro->ro_rt) { if (hintnet) { net = hintnet; } else { net = sat->sat_addr.s_net; } aa = 0; if ((ifp = ro->ro_rt->rt_ifp) != NULL) { for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { if (aa->aa_ifp == ifp && ntohs(net) >= ntohs(aa->aa_firstnet) && ntohs(net) <= ntohs(aa->aa_lastnet)) { break; } } } if (aa == NULL || (satosat(&ro->ro_dst)->sat_addr.s_net != (hintnet ? hintnet : sat->sat_addr.s_net) || satosat(&ro->ro_dst)->sat_addr.s_node != sat->sat_addr.s_node)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *) 0; } } /* * If we've got no route for this interface, try to find one. */ if (ro->ro_rt == (struct rtentry *) 0 || ro->ro_rt->rt_ifp == (struct ifnet *) 0) { bzero(&ro->ro_dst, sizeof(struct sockaddr_at)); ro->ro_dst.sa_len = sizeof(struct sockaddr_at); ro->ro_dst.sa_family = AF_APPLETALK; if (hintnet) { satosat(&ro->ro_dst)->sat_addr.s_net = hintnet; } else { satosat(&ro->ro_dst)->sat_addr.s_net = sat->sat_addr.s_net; } satosat(&ro->ro_dst)->sat_addr.s_node = sat->sat_addr.s_node; rtalloc(ro); } /* * Make sure any route that we have has a valid interface. */ aa = 0; if (ro->ro_rt && (ifp = ro->ro_rt->rt_ifp)) { for (aa = at_ifaddr.tqh_first; aa; aa = aa->aa_list.tqe_next) { if (aa->aa_ifp == ifp) { break; } } } if (aa == 0) { return (ENETUNREACH); } ddp->ddp_fsat = *sat; if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) { return (at_pcbsetaddr(ddp, (struct mbuf *) 0, p)); } return (0); } static void at_pcbdisconnect(ddp) struct ddpcb *ddp; { ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET; ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE; ddp->ddp_fsat.sat_port = ATADDR_ANYPORT; } static int at_pcballoc(so) struct socket *so; { struct ddpcb *ddp; MALLOC(ddp, struct ddpcb *, sizeof(*ddp), M_PCB, M_WAIT); if (!ddp) panic("at_pcballoc"); bzero((caddr_t) ddp, sizeof *ddp); ddp->ddp_lsat.sat_port = ATADDR_ANYPORT; ddp->ddp_next = ddpcb; ddp->ddp_prev = NULL; ddp->ddp_pprev = NULL; ddp->ddp_pnext = NULL; if (ddpcb) { ddpcb->ddp_prev = ddp; } ddpcb = ddp; ddp->ddp_socket = so; so->so_pcb = (caddr_t) ddp; #ifdef MBUFTRACE so->so_rcv.sb_mowner = &atalk_rx_mowner; so->so_snd.sb_mowner = &atalk_tx_mowner; #endif return (0); } static void at_pcbdetach(so, ddp) struct socket *so; struct ddpcb *ddp; { soisdisconnected(so); so->so_pcb = 0; sofree(so); /* remove ddp from ddp_ports list */ if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT && ddp_ports[ddp->ddp_lsat.sat_port - 1] != NULL) { if (ddp->ddp_pprev != NULL) { ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext; } else { ddp_ports[ddp->ddp_lsat.sat_port - 1] = ddp->ddp_pnext; } if (ddp->ddp_pnext != NULL) { ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev; } } if (ddp->ddp_route.ro_rt) { rtfree(ddp->ddp_route.ro_rt); } if (ddp->ddp_prev) { ddp->ddp_prev->ddp_next = ddp->ddp_next; } else { ddpcb = ddp->ddp_next; } if (ddp->ddp_next) { ddp->ddp_next->ddp_prev = ddp->ddp_prev; } free(ddp, M_PCB); } /* * For the moment, this just find the pcb with the correct local address. * In the future, this will actually do some real searching, so we can use * the sender's address to do de-multiplexing on a single port to many * sockets (pcbs). */ struct ddpcb * ddp_search(from, to, aa) struct sockaddr_at *from; struct sockaddr_at *to; struct at_ifaddr *aa; { struct ddpcb *ddp; /* * Check for bad ports. */ if (to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST) { return (NULL); } /* * Make sure the local address matches the sent address. What about * the interface? */ for (ddp = ddp_ports[to->sat_port - 1]; ddp; ddp = ddp->ddp_pnext) { /* XXX should we handle 0.YY? */ /* XXXX.YY to socket on destination interface */ if (to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net && to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node) { break; } /* 0.255 to socket on receiving interface */ if (to->sat_addr.s_node == ATADDR_BCAST && (to->sat_addr.s_net == 0 || to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net) && ddp->ddp_lsat.sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) { break; } /* XXXX.0 to socket on destination interface */ if (to->sat_addr.s_net == aa->aa_firstnet && to->sat_addr.s_node == 0 && ntohs(ddp->ddp_lsat.sat_addr.s_net) >= ntohs(aa->aa_firstnet) && ntohs(ddp->ddp_lsat.sat_addr.s_net) <= ntohs(aa->aa_lastnet)) { break; } } return (ddp); } /* * Initialize all the ddp & appletalk stuff */ void ddp_init() { TAILQ_INIT(&at_ifaddr); atintrq1.ifq_maxlen = IFQ_MAXLEN; atintrq2.ifq_maxlen = IFQ_MAXLEN; MOWNER_ATTACH(&atalk_tx_mowner); MOWNER_ATTACH(&atalk_rx_mowner); } #if 0 static void ddp_clean() { struct ddpcb *ddp; for (ddp = ddpcb; ddp; ddp = ddp->ddp_next) at_pcbdetach(ddp->ddp_socket, ddp); } #endif