/* $NetBSD: kern_mutex.c,v 1.45 2009/01/25 04:45:14 rmind Exp $ */ /*- * Copyright (c) 2002, 2006, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe and Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Kernel mutex implementation, modeled after those found in Solaris, * a description of which can be found in: * * Solaris Internals: Core Kernel Architecture, Jim Mauro and * Richard McDougall. */ #define __MUTEX_PRIVATE #include __KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.45 2009/01/25 04:45:14 rmind Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_sa.h" /* * When not running a debug kernel, spin mutexes are not much * more than an splraiseipl() and splx() pair. */ #if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG) #define FULL #endif /* * Debugging support. */ #define MUTEX_WANTLOCK(mtx) \ LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \ (uintptr_t)__builtin_return_address(0), false, false) #define MUTEX_LOCKED(mtx) \ LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \ (uintptr_t)__builtin_return_address(0), 0) #define MUTEX_UNLOCKED(mtx) \ LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \ (uintptr_t)__builtin_return_address(0), 0) #define MUTEX_ABORT(mtx, msg) \ mutex_abort(mtx, __func__, msg) #if defined(LOCKDEBUG) #define MUTEX_DASSERT(mtx, cond) \ do { \ if (!(cond)) \ MUTEX_ABORT(mtx, "assertion failed: " #cond); \ } while (/* CONSTCOND */ 0); #else /* LOCKDEBUG */ #define MUTEX_DASSERT(mtx, cond) /* nothing */ #endif /* LOCKDEBUG */ #if defined(DIAGNOSTIC) #define MUTEX_ASSERT(mtx, cond) \ do { \ if (!(cond)) \ MUTEX_ABORT(mtx, "assertion failed: " #cond); \ } while (/* CONSTCOND */ 0) #else /* DIAGNOSTIC */ #define MUTEX_ASSERT(mtx, cond) /* nothing */ #endif /* DIAGNOSTIC */ /* * Spin mutex SPL save / restore. */ #ifndef MUTEX_COUNT_BIAS #define MUTEX_COUNT_BIAS 0 #endif #define MUTEX_SPIN_SPLRAISE(mtx) \ do { \ struct cpu_info *x__ci; \ int x__cnt, s; \ s = splraiseipl(mtx->mtx_ipl); \ x__ci = curcpu(); \ x__cnt = x__ci->ci_mtx_count--; \ __insn_barrier(); \ if (x__cnt == MUTEX_COUNT_BIAS) \ x__ci->ci_mtx_oldspl = (s); \ } while (/* CONSTCOND */ 0) #define MUTEX_SPIN_SPLRESTORE(mtx) \ do { \ struct cpu_info *x__ci = curcpu(); \ int s = x__ci->ci_mtx_oldspl; \ __insn_barrier(); \ if (++(x__ci->ci_mtx_count) == MUTEX_COUNT_BIAS) \ splx(s); \ } while (/* CONSTCOND */ 0) /* * For architectures that provide 'simple' mutexes: they provide a * CAS function that is either MP-safe, or does not need to be MP * safe. Adaptive mutexes on these architectures do not require an * additional interlock. */ #ifdef __HAVE_SIMPLE_MUTEXES #define MUTEX_OWNER(owner) \ (owner & MUTEX_THREAD) #define MUTEX_HAS_WAITERS(mtx) \ (((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0) #define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \ do { \ if (dodebug) \ (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \ } while (/* CONSTCOND */ 0); #define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \ do { \ (mtx)->mtx_owner = MUTEX_BIT_SPIN; \ if (dodebug) \ (mtx)->mtx_owner |= MUTEX_BIT_DEBUG; \ (mtx)->mtx_ipl = makeiplcookie((ipl)); \ __cpu_simple_lock_init(&(mtx)->mtx_lock); \ } while (/* CONSTCOND */ 0) #define MUTEX_DESTROY(mtx) \ do { \ (mtx)->mtx_owner = MUTEX_THREAD; \ } while (/* CONSTCOND */ 0); #define MUTEX_SPIN_P(mtx) \ (((mtx)->mtx_owner & MUTEX_BIT_SPIN) != 0) #define MUTEX_ADAPTIVE_P(mtx) \ (((mtx)->mtx_owner & MUTEX_BIT_SPIN) == 0) #define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_DEBUG) != 0) #if defined(LOCKDEBUG) #define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_DEBUG) != 0) #define MUTEX_INHERITDEBUG(new, old) (new) |= (old) & MUTEX_BIT_DEBUG #else /* defined(LOCKDEBUG) */ #define MUTEX_OWNED(owner) ((owner) != 0) #define MUTEX_INHERITDEBUG(new, old) /* nothing */ #endif /* defined(LOCKDEBUG) */ static inline int MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread) { int rv; uintptr_t old = 0; uintptr_t new = curthread; MUTEX_INHERITDEBUG(old, mtx->mtx_owner); MUTEX_INHERITDEBUG(new, old); rv = MUTEX_CAS(&mtx->mtx_owner, old, new); MUTEX_RECEIVE(mtx); return rv; } static inline int MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner) { int rv; rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS); MUTEX_RECEIVE(mtx); return rv; } static inline void MUTEX_RELEASE(kmutex_t *mtx) { uintptr_t new; MUTEX_GIVE(mtx); new = 0; MUTEX_INHERITDEBUG(new, mtx->mtx_owner); mtx->mtx_owner = new; } static inline void MUTEX_CLEAR_WAITERS(kmutex_t *mtx) { /* nothing */ } #endif /* __HAVE_SIMPLE_MUTEXES */ /* * Patch in stubs via strong alias where they are not available. */ #if defined(LOCKDEBUG) #undef __HAVE_MUTEX_STUBS #undef __HAVE_SPIN_MUTEX_STUBS #endif #ifndef __HAVE_MUTEX_STUBS __strong_alias(mutex_enter,mutex_vector_enter); __strong_alias(mutex_exit,mutex_vector_exit); #endif #ifndef __HAVE_SPIN_MUTEX_STUBS __strong_alias(mutex_spin_enter,mutex_vector_enter); __strong_alias(mutex_spin_exit,mutex_vector_exit); #endif void mutex_abort(kmutex_t *, const char *, const char *); void mutex_dump(volatile void *); int mutex_onproc(uintptr_t, struct cpu_info **); lockops_t mutex_spin_lockops = { "Mutex", LOCKOPS_SPIN, mutex_dump }; lockops_t mutex_adaptive_lockops = { "Mutex", LOCKOPS_SLEEP, mutex_dump }; syncobj_t mutex_syncobj = { SOBJ_SLEEPQ_SORTED, turnstile_unsleep, turnstile_changepri, sleepq_lendpri, (void *)mutex_owner, }; /* Mutex cache */ #define MUTEX_OBJ_MAGIC 0x5aa3c85d struct kmutexobj { kmutex_t mo_lock; u_int mo_magic; u_int mo_refcnt; }; static int mutex_obj_ctor(void *, void *, int); static pool_cache_t mutex_obj_cache; /* * mutex_dump: * * Dump the contents of a mutex structure. */ void mutex_dump(volatile void *cookie) { volatile kmutex_t *mtx = cookie; printf_nolog("owner field : %#018lx wait/spin: %16d/%d\n", (long)MUTEX_OWNER(mtx->mtx_owner), MUTEX_HAS_WAITERS(mtx), MUTEX_SPIN_P(mtx)); } /* * mutex_abort: * * Dump information about an error and panic the system. This * generates a lot of machine code in the DIAGNOSTIC case, so * we ask the compiler to not inline it. */ void __noinline mutex_abort(kmutex_t *mtx, const char *func, const char *msg) { LOCKDEBUG_ABORT(mtx, (MUTEX_SPIN_P(mtx) ? &mutex_spin_lockops : &mutex_adaptive_lockops), func, msg); } /* * mutex_init: * * Initialize a mutex for use. Note that adaptive mutexes are in * essence spin mutexes that can sleep to avoid deadlock and wasting * CPU time. We can't easily provide a type of mutex that always * sleeps - see comments in mutex_vector_enter() about releasing * mutexes unlocked. */ void mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl) { bool dodebug; memset(mtx, 0, sizeof(*mtx)); switch (type) { case MUTEX_ADAPTIVE: KASSERT(ipl == IPL_NONE); break; case MUTEX_DEFAULT: case MUTEX_DRIVER: if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK || ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET || ipl == IPL_SOFTSERIAL) { type = MUTEX_ADAPTIVE; } else { type = MUTEX_SPIN; } break; default: break; } switch (type) { case MUTEX_NODEBUG: dodebug = LOCKDEBUG_ALLOC(mtx, NULL, (uintptr_t)__builtin_return_address(0)); MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl); break; case MUTEX_ADAPTIVE: dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_adaptive_lockops, (uintptr_t)__builtin_return_address(0)); MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug); break; case MUTEX_SPIN: dodebug = LOCKDEBUG_ALLOC(mtx, &mutex_spin_lockops, (uintptr_t)__builtin_return_address(0)); MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl); break; default: panic("mutex_init: impossible type"); break; } } /* * mutex_destroy: * * Tear down a mutex. */ void mutex_destroy(kmutex_t *mtx) { if (MUTEX_ADAPTIVE_P(mtx)) { MUTEX_ASSERT(mtx, !MUTEX_OWNED(mtx->mtx_owner) && !MUTEX_HAS_WAITERS(mtx)); } else { MUTEX_ASSERT(mtx, !__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)); } LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx); MUTEX_DESTROY(mtx); } /* * mutex_onproc: * * Return true if an adaptive mutex owner is running on a CPU in the * system. If the target is waiting on the kernel big lock, then we * must release it. This is necessary to avoid deadlock. * * Note that we can't use the mutex owner field as an LWP pointer. We * don't have full control over the timing of our execution, and so the * pointer could be completely invalid by the time we dereference it. */ #ifdef MULTIPROCESSOR int mutex_onproc(uintptr_t owner, struct cpu_info **cip) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; struct lwp *l; if (!MUTEX_OWNED(owner)) return 0; l = (struct lwp *)MUTEX_OWNER(owner); /* See if the target is running on a CPU somewhere. */ if ((ci = *cip) != NULL && ci->ci_curlwp == l) goto run; for (CPU_INFO_FOREACH(cii, ci)) if (ci->ci_curlwp == l) goto run; /* No: it may be safe to block now. */ *cip = NULL; return 0; run: /* Target is running; do we need to block? */ *cip = ci; return ci->ci_biglock_wanted != l; } #endif /* MULTIPROCESSOR */ /* * mutex_vector_enter: * * Support routine for mutex_enter() that must handle all cases. In * the LOCKDEBUG case, mutex_enter() is always aliased here, even if * fast-path stubs are available. If an mutex_spin_enter() stub is * not available, then it is also aliased directly here. */ void mutex_vector_enter(kmutex_t *mtx) { uintptr_t owner, curthread; turnstile_t *ts; #ifdef MULTIPROCESSOR struct cpu_info *ci = NULL; u_int count; #endif #ifdef KERN_SA int f; #endif LOCKSTAT_COUNTER(spincnt); LOCKSTAT_COUNTER(slpcnt); LOCKSTAT_TIMER(spintime); LOCKSTAT_TIMER(slptime); LOCKSTAT_FLAG(lsflag); /* * Handle spin mutexes. */ if (MUTEX_SPIN_P(mtx)) { #if defined(LOCKDEBUG) && defined(MULTIPROCESSOR) u_int spins = 0; #endif MUTEX_SPIN_SPLRAISE(mtx); MUTEX_WANTLOCK(mtx); #ifdef FULL if (__cpu_simple_lock_try(&mtx->mtx_lock)) { MUTEX_LOCKED(mtx); return; } #if !defined(MULTIPROCESSOR) MUTEX_ABORT(mtx, "locking against myself"); #else /* !MULTIPROCESSOR */ LOCKSTAT_ENTER(lsflag); LOCKSTAT_START_TIMER(lsflag, spintime); count = SPINLOCK_BACKOFF_MIN; /* * Spin testing the lock word and do exponential backoff * to reduce cache line ping-ponging between CPUs. */ do { if (panicstr != NULL) break; while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) { SPINLOCK_BACKOFF(count); #ifdef LOCKDEBUG if (SPINLOCK_SPINOUT(spins)) MUTEX_ABORT(mtx, "spinout"); #endif /* LOCKDEBUG */ } } while (!__cpu_simple_lock_try(&mtx->mtx_lock)); if (count != SPINLOCK_BACKOFF_MIN) { LOCKSTAT_STOP_TIMER(lsflag, spintime); LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime); } LOCKSTAT_EXIT(lsflag); #endif /* !MULTIPROCESSOR */ #endif /* FULL */ MUTEX_LOCKED(mtx); return; } curthread = (uintptr_t)curlwp; MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(mtx)); MUTEX_ASSERT(mtx, curthread != 0); MUTEX_WANTLOCK(mtx); if (panicstr == NULL) { LOCKDEBUG_BARRIER(&kernel_lock, 1); } LOCKSTAT_ENTER(lsflag); /* * Adaptive mutex; spin trying to acquire the mutex. If we * determine that the owner is not running on a processor, * then we stop spinning, and sleep instead. */ for (owner = mtx->mtx_owner;;) { if (!MUTEX_OWNED(owner)) { /* * Mutex owner clear could mean two things: * * * The mutex has been released. * * The owner field hasn't been set yet. * * Try to acquire it again. If that fails, * we'll just loop again. */ if (MUTEX_ACQUIRE(mtx, curthread)) break; owner = mtx->mtx_owner; continue; } if (__predict_false(panicstr != NULL)) return; if (__predict_false(MUTEX_OWNER(owner) == curthread)) MUTEX_ABORT(mtx, "locking against myself"); #ifdef MULTIPROCESSOR /* * Check to see if the owner is running on a processor. * If so, then we should just spin, as the owner will * likely release the lock very soon. */ if (mutex_onproc(owner, &ci)) { LOCKSTAT_START_TIMER(lsflag, spintime); count = SPINLOCK_BACKOFF_MIN; for (;;) { SPINLOCK_BACKOFF(count); owner = mtx->mtx_owner; if (!mutex_onproc(owner, &ci)) break; } LOCKSTAT_STOP_TIMER(lsflag, spintime); LOCKSTAT_COUNT(spincnt, 1); if (!MUTEX_OWNED(owner)) continue; } #endif ts = turnstile_lookup(mtx); /* * Once we have the turnstile chain interlock, mark the * mutex has having waiters. If that fails, spin again: * chances are that the mutex has been released. */ if (!MUTEX_SET_WAITERS(mtx, owner)) { turnstile_exit(mtx); owner = mtx->mtx_owner; continue; } #ifdef MULTIPROCESSOR /* * mutex_exit() is permitted to release the mutex without * any interlocking instructions, and the following can * occur as a result: * * CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit() * ---------------------------- ---------------------------- * .. acquire cache line * .. test for waiters * acquire cache line <- lose cache line * lock cache line .. * verify mutex is held .. * set waiters .. * unlock cache line .. * lose cache line -> acquire cache line * .. clear lock word, waiters * return success * * There is a another race that can occur: a third CPU could * acquire the mutex as soon as it is released. Since * adaptive mutexes are primarily spin mutexes, this is not * something that we need to worry about too much. What we * do need to ensure is that the waiters bit gets set. * * To allow the unlocked release, we need to make some * assumptions here: * * o Release is the only non-atomic/unlocked operation * that can be performed on the mutex. (It must still * be atomic on the local CPU, e.g. in case interrupted * or preempted). * * o At any given time, MUTEX_SET_WAITERS() can only ever * be in progress on one CPU in the system - guaranteed * by the turnstile chain lock. * * o No other operations other than MUTEX_SET_WAITERS() * and release can modify a mutex with a non-zero * owner field. * * o The result of a successful MUTEX_SET_WAITERS() call * is an unbuffered write that is immediately visible * to all other processors in the system. * * o If the holding LWP switches away, it posts a store * fence before changing curlwp, ensuring that any * overwrite of the mutex waiters flag by mutex_exit() * completes before the modification of curlwp becomes * visible to this CPU. * * o mi_switch() posts a store fence before setting curlwp * and before resuming execution of an LWP. * * o _kernel_lock() posts a store fence before setting * curcpu()->ci_biglock_wanted, and after clearing it. * This ensures that any overwrite of the mutex waiters * flag by mutex_exit() completes before the modification * of ci_biglock_wanted becomes visible. * * We now post a read memory barrier (after setting the * waiters field) and check the lock holder's status again. * Some of the possible outcomes (not an exhaustive list): * * 1. The onproc check returns true: the holding LWP is * running again. The lock may be released soon and * we should spin. Importantly, we can't trust the * value of the waiters flag. * * 2. The onproc check returns false: the holding LWP is * not running. We now have the opportunity to check * if mutex_exit() has blatted the modifications made * by MUTEX_SET_WAITERS(). * * 3. The onproc check returns false: the holding LWP may * or may not be running. It has context switched at * some point during our check. Again, we have the * chance to see if the waiters bit is still set or * has been overwritten. * * 4. The onproc check returns false: the holding LWP is * running on a CPU, but wants the big lock. It's OK * to check the waiters field in this case. * * 5. The has-waiters check fails: the mutex has been * released, the waiters flag cleared and another LWP * now owns the mutex. * * 6. The has-waiters check fails: the mutex has been * released. * * If the waiters bit is not set it's unsafe to go asleep, * as we might never be awoken. */ if ((membar_consumer(), mutex_onproc(owner, &ci)) || (membar_consumer(), !MUTEX_HAS_WAITERS(mtx))) { turnstile_exit(mtx); owner = mtx->mtx_owner; continue; } #endif /* MULTIPROCESSOR */ #ifdef KERN_SA /* * Sleeping for a mutex should not generate an upcall. * So set LP_SA_NOBLOCK to indicate this. * f indicates if we should clear LP_SA_NOBLOCK when done. */ f = ~curlwp->l_pflag & LP_SA_NOBLOCK; curlwp->l_pflag |= LP_SA_NOBLOCK; #endif /* KERN_SA */ LOCKSTAT_START_TIMER(lsflag, slptime); turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj); LOCKSTAT_STOP_TIMER(lsflag, slptime); LOCKSTAT_COUNT(slpcnt, 1); #ifdef KERN_SA curlwp->l_pflag ^= f; #endif /* KERN_SA */ owner = mtx->mtx_owner; } LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1, slpcnt, slptime); LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN, spincnt, spintime); LOCKSTAT_EXIT(lsflag); MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread); MUTEX_LOCKED(mtx); } /* * mutex_vector_exit: * * Support routine for mutex_exit() that handles all cases. */ void mutex_vector_exit(kmutex_t *mtx) { turnstile_t *ts; uintptr_t curthread; if (MUTEX_SPIN_P(mtx)) { #ifdef FULL if (__predict_false(!__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock))) { if (panicstr != NULL) return; MUTEX_ABORT(mtx, "exiting unheld spin mutex"); } MUTEX_UNLOCKED(mtx); __cpu_simple_unlock(&mtx->mtx_lock); #endif MUTEX_SPIN_SPLRESTORE(mtx); return; } if (__predict_false((uintptr_t)panicstr | cold)) { MUTEX_UNLOCKED(mtx); MUTEX_RELEASE(mtx); return; } curthread = (uintptr_t)curlwp; MUTEX_DASSERT(mtx, curthread != 0); MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread); MUTEX_UNLOCKED(mtx); #ifdef LOCKDEBUG /* * Avoid having to take the turnstile chain lock every time * around. Raise the priority level to splhigh() in order * to disable preemption and so make the following atomic. */ { int s = splhigh(); if (!MUTEX_HAS_WAITERS(mtx)) { MUTEX_RELEASE(mtx); splx(s); return; } splx(s); } #endif /* * Get this lock's turnstile. This gets the interlock on * the sleep queue. Once we have that, we can clear the * lock. If there was no turnstile for the lock, there * were no waiters remaining. */ ts = turnstile_lookup(mtx); if (ts == NULL) { MUTEX_RELEASE(mtx); turnstile_exit(mtx); } else { MUTEX_RELEASE(mtx); turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL); } } #ifndef __HAVE_SIMPLE_MUTEXES /* * mutex_wakeup: * * Support routine for mutex_exit() that wakes up all waiters. * We assume that the mutex has been released, but it need not * be. */ void mutex_wakeup(kmutex_t *mtx) { turnstile_t *ts; ts = turnstile_lookup(mtx); if (ts == NULL) { turnstile_exit(mtx); return; } MUTEX_CLEAR_WAITERS(mtx); turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL); } #endif /* !__HAVE_SIMPLE_MUTEXES */ /* * mutex_owned: * * Return true if the current LWP (adaptive) or CPU (spin) * holds the mutex. */ int mutex_owned(kmutex_t *mtx) { if (mtx == NULL) return 0; if (MUTEX_ADAPTIVE_P(mtx)) return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp; #ifdef FULL return __SIMPLELOCK_LOCKED_P(&mtx->mtx_lock); #else return 1; #endif } /* * mutex_owner: * * Return the current owner of an adaptive mutex. Used for * priority inheritance. */ lwp_t * mutex_owner(kmutex_t *mtx) { MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx)); return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner); } /* * mutex_tryenter: * * Try to acquire the mutex; return non-zero if we did. */ int mutex_tryenter(kmutex_t *mtx) { uintptr_t curthread; /* * Handle spin mutexes. */ if (MUTEX_SPIN_P(mtx)) { MUTEX_SPIN_SPLRAISE(mtx); #ifdef FULL if (__cpu_simple_lock_try(&mtx->mtx_lock)) { MUTEX_WANTLOCK(mtx); MUTEX_LOCKED(mtx); return 1; } MUTEX_SPIN_SPLRESTORE(mtx); #else MUTEX_WANTLOCK(mtx); MUTEX_LOCKED(mtx); return 1; #endif } else { curthread = (uintptr_t)curlwp; MUTEX_ASSERT(mtx, curthread != 0); if (MUTEX_ACQUIRE(mtx, curthread)) { MUTEX_WANTLOCK(mtx); MUTEX_LOCKED(mtx); MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread); return 1; } } return 0; } #if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) /* * mutex_spin_retry: * * Support routine for mutex_spin_enter(). Assumes that the caller * has already raised the SPL, and adjusted counters. */ void mutex_spin_retry(kmutex_t *mtx) { #ifdef MULTIPROCESSOR u_int count; LOCKSTAT_TIMER(spintime); LOCKSTAT_FLAG(lsflag); #ifdef LOCKDEBUG u_int spins = 0; #endif /* LOCKDEBUG */ MUTEX_WANTLOCK(mtx); LOCKSTAT_ENTER(lsflag); LOCKSTAT_START_TIMER(lsflag, spintime); count = SPINLOCK_BACKOFF_MIN; /* * Spin testing the lock word and do exponential backoff * to reduce cache line ping-ponging between CPUs. */ do { if (panicstr != NULL) break; while (__SIMPLELOCK_LOCKED_P(&mtx->mtx_lock)) { SPINLOCK_BACKOFF(count); #ifdef LOCKDEBUG if (SPINLOCK_SPINOUT(spins)) MUTEX_ABORT(mtx, "spinout"); #endif /* LOCKDEBUG */ } } while (!__cpu_simple_lock_try(&mtx->mtx_lock)); LOCKSTAT_STOP_TIMER(lsflag, spintime); LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime); LOCKSTAT_EXIT(lsflag); MUTEX_LOCKED(mtx); #else /* MULTIPROCESSOR */ MUTEX_ABORT(mtx, "locking against myself"); #endif /* MULTIPROCESSOR */ } #endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */ /* * mutex_obj_init: * * Initialize the mutex object store. */ void mutex_obj_init(void) { mutex_obj_cache = pool_cache_init(sizeof(struct kmutexobj), coherency_unit, 0, 0, "mutex", NULL, IPL_NONE, mutex_obj_ctor, NULL, NULL); } /* * mutex_obj_ctor: * * Initialize a new lock for the cache. */ static int mutex_obj_ctor(void *arg, void *obj, int flags) { struct kmutexobj * mo = obj; mo->mo_magic = MUTEX_OBJ_MAGIC; return 0; } /* * mutex_obj_alloc: * * Allocate a single lock object. */ kmutex_t * mutex_obj_alloc(kmutex_type_t type, int ipl) { struct kmutexobj *mo; mo = pool_cache_get(mutex_obj_cache, PR_WAITOK); mutex_init(&mo->mo_lock, type, ipl); mo->mo_refcnt = 1; return (kmutex_t *)mo; } /* * mutex_obj_hold: * * Add a single reference to a lock object. A reference to the object * must already be held, and must be held across this call. */ void mutex_obj_hold(kmutex_t *lock) { struct kmutexobj *mo = (struct kmutexobj *)lock; KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC); KASSERT(mo->mo_refcnt > 0); atomic_inc_uint(&mo->mo_refcnt); } /* * mutex_obj_free: * * Drop a reference from a lock object. If the last reference is being * dropped, free the object and return true. Otherwise, return false. */ bool mutex_obj_free(kmutex_t *lock) { struct kmutexobj *mo = (struct kmutexobj *)lock; KASSERT(mo->mo_magic == MUTEX_OBJ_MAGIC); KASSERT(mo->mo_refcnt > 0); if (atomic_dec_uint_nv(&mo->mo_refcnt) > 0) { return false; } mutex_destroy(&mo->mo_lock); pool_cache_put(mutex_obj_cache, mo); return true; }