/* $NetBSD: if_se.c,v 1.29 2000/03/30 00:00:55 augustss Exp $ */ /* * Copyright (c) 1997 Ian W. Dall * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ian W. Dall. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for Cabletron EA41x scsi ethernet adaptor. * * Written by Ian Dall Feb 3, 1997 * * Acknowledgement: Thanks are due to Philip L. Budne * who reverse engineered the EA41x. In developing this code, * Phil's userland daemon "etherd", was refered to extensively in lieu * of accurate documentation for the device. * * This is a weird device! It doesn't conform to the scsi spec in much * at all. About the only standard command supported is inquiry. Most * commands are 6 bytes long, but the recv data is only 1 byte. Data * must be received by periodically polling the device with the recv * command. * * This driver is also a bit unusual. It must look like a network * interface and it must also appear to be a scsi device to the scsi * system. Hence there are cases where there are two entry points. eg * sestart is to be called from the scsi subsytem and se_ifstart from * the network interface subsystem. In addition, to facilitate scsi * commands issued by userland programs, there are open, close and * ioctl entry points. This allows a user program to, for example, * display the ea41x stats and download new code into the adaptor --- * functions which can't be performed through the ifconfig interface. * Normal operation does not require any special userland program. */ #include "opt_inet.h" #include "opt_atalk.h" #include "opt_ccitt.h" #include "opt_llc.h" #include "opt_ns.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #ifdef NS #include #include #endif #ifdef NETATALK #include #endif #if defined(CCITT) && defined(LLC) #include #include #include #include #include #endif #if NBPFILTER > 0 #include #include #endif #define SETIMEOUT 1000 #define SEOUTSTANDING 4 #define SERETRIES 4 #define SE_PREFIX 4 #define ETHER_CRC 4 #define SEMINSIZE 60 /* Make this big enough for an ETHERMTU packet in promiscuous mode. */ #define MAX_SNAP (ETHERMTU + sizeof(struct ether_header) + \ SE_PREFIX + ETHER_CRC) /* 10 full length packets appears to be the max ever returned. 16k is OK */ #define RBUF_LEN (16 * 1024) /* Tuning parameters: * The EA41x only returns a maximum of 10 packets (regardless of size). * We will attempt to adapt to polling fast enough to get RDATA_GOAL packets * per read */ #define RDATA_MAX 10 #define RDATA_GOAL 8 /* se_poll and se_poll0 are the normal polling rate and the minimum * polling rate respectively. se_poll0 should be chosen so that at * maximum ethernet speed, we will read nearly RDATA_MAX packets. se_poll * should be chosen for reasonable maximum latency. * In practice, if we are being saturated with min length packets, we * can't poll fast enough. Polling with zero delay actually * worsens performance. se_poll0 is enforced to be always at least 1 */ #define SE_POLL 40 /* default in milliseconds */ #define SE_POLL0 10 /* default in milliseconds */ int se_poll = 0; /* Delay in ticks set at attach time */ int se_poll0 = 0; int se_max_received = 0; /* Instrumentation */ #define PROTOCMD(p, d) \ ((d) = (p)) #define PROTOCMD_DECL(name, val) \ static const struct scsi_ctron_ether_generic name = val #define PROTOCMD_DECL_SPECIAL(name, val) \ static const struct __CONCAT(scsi_,name) name = val /* Command initializers for commands using scsi_ctron_ether_generic */ PROTOCMD_DECL(ctron_ether_send, {CTRON_ETHER_SEND}); PROTOCMD_DECL(ctron_ether_add_proto, {CTRON_ETHER_ADD_PROTO}); PROTOCMD_DECL(ctron_ether_get_addr, {CTRON_ETHER_GET_ADDR}); PROTOCMD_DECL(ctron_ether_set_media, {CTRON_ETHER_SET_MEDIA}); PROTOCMD_DECL(ctron_ether_set_addr, {CTRON_ETHER_SET_ADDR}); PROTOCMD_DECL(ctron_ether_set_multi, {CTRON_ETHER_SET_MULTI}); PROTOCMD_DECL(ctron_ether_remove_multi, {CTRON_ETHER_REMOVE_MULTI}); /* Command initializers for commands using their own structures */ PROTOCMD_DECL_SPECIAL(ctron_ether_recv, {CTRON_ETHER_RECV}); PROTOCMD_DECL_SPECIAL(ctron_ether_set_mode, {CTRON_ETHER_SET_MODE}); struct se_softc { struct device sc_dev; struct ethercom sc_ethercom; /* Ethernet common part */ struct scsipi_link *sc_link; /* contains our targ, lun, etc. */ struct callout sc_ifstart_ch; struct callout sc_recv_ch; char *sc_tbuf; char *sc_rbuf; int protos; #define PROTO_IP 0x01 #define PROTO_ARP 0x02 #define PROTO_REVARP 0x04 #define PROTO_AT 0x08 #define PROTO_AARP 0x10 int sc_debug; int sc_flags; #define SE_NEED_RECV 0x1 int sc_last_timeout; int sc_enabled; }; cdev_decl(se); static int sematch __P((struct device *, struct cfdata *, void *)); static void seattach __P((struct device *, struct device *, void *)); static void se_ifstart __P((struct ifnet *)); static void sestart __P((void *)); static void sedone __P((struct scsipi_xfer *)); static int se_ioctl __P((struct ifnet *, u_long, caddr_t)); static void sewatchdog __P((struct ifnet *)); static __inline u_int16_t ether_cmp __P((void *, void *)); static void se_recv __P((void *)); static struct mbuf *se_get __P((struct se_softc *, char *, int)); static int se_read __P((struct se_softc *, char *, int)); static int se_reset __P((struct se_softc *)); static int se_add_proto __P((struct se_softc *, int)); static int se_get_addr __P((struct se_softc *, u_int8_t *)); static int se_set_media __P((struct se_softc *, int)); static int se_init __P((struct se_softc *)); static int se_set_multi __P((struct se_softc *, u_int8_t *)); static int se_remove_multi __P((struct se_softc *, u_int8_t *)); #if 0 static int sc_set_all_multi __P((struct se_softc *, int)); #endif static void se_stop __P((struct se_softc *)); static __inline int se_scsipi_cmd __P((struct scsipi_link *sc_link, struct scsipi_generic *scsipi_cmd, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags)); static void se_delayed_ifstart __P((void *)); static int se_set_mode(struct se_softc *, int, int); int se_enable __P((struct se_softc *)); void se_disable __P((struct se_softc *)); struct cfattach se_ca = { sizeof(struct se_softc), sematch, seattach }; extern struct cfdriver se_cd; struct scsipi_device se_switch = { NULL, /* Use default error handler */ sestart, /* have a queue, served by this */ NULL, /* have no async handler */ sedone, /* deal with stats at interrupt time */ }; struct scsipi_inquiry_pattern se_patterns[] = { {T_PROCESSOR, T_FIXED, "CABLETRN", "EA412", ""}, {T_PROCESSOR, T_FIXED, "Cabletrn", "EA412", ""}, }; /* * Compare two Ether/802 addresses for equality, inlined and * unrolled for speed. * Note: use this like bcmp() */ static __inline u_int16_t ether_cmp(one, two) void *one, *two; { u_int16_t *a = (u_int16_t *) one; u_int16_t *b = (u_int16_t *) two; u_int16_t diff; diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]); return (diff); } #define ETHER_CMP ether_cmp static int sematch(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct scsipibus_attach_args *sa = aux; int priority; (void)scsipi_inqmatch(&sa->sa_inqbuf, (caddr_t)se_patterns, sizeof(se_patterns) / sizeof(se_patterns[0]), sizeof(se_patterns[0]), &priority); return (priority); } /* * The routine called by the low level scsi routine when it discovers * a device suitable for this driver. */ static void seattach(parent, self, aux) struct device *parent, *self; void *aux; { struct se_softc *sc = (void *)self; struct scsipibus_attach_args *sa = aux; struct scsipi_link *sc_link = sa->sa_sc_link; struct ifnet *ifp = &sc->sc_ethercom.ec_if; u_int8_t myaddr[ETHER_ADDR_LEN]; printf("\n"); SC_DEBUG(sc_link, SDEV_DB2, ("seattach: ")); callout_init(&sc->sc_ifstart_ch); callout_init(&sc->sc_recv_ch); /* * Store information needed to contact our base driver */ sc->sc_link = sc_link; sc_link->device = &se_switch; sc_link->device_softc = sc; if (sc_link->openings > SEOUTSTANDING) sc_link->openings = SEOUTSTANDING; se_poll = (SE_POLL * hz) / 1000; se_poll = se_poll? se_poll: 1; se_poll0 = (SE_POLL0 * hz) / 1000; se_poll0 = se_poll0? se_poll0: 1; /* * Initialize and attach a buffer */ sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header), M_DEVBUF, M_NOWAIT); if (sc->sc_tbuf == 0) panic("seattach: can't allocate transmit buffer"); sc->sc_rbuf = malloc(RBUF_LEN, M_DEVBUF, M_NOWAIT);/* A Guess */ if (sc->sc_rbuf == 0) panic("seattach: can't allocate receive buffer"); se_get_addr(sc, myaddr); /* Initialize ifnet structure. */ bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = se_ifstart; ifp->if_ioctl = se_ioctl; ifp->if_watchdog = sewatchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, myaddr); #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif } static __inline int se_scsipi_cmd(sc_link, scsipi_cmd, cmdlen, data_addr, datalen, retries, timeout, bp, flags) struct scsipi_link *sc_link; struct scsipi_generic *scsipi_cmd; int cmdlen; u_char *data_addr; int datalen; int retries; int timeout; struct buf *bp; int flags; { int error; int s = splbio(); error = scsipi_command(sc_link, scsipi_cmd, cmdlen, data_addr, datalen, retries, timeout, bp, flags); splx(s); return (error); } /* Start routine for calling from scsi sub system */ static void sestart(v) void *v; { struct se_softc *sc = (struct se_softc *) v; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s = splnet(); se_ifstart(ifp); (void) splx(s); } static void se_delayed_ifstart(v) void *v; { struct ifnet *ifp = v; struct se_softc *sc = ifp->if_softc; int s; s = splnet(); if (sc->sc_enabled) { ifp->if_flags &= ~IFF_OACTIVE; se_ifstart(ifp); } splx(s); } /* * Start transmission on the interface. * Always called at splnet(). */ static void se_ifstart(ifp) struct ifnet *ifp; { struct se_softc *sc = ifp->if_softc; struct scsi_ctron_ether_generic send_cmd; struct mbuf *m, *m0; int len, error; u_char *cp; /* Don't transmit if interface is busy or not running */ if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) return; #if NBPFILTER > 0 /* If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("ctscstart: no header mbuf"); len = m0->m_pkthdr.len; /* Mark the interface busy. */ ifp->if_flags |= IFF_OACTIVE; /* Chain; copy into linear buffer we allocated at attach time. */ cp = sc->sc_tbuf; for (m = m0; m != NULL; ) { bcopy(mtod(m, u_char *), cp, m->m_len); cp += m->m_len; MFREE(m, m0); m = m0; } if (len < SEMINSIZE) { #ifdef SEDEBUG if (sc->sc_debug) printf("se: packet size %d (%d) < %d\n", len, cp - (u_char *)sc->sc_tbuf, SEMINSIZE); #endif bzero(cp, SEMINSIZE - len); len = SEMINSIZE; } /* Fill out SCSI command. */ PROTOCMD(ctron_ether_send, send_cmd); _lto2b(len, send_cmd.length); /* Send command to device. */ error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *)&send_cmd, sizeof(send_cmd), sc->sc_tbuf, len, SERETRIES, SETIMEOUT, NULL, XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_DATA_OUT); if (error) { printf("%s: not queued, error %d\n", sc->sc_dev.dv_xname, error); ifp->if_oerrors++; ifp->if_flags &= ~IFF_OACTIVE; } else ifp->if_opackets++; if (sc->sc_flags & SE_NEED_RECV) { sc->sc_flags &= ~SE_NEED_RECV; se_recv((void *) sc); } } /* * Called from the scsibus layer via our scsi device switch. */ static void sedone(xs) struct scsipi_xfer *xs; { int error; struct se_softc *sc = xs->sc_link->device_softc; struct scsipi_generic *cmd = xs->cmd; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s; error = !(xs->error == XS_NOERROR); s = splnet(); if(IS_SEND(cmd)) { if (xs->error == XS_BUSY) { printf("se: busy, retry txmit\n"); callout_reset(&sc->sc_ifstart_ch, hz, se_delayed_ifstart, ifp); } else { ifp->if_flags &= ~IFF_OACTIVE; /* the generic scsipi_done will call * sestart (through scsipi_free_xs). */ } } else if(IS_RECV(cmd)) { /* RECV complete */ /* pass data up. reschedule a recv */ /* scsipi_free_xs will call start. Harmless. */ if (error) { /* Reschedule after a delay */ callout_reset(&sc->sc_recv_ch, se_poll, se_recv, (void *)sc); } else { int n, ntimeo; n = se_read(sc, xs->data, xs->datalen - xs->resid); if (n > se_max_received) se_max_received = n; if (n == 0) ntimeo = se_poll; else if (n >= RDATA_MAX) ntimeo = se_poll0; else { ntimeo = sc->sc_last_timeout; ntimeo = (ntimeo * RDATA_GOAL)/n; ntimeo = (ntimeo < se_poll0? se_poll0: ntimeo); ntimeo = (ntimeo > se_poll? se_poll: ntimeo); } sc->sc_last_timeout = ntimeo; if (ntimeo == se_poll0 && ifp->if_snd.ifq_head) /* Output is pending. Do next recv * after the next send. */ sc->sc_flags |= SE_NEED_RECV; else { callout_reset(&sc->sc_recv_ch, ntimeo, se_recv, (void *)sc); } } } splx(s); } static void se_recv(v) void *v; { /* do a recv command */ struct se_softc *sc = (struct se_softc *) v; struct scsi_ctron_ether_recv recv_cmd; int error; if (sc->sc_enabled == 0) return; PROTOCMD(ctron_ether_recv, recv_cmd); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *)&recv_cmd, sizeof(recv_cmd), sc->sc_rbuf, RBUF_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_DATA_IN); if (error) callout_reset(&sc->sc_recv_ch, se_poll, se_recv, (void *)sc); } /* * We copy the data into mbufs. When full cluster sized units are present * we copy into clusters. */ static struct mbuf * se_get(sc, data, totlen) struct se_softc *sc; char *data; int totlen; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m, *m0, *newm; int len; MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == 0) return (0); m0->m_pkthdr.rcvif = ifp; m0->m_pkthdr.len = totlen; len = MHLEN; m = m0; while (totlen > 0) { if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) goto bad; len = MCLBYTES; } if (m == m0) { caddr_t newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); len -= newdata - m->m_data; m->m_data = newdata; } m->m_len = len = min(totlen, len); bcopy(data, mtod(m, caddr_t), len); data += len; totlen -= len; if (totlen > 0) { MGET(newm, M_DONTWAIT, MT_DATA); if (newm == 0) goto bad; len = MLEN; m = m->m_next = newm; } } return (m0); bad: m_freem(m0); return (0); } /* * Pass packets to higher levels. */ static int se_read(sc, data, datalen) struct se_softc *sc; char *data; int datalen; { struct mbuf *m; struct ether_header *eh; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int n; n = 0; while (datalen >= 2) { int len = _2btol(data); data += 2; datalen -= 2; if (len == 0) break; #ifdef SEDEBUG if (sc->sc_debug) { printf("se_read: datalen = %d, packetlen = %d, proto = 0x%04x\n", datalen, len, ntohs(((struct ether_header *)data)->ether_type)); } #endif if (len <= sizeof(struct ether_header) || len > MAX_SNAP) { #ifdef SEDEBUG printf("%s: invalid packet size %d; dropping\n", sc->sc_dev.dv_xname, len); #endif ifp->if_ierrors++; goto next_packet; } /* Don't need crc. Must keep ether header for BPF */ m = se_get(sc, data, len - ETHER_CRC); if (m == 0) { #ifdef SEDEBUG if (sc->sc_debug) printf("se_read: se_get returned null\n"); #endif ifp->if_ierrors++; goto next_packet; } if ((ifp->if_flags & IFF_PROMISC) != 0) { m_adj(m, SE_PREFIX); } ifp->if_ipackets++; /* We assume that the header fit entirely in one mbuf. */ eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to BPF. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); /* Note that the interface cannot be in * promiscuous mode if there are no BPF * listeners. And if we are in promiscuous * mode, we have to check if this packet is * really ours. */ if ((ifp->if_flags & IFF_PROMISC) != 0 && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ ETHER_CMP(eh->ether_dhost, LLADDR(ifp->if_sadl))) { m_freem(m); goto next_packet; } } #endif /* Pass the packet up. */ (*ifp->if_input)(ifp, m); next_packet: data += len; datalen -= len; n++; } return (n); } static void sewatchdog(ifp) struct ifnet *ifp; { struct se_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++ifp->if_oerrors; se_reset(sc); } static int se_reset(sc) struct se_softc *sc; { int error; int s = splnet(); #if 0 /* Maybe we don't *really* want to reset the entire bus * because the ctron isn't working. We would like to send a * "BUS DEVICE RESET" message, but don't think the ctron * understands it. */ error = se_scsipi_cmd(sc->sc_link, 0, 0, 0, 0, SERETRIES, 2000, NULL, XS_CTL_RESET); #endif error = se_init(sc); splx(s); return (error); } static int se_add_proto(sc, proto) struct se_softc *sc; int proto; { int error; struct scsi_ctron_ether_generic add_proto_cmd; u_int8_t data[2]; _lto2b(proto, data); #ifdef SEDEBUG if (sc->sc_debug) printf("se: adding proto 0x%02x%02x\n", data[0], data[1]); #endif PROTOCMD(ctron_ether_add_proto, add_proto_cmd); _lto2b(sizeof(data), add_proto_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &add_proto_cmd, sizeof(add_proto_cmd), data, sizeof(data), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } static int se_get_addr(sc, myaddr) struct se_softc *sc; u_int8_t *myaddr; { int error; struct scsi_ctron_ether_generic get_addr_cmd; PROTOCMD(ctron_ether_get_addr, get_addr_cmd); _lto2b(ETHER_ADDR_LEN, get_addr_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &get_addr_cmd, sizeof(get_addr_cmd), myaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_IN); printf("%s: ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(myaddr)); return (error); } static int se_set_media(sc, type) struct se_softc *sc; int type; { int error; struct scsi_ctron_ether_generic set_media_cmd; PROTOCMD(ctron_ether_set_media, set_media_cmd); set_media_cmd.byte3 = type; error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &set_media_cmd, sizeof(set_media_cmd), 0, 0, SERETRIES, SETIMEOUT, NULL, 0); return (error); } static int se_set_mode(sc, len, mode) struct se_softc *sc; int len; int mode; { int error; struct scsi_ctron_ether_set_mode set_mode_cmd; PROTOCMD(ctron_ether_set_mode, set_mode_cmd); set_mode_cmd.mode = mode; _lto2b(len, set_mode_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &set_mode_cmd, sizeof(set_mode_cmd), 0, 0, SERETRIES, SETIMEOUT, NULL, 0); return (error); } static int se_init(sc) struct se_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct scsi_ctron_ether_generic set_addr_cmd; int error; #if NBPFILTER > 0 if (ifp->if_flags & IFF_PROMISC) { error = se_set_mode(sc, MAX_SNAP, 1); } else #endif error = se_set_mode(sc, ETHERMTU + sizeof(struct ether_header), 0); if (error != 0) return (error); PROTOCMD(ctron_ether_set_addr, set_addr_cmd); _lto2b(ETHER_ADDR_LEN, set_addr_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &set_addr_cmd, sizeof(set_addr_cmd), LLADDR(ifp->if_sadl), ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); if (error != 0) return (error); if ((sc->protos & PROTO_IP) && (error = se_add_proto(sc, ETHERTYPE_IP)) != 0) return (error); if ((sc->protos & PROTO_ARP) && (error = se_add_proto(sc, ETHERTYPE_ARP)) != 0) return (error); if ((sc->protos & PROTO_REVARP) && (error = se_add_proto(sc, ETHERTYPE_REVARP)) != 0) return (error); #ifdef NETATALK if ((sc->protos & PROTO_AT) && (error = se_add_proto(sc, ETHERTYPE_ATALK)) != 0) return (error); if ((sc->protos & PROTO_AARP) && (error = se_add_proto(sc, ETHERTYPE_AARP)) != 0) return (error); #endif if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == IFF_UP) { ifp->if_flags |= IFF_RUNNING; se_recv(sc); ifp->if_flags &= ~IFF_OACTIVE; se_ifstart(ifp); } return (error); } static int se_set_multi(sc, addr) struct se_softc *sc; u_int8_t *addr; { struct scsi_ctron_ether_generic set_multi_cmd; int error; if (sc->sc_debug) printf("%s: set_set_multi: %s\n", sc->sc_dev.dv_xname, ether_sprintf(addr)); PROTOCMD(ctron_ether_set_multi, set_multi_cmd); _lto2b(sizeof(addr), set_multi_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &set_multi_cmd, sizeof(set_multi_cmd), addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } static int se_remove_multi(sc, addr) struct se_softc *sc; u_int8_t *addr; { struct scsi_ctron_ether_generic remove_multi_cmd; int error; if (sc->sc_debug) printf("%s: se_remove_multi: %s\n", sc->sc_dev.dv_xname, ether_sprintf(addr)); PROTOCMD(ctron_ether_remove_multi, remove_multi_cmd); _lto2b(sizeof(addr), remove_multi_cmd.length); error = se_scsipi_cmd(sc->sc_link, (struct scsipi_generic *) &remove_multi_cmd, sizeof(remove_multi_cmd), addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } #if 0 /* not used --thorpej */ static int sc_set_all_multi(sc, set) struct se_softc *sc; int set; { int error = 0; u_int8_t *addr; struct ethercom *ac = &sc->sc_ethercom; struct ether_multi *enm; struct ether_multistep step; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (ETHER_CMP(enm->enm_addrlo, enm->enm_addrhi)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ /* We have no way of adding a range to this device. * stepping through all addresses in the range is * typically not possible. The only real alternative * is to go into promicuous mode and filter by hand. */ return (ENODEV); } addr = enm->enm_addrlo; if ((error = set ? se_set_multi(sc, addr) : se_remove_multi(sc, addr)) != 0) return (error); ETHER_NEXT_MULTI(step, enm); } return (error); } #endif /* not used */ static void se_stop(sc) struct se_softc *sc; { /* Don't schedule any reads */ callout_stop(&sc->sc_recv_ch); /* How can we abort any scsi cmds in progress? */ } /* * Process an ioctl request. */ static int se_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct se_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: if ((error = se_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; if ((error = se_set_media(sc, CMEDIA_AUTOSENSE) != 0)) break; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: sc->protos |= (PROTO_IP | PROTO_ARP | PROTO_REVARP); if ((error = se_init(sc)) != 0) break; arp_ifinit(ifp, ifa); break; #endif #ifdef NS case AF_NS: { struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl); else bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), ETHER_ADDR_LEN); /* Set new address. */ error = se_init(sc); break; } #endif #ifdef NETATALK case AF_APPLETALK: sc->protos |= (PROTO_AT | PROTO_AARP); if ((error = se_init(sc)) != 0) break; break; #endif default: error = se_init(sc); break; } break; #if defined(CCITT) && defined(LLC) case SIOCSIFCONF_X25: if ((error = se_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; ifa->ifa_rtrequest = cons_rtrequest; /* XXX */ error = x25_llcglue(PRC_IFUP, ifa->ifa_addr); if (error == 0) error = se_init(sc); break; #endif /* CCITT && LLC */ case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ se_stop(sc); ifp->if_flags &= ~IFF_RUNNING; se_disable(sc); } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ if ((error = se_enable(sc)) != 0) break; error = se_init(sc); } else if (sc->sc_enabled) { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ error = se_init(sc); } #ifdef SEDEBUG if (ifp->if_flags & IFF_DEBUG) sc->sc_debug = 1; else sc->sc_debug = 0; #endif break; case SIOCADDMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } if (ether_addmulti(ifr, &sc->sc_ethercom) == ENETRESET) error = se_set_multi(sc, ifr->ifr_addr.sa_data); else error = 0; break; case SIOCDELMULTI: if (sc->sc_enabled == 0) { error = EIO; break; } if (ether_delmulti(ifr, &sc->sc_ethercom) == ENETRESET) error = se_remove_multi(sc, ifr->ifr_addr.sa_data); else error = 0; break; default: error = EINVAL; break; } splx(s); return (error); } /* * Enable the network interface. */ int se_enable(sc) struct se_softc *sc; { int error = 0; if (sc->sc_enabled == 0 && (error = scsipi_adapter_addref(sc->sc_link)) == 0) sc->sc_enabled = 1; else printf("%s: device enable failed\n", sc->sc_dev.dv_xname); return (error); } /* * Disable the network interface. */ void se_disable(sc) struct se_softc *sc; { if (sc->sc_enabled != 0) { scsipi_adapter_delref(sc->sc_link); sc->sc_enabled = 0; } } #define SEUNIT(z) (minor(z)) /* * open the device. */ int seopen(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { int unit, error; struct se_softc *sc; struct scsipi_link *sc_link; unit = SEUNIT(dev); if (unit >= se_cd.cd_ndevs) return (ENXIO); sc = se_cd.cd_devs[unit]; if (sc == NULL) return (ENXIO); sc_link = sc->sc_link; if ((error = scsipi_adapter_addref(sc_link)) != 0) return (error); SC_DEBUG(sc_link, SDEV_DB1, ("scopen: dev=0x%x (unit %d (of %d))\n", dev, unit, se_cd.cd_ndevs)); sc_link->flags |= SDEV_OPEN; SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n")); return (0); } /* * close the device.. only called if we are the LAST * occurence of an open device */ int seclose(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { struct se_softc *sc = se_cd.cd_devs[SEUNIT(dev)]; SC_DEBUG(sc->sc_link, SDEV_DB1, ("closing\n")); scsipi_wait_drain(sc->sc_link); scsipi_adapter_delref(sc->sc_link); sc->sc_link->flags &= ~SDEV_OPEN; return (0); } /* * Perform special action on behalf of the user * Only does generic scsi ioctls. */ int seioctl(dev, cmd, addr, flag, p) dev_t dev; u_long cmd; caddr_t addr; int flag; struct proc *p; { struct se_softc *sc = se_cd.cd_devs[SEUNIT(dev)]; return (scsipi_do_ioctl(sc->sc_link, dev, cmd, addr, flag, p)); }