/* $NetBSD: wi.c,v 1.83 2002/08/21 03:26:29 onoe Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. * * Original FreeBSD driver written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ /* * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the * Oslo IETF plenary meeting. */ #include __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.83 2002/08/21 03:26:29 onoe Exp $"); #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include /* for hz */ #include #include #include #include #include #include #if NBPFILTER > 0 #include #include #endif #include #include #include #include static void wi_reset __P((struct wi_softc *)); static int wi_ioctl __P((struct ifnet *, u_long, caddr_t)); static void wi_start __P((struct ifnet *)); static void wi_watchdog __P((struct ifnet *)); static int wi_init __P((struct ifnet *)); static void wi_stop __P((struct ifnet *, int)); static void wi_rxeof __P((struct wi_softc *)); static void wi_txeof __P((struct wi_softc *, int)); static void wi_update_stats __P((struct wi_softc *)); static void wi_setmulti __P((struct wi_softc *)); static int wi_cmd __P((struct wi_softc *, int, int, int, int)); static int wi_read_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_write_record __P((struct wi_softc *, struct wi_ltv_gen *)); static int wi_read_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_write_data __P((struct wi_softc *, int, int, caddr_t, int)); static int wi_seek __P((struct wi_softc *, int, int, int)); static int wi_alloc_nicmem __P((struct wi_softc *, int, int *)); static void wi_inquire __P((void *)); static void wi_wait_scan __P((void *)); static int wi_setdef __P((struct wi_softc *, struct wi_req *)); static int wi_getdef __P((struct wi_softc *, struct wi_req *)); static int wi_media_change __P((struct ifnet *)); static void wi_media_status __P((struct ifnet *, struct ifmediareq *)); static void wi_get_id __P((struct wi_softc *)); static int wi_set_ssid __P((struct ieee80211_nwid *, u_int8_t *, int)); static void wi_request_fill_ssid __P((struct wi_req *, struct ieee80211_nwid *)); static int wi_write_ssid __P((struct wi_softc *, int, struct wi_req *, struct ieee80211_nwid *)); static int wi_set_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); static int wi_get_nwkey __P((struct wi_softc *, struct ieee80211_nwkey *)); static int wi_sync_media __P((struct wi_softc *, int, int)); static int wi_set_pm(struct wi_softc *, struct ieee80211_power *); static int wi_get_pm(struct wi_softc *, struct ieee80211_power *); struct wi_card_ident wi_card_ident[] = { /* CARD_ID CARD_NAME FIRM_TYPE */ { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { 0, NULL, 0 }, }; int wi_attach(sc) struct wi_softc *sc; { struct ifnet *ifp = sc->sc_ifp; const char *sep = ""; int i, nrate; u_int8_t *r; struct wi_ltv_macaddr mac; struct wi_ltv_gen gen; struct wi_ltv_str rate; static const u_int8_t empty_macaddr[ETHER_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int s; s = splnet(); callout_init(&sc->wi_inquire_ch); callout_init(&sc->wi_scan_sh); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Reset the NIC. */ wi_reset(sc); memset(&mac, 0, sizeof(mac)); /* Read the station address. */ mac.wi_type = WI_RID_MAC_NODE; mac.wi_len = 4; wi_read_record(sc, (struct wi_ltv_gen *)&mac); memcpy(sc->sc_macaddr, mac.wi_mac_addr, ETHER_ADDR_LEN); /* * Check if we got anything meaningful. * * Is it really enough just checking against null ethernet address? * Or, check against possible vendor? XXX. */ if (memcmp(sc->sc_macaddr, empty_macaddr, ETHER_ADDR_LEN) == 0) { printf("could not get mac address, attach failed\n"); splx(s); return 1; } printf(" 802.11 address %s\n", ether_sprintf(sc->sc_macaddr)); /* Read NIC identification */ wi_get_id(sc); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = wi_start; ifp->if_ioctl = wi_ioctl; ifp->if_watchdog = wi_watchdog; ifp->if_init = wi_init; ifp->if_stop = wi_stop; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; #ifdef IFF_NOTRAILERS ifp->if_flags |= IFF_NOTRAILERS; #endif IFQ_SET_READY(&ifp->if_snd); (void)wi_set_ssid(&sc->wi_nodeid, WI_DEFAULT_NODENAME, sizeof(WI_DEFAULT_NODENAME) - 1); (void)wi_set_ssid(&sc->wi_netid, WI_DEFAULT_NETNAME, sizeof(WI_DEFAULT_NETNAME) - 1); (void)wi_set_ssid(&sc->wi_ibssid, WI_DEFAULT_IBSS, sizeof(WI_DEFAULT_IBSS) - 1); sc->wi_portnum = WI_DEFAULT_PORT; sc->wi_ptype = WI_PORTTYPE_BSS; sc->wi_ap_density = WI_DEFAULT_AP_DENSITY; sc->wi_rts_thresh = WI_DEFAULT_RTS_THRESH; sc->wi_tx_rate = WI_DEFAULT_TX_RATE; sc->wi_max_data_len = WI_DEFAULT_DATALEN; sc->wi_create_ibss = WI_DEFAULT_CREATE_IBSS; sc->wi_pm_enabled = WI_DEFAULT_PM_ENABLED; sc->wi_max_sleep = WI_DEFAULT_MAX_SLEEP; sc->wi_roaming = WI_DEFAULT_ROAMING; sc->wi_authtype = WI_DEFAULT_AUTHTYPE; /* * Read the default channel from the NIC. This may vary * depending on the country where the NIC was purchased, so * we can't hard-code a default and expect it to work for * everyone. */ gen.wi_type = WI_RID_OWN_CHNL; gen.wi_len = 2; wi_read_record(sc, &gen); sc->wi_channel = le16toh(gen.wi_val); memset((char *)&sc->wi_stats, 0, sizeof(sc->wi_stats)); /* AP info was filled with 0 */ memset((char *)&sc->wi_aps, 0, sizeof(sc->wi_aps)); sc->wi_scanning = 0; sc->wi_naps = 0; /* * Set flags based on firmware version. */ switch (sc->sc_firmware_type) { case WI_LUCENT: sc->wi_flags |= WI_FLAGS_HAS_ROAMING; if (sc->sc_sta_firmware_ver >= 60000) sc->wi_flags |= WI_FLAGS_HAS_MOR; if (sc->sc_sta_firmware_ver >= 60006) { sc->wi_flags |= WI_FLAGS_HAS_IBSS; sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; } sc->wi_ibss_port = htole16(1); break; case WI_INTERSIL: sc->wi_flags |= WI_FLAGS_HAS_ROAMING; if (sc->sc_sta_firmware_ver >= 800) { sc->wi_flags |= WI_FLAGS_HAS_HOSTAP; sc->wi_flags |= WI_FLAGS_HAS_IBSS; sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; } sc->wi_ibss_port = htole16(0); break; case WI_SYMBOL: sc->wi_flags |= WI_FLAGS_HAS_DIVERSITY; if (sc->sc_sta_firmware_ver >= 20000) sc->wi_flags |= WI_FLAGS_HAS_IBSS; if (sc->sc_sta_firmware_ver >= 25000) sc->wi_flags |= WI_FLAGS_HAS_CREATE_IBSS; sc->wi_ibss_port = htole16(4); break; } /* * Find out if we support WEP on this card. */ gen.wi_type = WI_RID_WEP_AVAIL; gen.wi_len = 2; if (wi_read_record(sc, &gen) == 0 && gen.wi_val != le16toh(0)) sc->wi_flags |= WI_FLAGS_HAS_WEP; /* Find supported rates. */ rate.wi_type = WI_RID_DATA_RATES; rate.wi_len = 6; if (wi_read_record(sc, (struct wi_ltv_gen *)&rate) == 0) { nrate = le16toh(rate.wi_str[0]); r = (u_int8_t *)&rate.wi_str[1]; for (i = 0; i < nrate; i++) { switch (r[i] & IEEE80211_RATE_VAL) { case 2: sc->wi_supprates |= WI_SUPPRATES_1M; break; case 4: sc->wi_supprates |= WI_SUPPRATES_2M; break; case 11: sc->wi_supprates |= WI_SUPPRATES_5M; break; case 22: sc->wi_supprates |= WI_SUPPRATES_11M; break; } } } ifmedia_init(&sc->sc_media, 0, wi_media_change, wi_media_status); if (sc->wi_supprates != 0) printf("%s: supported rates: ", sc->sc_dev.dv_xname); #define ADD(s, o) ifmedia_add(&sc->sc_media, \ IFM_MAKEWORD(IFM_IEEE80211, (s), (o), 0), 0, NULL) #define PRINT(n) printf("%s%s", sep, (n)); sep = ", " ADD(IFM_AUTO, 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_AUTO, IFM_IEEE80211_HOSTAP); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_AUTO, IFM_IEEE80211_ADHOC); ADD(IFM_AUTO, IFM_IEEE80211_ADHOC | IFM_FLAG0); if (sc->wi_supprates & WI_SUPPRATES_1M) { PRINT("1Mbps"); ADD(IFM_IEEE80211_DS1, 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_IEEE80211_DS1, IFM_IEEE80211_HOSTAP); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC); ADD(IFM_IEEE80211_DS1, IFM_IEEE80211_ADHOC | IFM_FLAG0); } if (sc->wi_supprates & WI_SUPPRATES_2M) { PRINT("2Mbps"); ADD(IFM_IEEE80211_DS2, 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_IEEE80211_DS2, IFM_IEEE80211_HOSTAP); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC); ADD(IFM_IEEE80211_DS2, IFM_IEEE80211_ADHOC | IFM_FLAG0); } if (sc->wi_supprates & WI_SUPPRATES_5M) { PRINT("5.5Mbps"); ADD(IFM_IEEE80211_DS5, 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_IEEE80211_DS5, IFM_IEEE80211_HOSTAP); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC); ADD(IFM_IEEE80211_DS5, IFM_IEEE80211_ADHOC | IFM_FLAG0); } if (sc->wi_supprates & WI_SUPPRATES_11M) { PRINT("11Mbps"); ADD(IFM_IEEE80211_DS11, 0); if (sc->wi_flags & WI_FLAGS_HAS_HOSTAP) ADD(IFM_IEEE80211_DS11, IFM_IEEE80211_HOSTAP); if (sc->wi_flags & WI_FLAGS_HAS_IBSS) ADD(IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC); ADD(IFM_IEEE80211_DS11, IFM_IEEE80211_ADHOC | IFM_FLAG0); } if (sc->wi_supprates != 0) printf("\n"); ifmedia_set(&sc->sc_media, IFM_MAKEWORD(IFM_IEEE80211, IFM_AUTO, 0, 0)); #undef ADD #undef PRINT /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp, sc->sc_macaddr); ifp->if_baudrate = IF_Mbps(2); /* Attach is successful. */ sc->sc_attached = 1; splx(s); return 0; } static void wi_rxeof(sc) struct wi_softc *sc; { struct ifnet *ifp; struct ether_header *eh; struct wi_frame rx_frame; struct mbuf *m; int id; ifp = sc->sc_ifp; id = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_data(sc, id, 0, (caddr_t)&rx_frame, sizeof(rx_frame))) { ifp->if_ierrors++; return; } /* * Drop undecryptable or packets with receive errors here */ if (le16toh(rx_frame.wi_status) & WI_STAT_ERRSTAT) { ifp->if_ierrors++; return; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; return; } MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); ifp->if_ierrors++; return; } /* Align the data after the ethernet header */ m->m_data = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; if ((le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_MGMT && sc->wi_ptype == WI_PORTTYPE_HOSTAP) { if ((le16toh(rx_frame.wi_dat_len) + WI_802_11_OFFSET_RAW + 2) > MCLBYTES) { printf("%s: oversized packet received in " "Host-AP mode (wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } /* Put the whole header in there. */ memcpy(mtod(m, void *), &rx_frame, sizeof(rx_frame)); if (wi_read_data(sc, id, WI_802_11_OFFSET_RAW, mtod(m, caddr_t) + WI_802_11_OFFSET_RAW, le16toh(rx_frame.wi_dat_len) + 2)) { m_freem(m); if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG) printf("%s: Host-AP: failed to copy header\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = WI_802_11_OFFSET_RAW + le16toh(rx_frame.wi_dat_len); /* XXX Consider giving packet to bhp? */ wihap_mgmt_input(sc, &rx_frame, m); return; } if ((le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_1042 || (le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_TUNNEL || (le16toh(rx_frame.wi_status) & WI_RXSTAT_MSG_TYPE) == WI_STAT_WMP_MSG) { if ((le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = le16toh(rx_frame.wi_dat_len) + WI_SNAPHDR_LEN; memcpy((char *)&eh->ether_dhost, (char *)&rx_frame.wi_dst_addr, ETHER_ADDR_LEN); memcpy((char *)&eh->ether_shost, (char *)&rx_frame.wi_src_addr, ETHER_ADDR_LEN); memcpy((char *)&eh->ether_type, (char *)&rx_frame.wi_type, sizeof(u_int16_t)); if (wi_read_data(sc, id, WI_802_11_OFFSET, mtod(m, caddr_t) + sizeof(struct ether_header), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } else { if ((le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header)) > MCLBYTES) { printf("%s: oversized packet received " "(wi_dat_len=%d, wi_status=0x%x)\n", sc->sc_dev.dv_xname, le16toh(rx_frame.wi_dat_len), le16toh(rx_frame.wi_status)); m_freem(m); ifp->if_ierrors++; return; } m->m_pkthdr.len = m->m_len = le16toh(rx_frame.wi_dat_len) + sizeof(struct ether_header); if (wi_read_data(sc, id, WI_802_3_OFFSET, mtod(m, caddr_t), m->m_len + 2)) { m_freem(m); ifp->if_ierrors++; return; } } ifp->if_ipackets++; if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { /* * Give Host-AP first crack at data packets. If it * decides to handle it (or drop it), it will return * non-zero. Otherwise, it is destined for this host. */ if (wihap_data_input(sc, &rx_frame, m)) return; } #if NBPFILTER > 0 /* Handle BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Receive packet. */ (*ifp->if_input)(ifp, m); } static void wi_txeof(sc, status) struct wi_softc *sc; int status; { struct ifnet *ifp = sc->sc_ifp; ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; if (status & WI_EV_TX_EXC) ifp->if_oerrors++; else ifp->if_opackets++; return; } void wi_inquire(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; int s; sc = xsc; ifp = &sc->sc_ethercom.ec_if; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return; KASSERT(sc->sc_enabled); callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); /* Don't do this while we're transmitting */ if (ifp->if_flags & IFF_OACTIVE) return; s = splnet(); wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_COUNTERS, 0, 0); splx(s); } void wi_wait_scan(xsc) void *xsc; { struct wi_softc *sc; struct ifnet *ifp; int s, result; sc = xsc; ifp = &sc->sc_ethercom.ec_if; /* If not scanning, ignore */ if (!sc->wi_scanning) return; s = splnet(); /* Wait for sending complete to make INQUIRE */ if (ifp->if_flags & IFF_OACTIVE) { callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc); splx(s); return; } /* try INQUIRE */ result = wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); if (result == ETIMEDOUT) callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc); splx(s); } void wi_update_stats(sc) struct wi_softc *sc; { struct wi_ltv_gen gen; struct wi_scan_header ap2_header; /* Prism2 header */ struct wi_scan_data_p2 ap2; /* Prism2 scantable*/ struct wi_scan_data ap; /* Lucent scantable */ struct wi_assoc assoc; /* Association Status */ u_int16_t id; struct ifnet *ifp; u_int32_t *ptr; int len, naps, i, j; u_int16_t t; ifp = &sc->sc_ethercom.ec_if; id = CSR_READ_2(sc, WI_INFO_FID); if (wi_seek(sc, id, 0, WI_BAP1)) { return; } gen.wi_len = CSR_READ_2(sc, WI_DATA1); gen.wi_type = CSR_READ_2(sc, WI_DATA1); switch (gen.wi_type) { case WI_INFO_SCAN_RESULTS: case WI_INFO_HOST_SCAN_RESULTS: if (gen.wi_len <= 3) { sc->wi_naps = 0; sc->wi_scanning = 0; break; } switch (sc->sc_firmware_type) { case WI_INTERSIL: case WI_SYMBOL: if (sc->sc_firmware_type == WI_INTERSIL) { naps = 2 * (gen.wi_len - 3) / sizeof(ap2); /* Read Header */ for(j=0; j < sizeof(ap2_header) / 2; j++) ((u_int16_t *)&ap2_header)[j] = CSR_READ_2(sc, WI_DATA1); } else { /* WI_SYMBOL */ naps = 2 * (gen.wi_len - 1) / (sizeof(ap2) + 6); ap2_header.wi_reason = 0; } naps = naps > MAXAPINFO ? MAXAPINFO : naps; sc->wi_naps = naps; /* Read Data */ for (i=0; i < naps; i++) { for(j=0; j < sizeof(ap2) / 2; j++) ((u_int16_t *)&ap2)[j] = CSR_READ_2(sc, WI_DATA1); if (sc->sc_firmware_type == WI_SYMBOL) { /* 3 more words */ for (j = 0; j < 3; j++) CSR_READ_2(sc, WI_DATA1); } /* unswap 8 bit data fields: */ for(j=0;jwi_aps[i].scanreason = ap2_header.wi_reason; memcpy(sc->wi_aps[i].bssid, ap2.wi_bssid, 6); sc->wi_aps[i].channel = ap2.wi_chid; sc->wi_aps[i].signal = ap2.wi_signal; sc->wi_aps[i].noise = ap2.wi_noise; sc->wi_aps[i].quality = ap2.wi_signal - ap2.wi_noise; sc->wi_aps[i].capinfo = ap2.wi_capinfo; sc->wi_aps[i].interval = ap2.wi_interval; sc->wi_aps[i].rate = ap2.wi_rate; if (ap2.wi_namelen > 32) ap2.wi_namelen = 32; sc->wi_aps[i].namelen = ap2.wi_namelen; memcpy(sc->wi_aps[i].name, ap2.wi_name, ap2.wi_namelen); } break; case WI_LUCENT: naps = 2 * gen.wi_len / sizeof(ap); naps = naps > MAXAPINFO ? MAXAPINFO : naps; sc->wi_naps = naps; /* Read Data*/ for (i=0; i < naps; i++) { for(j=0; j < sizeof(ap) / 2; j++) ((u_int16_t *)&ap)[j] = CSR_READ_2(sc, WI_DATA1); /* unswap 8 bit data fields: */ for(j=0;jwi_aps[i].bssid, ap.wi_bssid, 6); sc->wi_aps[i].channel = ap.wi_chid; sc->wi_aps[i].signal = ap.wi_signal; sc->wi_aps[i].noise = ap.wi_noise; sc->wi_aps[i].quality = ap.wi_signal - ap.wi_noise; sc->wi_aps[i].capinfo = ap.wi_capinfo; sc->wi_aps[i].interval = ap.wi_interval; if (ap.wi_namelen > 32) ap.wi_namelen = 32; sc->wi_aps[i].namelen = ap.wi_namelen; memcpy(sc->wi_aps[i].name, ap.wi_name, ap.wi_namelen); } break; } /* Done scanning */ sc->wi_scanning = 0; break; case WI_INFO_COUNTERS: /* some card versions have a larger stats structure */ len = (gen.wi_len - 1 < sizeof(sc->wi_stats) / 4) ? gen.wi_len - 1 : sizeof(sc->wi_stats) / 4; ptr = (u_int32_t *)&sc->wi_stats; for (i = 0; i < len; i++) { t = CSR_READ_2(sc, WI_DATA1); #ifdef WI_HERMES_STATS_WAR if (t > 0xF000) t = ~t & 0xFFFF; #endif ptr[i] += t; } ifp->if_collisions = sc->wi_stats.wi_tx_single_retries + sc->wi_stats.wi_tx_multi_retries + sc->wi_stats.wi_tx_retry_limit; break; case WI_INFO_LINK_STAT: { static char *msg[] = { "connected", "disconnected", "AP change", "AP out of range", "AP in range", "Association Failed" }; if (gen.wi_len != 2) { #ifdef WI_DEBUG printf("WI_INFO_LINK_STAT: len=%d\n", gen.wi_len); #endif break; } t = CSR_READ_2(sc, WI_DATA1); if ((t < 1) || (t > 6)) { #ifdef WI_DEBUG printf("WI_INFO_LINK_STAT: status %d\n", t); #endif break; } if (sc->sc_firmware_type == WI_SYMBOL && t == 4) { wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_HOST_SCAN_RESULTS, 0, 0); break; } /* * Some cards issue streams of "connected" messages while * trying to find a peer. Don't bother the user with this * unless he is debugging. */ if (ifp->if_flags & IFF_DEBUG) printf("%s: %s\n", sc->sc_dev.dv_xname, msg[t - 1]); break; } case WI_INFO_ASSOC_STAT: { static char *msg[] = { "STA Associated", "STA Reassociated", "STA Disassociated", "Association Failure", "Authentication Failed" }; if (gen.wi_len != 10) break; for (i=0; i < gen.wi_len - 1; i++) ((u_int16_t *)&assoc)[i] = CSR_READ_2(sc, WI_DATA1); /* unswap 8 bit data fields: */ for(j=0;jsc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1], assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff, assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff, assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff); break; case REASSOC: printf("%s: %s, AP = %02x:%02x:%02x:%02x:%02x:%02x, " "OldAP = %02x:%02x:%02x:%02x:%02x:%02x\n", sc->sc_dev.dv_xname, msg[assoc.wi_assoc_stat - 1], assoc.wi_assoc_sta[0]&0xff, assoc.wi_assoc_sta[1]&0xff, assoc.wi_assoc_sta[2]&0xff, assoc.wi_assoc_sta[3]&0xff, assoc.wi_assoc_sta[4]&0xff, assoc.wi_assoc_sta[5]&0xff, assoc.wi_assoc_osta[0]&0xff, assoc.wi_assoc_osta[1]&0xff, assoc.wi_assoc_osta[2]&0xff, assoc.wi_assoc_osta[3]&0xff, assoc.wi_assoc_osta[4]&0xff, assoc.wi_assoc_osta[5]&0xff); break; } } default: #ifdef WI_DEBUG printf("%s: got info type: 0x%04x len=0x%04x\n", sc->sc_dev.dv_xname, gen.wi_type,gen.wi_len); #endif #if 0 for (i = 0; i < gen.wi_len; i++) { t = CSR_READ_2(sc, WI_DATA1); printf("[0x%02x] = 0x%04x\n", i, t); } #endif break; } } int wi_intr(arg) void *arg; { struct wi_softc *sc = arg; struct ifnet *ifp; u_int16_t status; if (sc->sc_enabled == 0 || (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || (sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0) return (0); ifp = &sc->sc_ethercom.ec_if; if (!(ifp->if_flags & IFF_UP)) { CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); CSR_WRITE_2(sc, WI_INT_EN, 0); return 1; } /* Disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); status = CSR_READ_2(sc, WI_EVENT_STAT); CSR_WRITE_2(sc, WI_EVENT_ACK, ~WI_INTRS); if (status & WI_EV_RX) { wi_rxeof(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); } if (status & WI_EV_TX) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); } if (status & WI_EV_ALLOC) { int id; id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (id == sc->wi_tx_data_id) wi_txeof(sc, status); } if (status & WI_EV_INFO) { wi_update_stats(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); } if (status & WI_EV_TX_EXC) { wi_txeof(sc, status); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); } if (status & WI_EV_INFO_DROP) { CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO_DROP); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) wi_start(ifp); return 1; } /* Must be called at proper protection level! */ static int wi_cmd(sc, cmd, val0, val1, val2) struct wi_softc *sc; int cmd; int val0; int val1; int val2; { int i, s = 0; /* wait for the busy bit to clear */ for (i = 0; i < WI_TIMEOUT; i++) { if (!(CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY)) break; } if (i == WI_TIMEOUT) { printf("%s: wi_cmd: BUSY did not clear, cmd=0x%x\n", sc->sc_dev.dv_xname, cmd); return EIO; } CSR_WRITE_2(sc, WI_PARAM0, val0); CSR_WRITE_2(sc, WI_PARAM1, val1); CSR_WRITE_2(sc, WI_PARAM2, val2); CSR_WRITE_2(sc, WI_COMMAND, cmd); /* wait for the cmd completed bit */ for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) break; DELAY(1); } /* Ack the command */ CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); s = CSR_READ_2(sc, WI_STATUS); if (s & WI_STAT_CMD_RESULT) return(EIO); if (i == WI_TIMEOUT) { if (!sc->wi_scanning) printf("%s: command timed out, cmd=0x%x\n", sc->sc_dev.dv_xname, cmd); return(ETIMEDOUT); } return(0); } static void wi_reset(sc) struct wi_softc *sc; { DELAY(100*1000); /* 100 m sec */ if (wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) printf("%s: init failed\n", sc->sc_dev.dv_xname); CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Calibrate timer. */ WI_SETVAL(WI_RID_TICK_TIME, 8); return; } /* * Read an LTV record from the NIC. */ static int wi_read_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int len, code; struct wi_ltv_gen *oltv, p2ltv; if (sc->sc_firmware_type != WI_LUCENT) { oltv = ltv; switch (ltv->wi_type) { case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; ltv = &p2ltv; break; } } /* Tell the NIC to enter record read mode. */ if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_READ, ltv->wi_type, 0, 0)) return(EIO); /* Seek to the record. */ if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); /* * Read the length and record type and make sure they * match what we expect (this verifies that we have enough * room to hold all of the returned data). */ len = CSR_READ_2(sc, WI_DATA1); if (len > ltv->wi_len) return(ENOSPC); code = CSR_READ_2(sc, WI_DATA1); if (code != ltv->wi_type) return(EIO); ltv->wi_len = len; ltv->wi_type = code; /* Now read the data. */ ptr = <v->wi_val; if (ltv->wi_len > 1) CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); if (ltv->wi_type == WI_RID_PORTTYPE && sc->wi_ptype == WI_PORTTYPE_IBSS && ltv->wi_val == sc->wi_ibss_port) { /* * Convert vendor IBSS port type to WI_PORTTYPE_IBSS. * Since Lucent uses port type 1 for BSS *and* IBSS we * have to rely on wi_ptype to distinguish this for us. */ ltv->wi_val = htole16(WI_PORTTYPE_IBSS); } else if (sc->sc_firmware_type != WI_LUCENT) { int v; switch (oltv->wi_type) { case WI_RID_TX_RATE: case WI_RID_CUR_TX_RATE: switch (le16toh(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 6; break; case 4: v = 5; break; case 7: v = 7; break; case 8: v = 11; break; case 15: v = 3; break; default: v = 0x100 + le16toh(ltv->wi_val); break; } oltv->wi_val = htole16(v); break; case WI_RID_ENCRYPTION: oltv->wi_len = 2; if (le16toh(ltv->wi_val) & 0x01) oltv->wi_val = htole16(1); else oltv->wi_val = htole16(0); break; case WI_RID_TX_CRYPT_KEY: oltv->wi_len = 2; oltv->wi_val = ltv->wi_val; break; case WI_RID_CNFAUTHMODE: oltv->wi_len = 2; if (le16toh(ltv->wi_val) & 0x01) oltv->wi_val = htole16(1); else if (le16toh(ltv->wi_val) & 0x02) oltv->wi_val = htole16(2); break; } } return(0); } /* * Same as read, except we inject data instead of reading it. */ static int wi_write_record(sc, ltv) struct wi_softc *sc; struct wi_ltv_gen *ltv; { u_int16_t *ptr; int i; struct wi_ltv_gen p2ltv; if (ltv->wi_type == WI_RID_PORTTYPE && ltv->wi_val == le16toh(WI_PORTTYPE_IBSS)) { /* Convert WI_PORTTYPE_IBSS to vendor IBSS port type. */ p2ltv.wi_type = WI_RID_PORTTYPE; p2ltv.wi_len = 2; p2ltv.wi_val = sc->wi_ibss_port; ltv = &p2ltv; } else if (sc->sc_firmware_type != WI_LUCENT) { int v; switch (ltv->wi_type) { case WI_RID_TX_RATE: p2ltv.wi_type = WI_RID_TX_RATE; p2ltv.wi_len = 2; switch (le16toh(ltv->wi_val)) { case 1: v = 1; break; case 2: v = 2; break; case 3: v = 15; break; case 5: v = 4; break; case 6: v = 3; break; case 7: v = 7; break; case 11: v = 8; break; default: return EINVAL; } p2ltv.wi_val = htole16(v); ltv = &p2ltv; break; case WI_RID_ENCRYPTION: p2ltv.wi_type = WI_RID_P2_ENCRYPTION; p2ltv.wi_len = 2; if (le16toh(ltv->wi_val)) { uint16_t val = PRIVACY_INVOKED; /* * If using shared key WEP we must set the * EXCLUDE_UNENCRYPTED bit. Symbol cards * need this bit even when not using shared * key. We can't just test for * IEEE80211_AUTH_SHARED since Symbol cards * have 2 shared key modes. */ if (sc->wi_authtype != IEEE80211_AUTH_OPEN || sc->sc_firmware_type == WI_SYMBOL) val |= EXCLUDE_UNENCRYPTED; /* Tx encryption is broken in Host-AP mode. */ if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) val |= HOST_ENCRYPT; p2ltv.wi_val = htole16(val); } else p2ltv.wi_val = htole16(HOST_ENCRYPT | HOST_DECRYPT); ltv = &p2ltv; break; case WI_RID_TX_CRYPT_KEY: p2ltv.wi_type = WI_RID_P2_TX_CRYPT_KEY; p2ltv.wi_len = 2; p2ltv.wi_val = ltv->wi_val; ltv = &p2ltv; break; case WI_RID_DEFLT_CRYPT_KEYS: { int error; int keylen; struct wi_ltv_str ws; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)ltv; keylen = le16toh(wk->wi_keys[sc->wi_tx_key].wi_keylen); for (i = 0; i < 4; i++) { memset(&ws, 0, sizeof(ws)); ws.wi_len = (keylen > 5) ? 8 : 4; ws.wi_type = WI_RID_P2_CRYPT_KEY0 + i; memcpy(ws.wi_str, &wk->wi_keys[i].wi_keydat, keylen); error = wi_write_record(sc, (struct wi_ltv_gen *)&ws); if (error) return error; } return 0; } case WI_RID_CNFAUTHMODE: p2ltv.wi_type = WI_RID_CNFAUTHMODE; p2ltv.wi_len = 2; if (le16toh(ltv->wi_val) == 1) p2ltv.wi_val = htole16(0x01); else if (le16toh(ltv->wi_val) == 2) p2ltv.wi_val = htole16(0x02); ltv = &p2ltv; break; } } if (wi_seek(sc, ltv->wi_type, 0, WI_BAP1)) return(EIO); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_len); CSR_WRITE_2(sc, WI_DATA1, ltv->wi_type); /* Write data */ ptr = <v->wi_val; if (ltv->wi_len > 1) CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA1, ptr, ltv->wi_len - 1); if (wi_cmd(sc, WI_CMD_ACCESS|WI_ACCESS_WRITE, ltv->wi_type, 0, 0)) return(EIO); return(0); } static int wi_seek(sc, id, off, chan) struct wi_softc *sc; int id, off, chan; { int i; int selreg, offreg; int status; switch (chan) { case WI_BAP0: selreg = WI_SEL0; offreg = WI_OFF0; break; case WI_BAP1: selreg = WI_SEL1; offreg = WI_OFF1; break; default: printf("%s: invalid data path: %x\n", sc->sc_dev.dv_xname, chan); return(EIO); } CSR_WRITE_2(sc, selreg, id); CSR_WRITE_2(sc, offreg, off); for (i = 0; i < WI_TIMEOUT; i++) { status = CSR_READ_2(sc, offreg); if (!(status & (WI_OFF_BUSY|WI_OFF_ERR))) break; } if (i == WI_TIMEOUT) { printf("%s: timeout in wi_seek to %x/%x; last status %x\n", sc->sc_dev.dv_xname, id, off, status); return(ETIMEDOUT); } return(0); } static int wi_read_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { u_int16_t *ptr; if (wi_seek(sc, id, off, WI_BAP1)) return(EIO); ptr = (u_int16_t *)buf; CSR_READ_MULTI_STREAM_2(sc, WI_DATA1, ptr, len / 2); return(0); } /* * According to the comments in the HCF Light code, there is a bug in * the Hermes (or possibly in certain Hermes firmware revisions) where * the chip's internal autoincrement counter gets thrown off during * data writes: the autoincrement is missed, causing one data word to * be overwritten and subsequent words to be written to the wrong memory * locations. The end result is that we could end up transmitting bogus * frames without realizing it. The workaround for this is to write a * couple of extra guard words after the end of the transfer, then * attempt to read then back. If we fail to locate the guard words where * we expect them, we preform the transfer over again. */ static int wi_write_data(sc, id, off, buf, len) struct wi_softc *sc; int id, off; caddr_t buf; int len; { u_int16_t *ptr; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (wi_seek(sc, id, off, WI_BAP0)) return(EIO); ptr = (u_int16_t *)buf; CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, ptr, len / 2); #ifdef WI_HERMES_AUTOINC_WAR CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); if (wi_seek(sc, id, off + len, WI_BAP0)) return(EIO); if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) goto again; #endif return(0); } /* * Allocate a region of memory inside the NIC and zero * it out. */ static int wi_alloc_nicmem(sc, len, id) struct wi_softc *sc; int len; int *id; { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { printf("%s: failed to allocate %d bytes on NIC\n", sc->sc_dev.dv_xname, len); return(ENOMEM); } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; } if (i == WI_TIMEOUT) { printf("%s: TIMED OUT in alloc\n", sc->sc_dev.dv_xname); return(ETIMEDOUT); } *id = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); if (wi_seek(sc, *id, 0, WI_BAP0)) { printf("%s: seek failed in alloc\n", sc->sc_dev.dv_xname); return(EIO); } for (i = 0; i < len / 2; i++) CSR_WRITE_2(sc, WI_DATA0, 0); return(0); } static void wi_setmulti(sc) struct wi_softc *sc; { struct ifnet *ifp; int i = 0; struct wi_ltv_mcast mcast; struct ether_multi *enm; struct ether_multistep estep; struct ethercom *ec = &sc->sc_ethercom; ifp = &sc->sc_ethercom.ec_if; if ((ifp->if_flags & IFF_PROMISC) != 0) { allmulti: ifp->if_flags |= IFF_ALLMULTI; memset((char *)&mcast, 0, sizeof(mcast)); mcast.wi_type = WI_RID_MCAST_LIST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * 16) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); return; } i = 0; ETHER_FIRST_MULTI(estep, ec, enm); while (enm != NULL) { /* Punt on ranges or too many multicast addresses. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0 || i >= 16) goto allmulti; memcpy((char *)&mcast.wi_mcast[i], enm->enm_addrlo, ETHER_ADDR_LEN); i++; ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; mcast.wi_type = WI_RID_MCAST_LIST; mcast.wi_len = ((ETHER_ADDR_LEN / 2) * i) + 1; wi_write_record(sc, (struct wi_ltv_gen *)&mcast); } static int wi_setdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; switch(wreq->wi_type) { case WI_RID_MAC_NODE: sdl = (struct sockaddr_dl *)ifp->if_sadl; memcpy((char *)&sc->sc_macaddr, (char *)&wreq->wi_val, ETHER_ADDR_LEN); memcpy(LLADDR(sdl), (char *)&wreq->wi_val, ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: error = wi_sync_media(sc, le16toh(wreq->wi_val[0]), sc->wi_tx_rate); break; case WI_RID_TX_RATE: error = wi_sync_media(sc, sc->wi_ptype, le16toh(wreq->wi_val[0])); break; case WI_RID_MAX_DATALEN: sc->wi_max_data_len = le16toh(wreq->wi_val[0]); break; case WI_RID_RTS_THRESH: sc->wi_rts_thresh = le16toh(wreq->wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->wi_ap_density = le16toh(wreq->wi_val[0]); break; case WI_RID_CREATE_IBSS: sc->wi_create_ibss = le16toh(wreq->wi_val[0]); error = wi_sync_media(sc, sc->wi_ptype, sc->wi_tx_rate); break; case WI_RID_OWN_CHNL: sc->wi_channel = le16toh(wreq->wi_val[0]); break; case WI_RID_NODENAME: error = wi_set_ssid(&sc->wi_nodeid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_DESIRED_SSID: error = wi_set_ssid(&sc->wi_netid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_OWN_SSID: error = wi_set_ssid(&sc->wi_ibssid, (u_int8_t *)&wreq->wi_val[1], le16toh(wreq->wi_val[0])); break; case WI_RID_PM_ENABLED: sc->wi_pm_enabled = le16toh(wreq->wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->wi_mor_enabled = le16toh(wreq->wi_val[0]); break; case WI_RID_MAX_SLEEP: sc->wi_max_sleep = le16toh(wreq->wi_val[0]); break; case WI_RID_CNFAUTHMODE: sc->wi_authtype = le16toh(wreq->wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->wi_roaming = le16toh(wreq->wi_val[0]); break; case WI_RID_ENCRYPTION: sc->wi_use_wep = le16toh(wreq->wi_val[0]); break; case WI_RID_TX_CRYPT_KEY: sc->wi_tx_key = le16toh(wreq->wi_val[0]); break; case WI_RID_DEFLT_CRYPT_KEYS: memcpy((char *)&sc->wi_keys, (char *)wreq, sizeof(struct wi_ltv_keys)); break; default: error = EINVAL; break; } return (error); } static int wi_getdef(sc, wreq) struct wi_softc *sc; struct wi_req *wreq; { struct sockaddr_dl *sdl; struct ifnet *ifp; int error = 0; ifp = &sc->sc_ethercom.ec_if; wreq->wi_len = 2; /* XXX */ switch (wreq->wi_type) { case WI_RID_MAC_NODE: wreq->wi_len += ETHER_ADDR_LEN / 2 - 1; sdl = (struct sockaddr_dl *)ifp->if_sadl; memcpy(&wreq->wi_val, &sc->sc_macaddr, ETHER_ADDR_LEN); memcpy(&wreq->wi_val, LLADDR(sdl), ETHER_ADDR_LEN); break; case WI_RID_PORTTYPE: wreq->wi_val[0] = htole16(sc->wi_ptype); break; case WI_RID_TX_RATE: wreq->wi_val[0] = htole16(sc->wi_tx_rate); break; case WI_RID_MAX_DATALEN: wreq->wi_val[0] = htole16(sc->wi_max_data_len); break; case WI_RID_RTS_THRESH: wreq->wi_val[0] = htole16(sc->wi_rts_thresh); break; case WI_RID_SYSTEM_SCALE: wreq->wi_val[0] = htole16(sc->wi_ap_density); break; case WI_RID_CREATE_IBSS: wreq->wi_val[0] = htole16(sc->wi_create_ibss); break; case WI_RID_OWN_CHNL: wreq->wi_val[0] = htole16(sc->wi_channel); break; case WI_RID_NODENAME: wi_request_fill_ssid(wreq, &sc->wi_nodeid); break; case WI_RID_DESIRED_SSID: wi_request_fill_ssid(wreq, &sc->wi_netid); break; case WI_RID_OWN_SSID: wi_request_fill_ssid(wreq, &sc->wi_ibssid); break; case WI_RID_PM_ENABLED: wreq->wi_val[0] = htole16(sc->wi_pm_enabled); break; case WI_RID_MICROWAVE_OVEN: wreq->wi_val[0] = htole16(sc->wi_mor_enabled); break; case WI_RID_MAX_SLEEP: wreq->wi_val[0] = htole16(sc->wi_max_sleep); break; case WI_RID_CNFAUTHMODE: wreq->wi_val[0] = htole16(sc->wi_authtype); break; case WI_RID_ROAMING_MODE: wreq->wi_val[0] = htole16(sc->wi_roaming); break; case WI_RID_WEP_AVAIL: wreq->wi_val[0] = (sc->wi_flags & WI_FLAGS_HAS_WEP) ? htole16(1) : htole16(0); break; case WI_RID_ENCRYPTION: wreq->wi_val[0] = htole16(sc->wi_use_wep); break; case WI_RID_TX_CRYPT_KEY: wreq->wi_val[0] = htole16(sc->wi_tx_key); break; case WI_RID_DEFLT_CRYPT_KEYS: wreq->wi_len += sizeof(struct wi_ltv_keys) / 2 - 1; memcpy(wreq, &sc->wi_keys, sizeof(struct wi_ltv_keys)); break; default: #if 0 error = EIO; #else #ifdef WI_DEBUG printf("%s: wi_getdef: unknown request %d\n", sc->sc_dev.dv_xname, wreq->wi_type); #endif #endif break; } return (error); } static int wi_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { int s, error = 0; int len; struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; struct ifreq *ifr; struct proc *p = curproc; struct ieee80211_nwid nwid; if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) return (ENXIO); s = splnet(); ifr = (struct ifreq *)data; switch (command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->wi_if_flags & IFF_PROMISC)) { if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) WI_SETVAL(WI_RID_PROMISC, 1); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->wi_if_flags & IFF_PROMISC) { if (sc->wi_ptype != WI_PORTTYPE_HOSTAP) WI_SETVAL(WI_RID_PROMISC, 0); } else wi_init(ifp); } else if (ifp->if_flags & IFF_RUNNING) wi_stop(ifp, 0); sc->wi_if_flags = ifp->if_flags; if (!(ifp->if_flags & IFF_UP)) { if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; ifp->if_flags &= ~IFF_RUNNING; } } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { if (sc->sc_enabled != 0) { /* * Multicast list has changed. Set the * hardware filter accordingly. */ wi_setmulti(sc); } error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, command); break; case SIOCGWAVELAN: error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { memcpy((char *)&wreq.wi_val, (char *)&sc->wi_stats, sizeof(sc->wi_stats)); wreq.wi_len = (sizeof(sc->wi_stats) / 2) + 1; } else if (wreq.wi_type == WI_RID_READ_APS) { if (sc->wi_scanning) { error = EINPROGRESS; break; } else { len = sc->wi_naps * sizeof(struct wi_apinfo); len = len > WI_MAX_DATALEN ? WI_MAX_DATALEN : len; len = len / sizeof(struct wi_apinfo); memcpy((char *)&wreq.wi_val, (char *)&len, sizeof(len)); memcpy((char *)&wreq.wi_val + sizeof(len), (char *)&sc->wi_aps, len * sizeof(struct wi_apinfo)); } } else if (wreq.wi_type == WI_RID_DEFLT_CRYPT_KEYS) { /* For non-root user, return all-zeroes keys */ if (suser(p->p_ucred, &p->p_acflag)) memset((char *)&wreq, 0, sizeof(struct wi_ltv_keys)); else memcpy((char *)&wreq, (char *)&sc->wi_keys, sizeof(struct wi_ltv_keys)); } else { if (sc->sc_enabled == 0 || (wreq.wi_type == WI_RID_ROAMING_MODE && (sc->wi_flags & WI_FLAGS_HAS_ROAMING) == 0) || (wreq.wi_type == WI_RID_CREATE_IBSS && (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) == 0) || (wreq.wi_type == WI_RID_MICROWAVE_OVEN && (sc->wi_flags & WI_FLAGS_HAS_MOR) == 0)) error = wi_getdef(sc, &wreq); else if (wreq.wi_len > WI_MAX_DATALEN) error = EINVAL; else if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq)) error = EINVAL; } if (error == 0) error = copyout(&wreq, ifr->ifr_data, sizeof(wreq)); break; case SIOCSWAVELAN: error = suser(p->p_ucred, &p->p_acflag); if (error) break; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) break; if (wreq.wi_type == WI_RID_IFACE_STATS) { if (sc->sc_enabled) wi_inquire(sc); break; } else if (wreq.wi_type == WI_RID_MGMT_XMIT) { error = wi_mgmt_xmit(sc, (caddr_t)&wreq.wi_val, wreq.wi_len); } else if (wreq.wi_type == WI_RID_SCAN_APS) { if (wreq.wi_len != 4) { error = EINVAL; break; } if (!sc->wi_scanning) { switch (sc->sc_firmware_type) { case WI_LUCENT: break; case WI_INTERSIL: wreq.wi_type = WI_RID_SCAN_REQ; error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); break; case WI_SYMBOL: /* * XXX only supported on 3.x ? */ wreq.wi_type = WI_RID_BCAST_SCAN_REQ; wreq.wi_val[0] = BSCAN_BCAST | BSCAN_ONETIME; wreq.wi_len = 2; error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); break; } if (!error) { sc->wi_scanning = 1; callout_reset(&sc->wi_scan_sh, hz * 1, wi_wait_scan, sc); } } } else { /* * Filter stuff out based on what the * card can do. */ if ((wreq.wi_type == WI_RID_ROAMING_MODE && (sc->wi_flags & WI_FLAGS_HAS_ROAMING) == 0) || (wreq.wi_type == WI_RID_CREATE_IBSS && (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) == 0) || (wreq.wi_type == WI_RID_MICROWAVE_OVEN && (sc->wi_flags & WI_FLAGS_HAS_MOR) == 0)) break; if (wreq.wi_len > WI_MAX_DATALEN) error = EINVAL; else if (sc->sc_enabled != 0) error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error == 0) error = wi_setdef(sc, &wreq); if (error == 0 && sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(ifp); } break; case SIOCG80211NWID: if (sc->sc_enabled == 0) { /* Return the desired ID */ error = copyout(&sc->wi_netid, ifr->ifr_data, sizeof(sc->wi_netid)); } else { wreq.wi_type = WI_RID_CURRENT_SSID; wreq.wi_len = WI_MAX_DATALEN; if (wi_read_record(sc, (struct wi_ltv_gen *)&wreq) || le16toh(wreq.wi_val[0]) > IEEE80211_NWID_LEN) error = EINVAL; else { wi_set_ssid(&nwid, (u_int8_t *)&wreq.wi_val[1], le16toh(wreq.wi_val[0])); error = copyout(&nwid, ifr->ifr_data, sizeof(nwid)); } } break; case SIOCS80211NWID: error = copyin(ifr->ifr_data, &nwid, sizeof(nwid)); if (error != 0) break; if (nwid.i_len > IEEE80211_NWID_LEN) { error = EINVAL; break; } if (sc->wi_netid.i_len == nwid.i_len && memcmp(sc->wi_netid.i_nwid, nwid.i_nwid, nwid.i_len) == 0) break; wi_set_ssid(&sc->wi_netid, nwid.i_nwid, nwid.i_len); if (sc->sc_enabled != 0) /* Reinitialize WaveLAN. */ wi_init(ifp); break; case SIOCS80211NWKEY: error = wi_set_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCG80211NWKEY: error = wi_get_nwkey(sc, (struct ieee80211_nwkey *)data); break; case SIOCS80211POWER: error = wi_set_pm(sc, (struct ieee80211_power *)data); break; case SIOCG80211POWER: error = wi_get_pm(sc, (struct ieee80211_power *)data); break; case SIOCHOSTAP_ADD: case SIOCHOSTAP_DEL: case SIOCHOSTAP_GET: case SIOCHOSTAP_GETALL: case SIOCHOSTAP_GFLAGS: case SIOCHOSTAP_SFLAGS: /* Send all Host-AP specific ioctls to the Host-AP code. */ error = wihap_ioctl(sc, command, data); break; default: error = EINVAL; break; } splx(s); return (error); } static int wi_init(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; struct wi_req wreq; struct wi_ltv_macaddr mac; int error, id = 0, wasenabled; wasenabled = sc->sc_enabled; if (!sc->sc_enabled) { if ((error = (*sc->sc_enable)(sc)) != 0) goto out; sc->sc_enabled = 1; } wi_stop(ifp, 0); /* Symbol firmware cannot be initialized more than once */ if (!(sc->sc_firmware_type == WI_SYMBOL && wasenabled)) wi_reset(sc); /* Program max data length. */ WI_SETVAL(WI_RID_MAX_DATALEN, sc->wi_max_data_len); /* Enable/disable IBSS creation. */ WI_SETVAL(WI_RID_CREATE_IBSS, sc->wi_create_ibss); /* Set the port type. */ WI_SETVAL(WI_RID_PORTTYPE, sc->wi_ptype); /* Program the RTS/CTS threshold. */ WI_SETVAL(WI_RID_RTS_THRESH, sc->wi_rts_thresh); /* Program the TX rate */ WI_SETVAL(WI_RID_TX_RATE, sc->wi_tx_rate); /* Access point density */ WI_SETVAL(WI_RID_SYSTEM_SCALE, sc->wi_ap_density); /* Power Management Enabled */ WI_SETVAL(WI_RID_PM_ENABLED, sc->wi_pm_enabled); /* Power Managment Max Sleep */ WI_SETVAL(WI_RID_MAX_SLEEP, sc->wi_max_sleep); /* Roaming type */ if (sc->wi_flags & WI_FLAGS_HAS_ROAMING) WI_SETVAL(WI_RID_ROAMING_MODE, sc->wi_roaming); /* Specify the network name */ wi_write_ssid(sc, WI_RID_DESIRED_SSID, &wreq, &sc->wi_netid); /* Specify the IBSS name */ if (sc->wi_netid.i_len != 0 && (sc->wi_ptype == WI_PORTTYPE_HOSTAP || (sc->wi_create_ibss && sc->wi_ptype == WI_PORTTYPE_IBSS))) wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_netid); else wi_write_ssid(sc, WI_RID_OWN_SSID, &wreq, &sc->wi_ibssid); /* Specify the frequency to use */ WI_SETVAL(WI_RID_OWN_CHNL, sc->wi_channel); /* Program the nodename. */ wi_write_ssid(sc, WI_RID_NODENAME, &wreq, &sc->wi_nodeid); /* Set our MAC address. */ mac.wi_len = 4; mac.wi_type = WI_RID_MAC_NODE; memcpy(&mac.wi_mac_addr, sc->sc_macaddr, ETHER_ADDR_LEN); wi_write_record(sc, (struct wi_ltv_gen *)&mac); /* * Initialize promisc mode. * Being in the Host-AP mode causes a great * deal of pain if primisc mode is set. * Therefore we avoid confusing the firmware * and always reset promisc mode in Host-AP * mode. Host-AP sees all the packets anyway. */ if (sc->wi_ptype != WI_PORTTYPE_HOSTAP && (ifp->if_flags & IFF_PROMISC) != 0) { WI_SETVAL(WI_RID_PROMISC, 1); } else { WI_SETVAL(WI_RID_PROMISC, 0); } /* Configure WEP. */ if (sc->wi_flags & WI_FLAGS_HAS_WEP) { WI_SETVAL(WI_RID_ENCRYPTION, sc->wi_use_wep); WI_SETVAL(WI_RID_TX_CRYPT_KEY, sc->wi_tx_key); sc->wi_keys.wi_len = (sizeof(struct wi_ltv_keys) / 2) + 1; sc->wi_keys.wi_type = WI_RID_DEFLT_CRYPT_KEYS; wi_write_record(sc, (struct wi_ltv_gen *)&sc->wi_keys); if (sc->sc_firmware_type != WI_LUCENT && sc->wi_use_wep) { /* * ONLY HWB3163 EVAL-CARD Firmware version * less than 0.8 variant2 * * If promiscuous mode disable, Prism2 chip * does not work with WEP . * It is under investigation for details. * (ichiro@netbsd.org) */ if (sc->sc_firmware_type == WI_INTERSIL && sc->sc_sta_firmware_ver < 802 ) { /* firm ver < 0.8 variant 2 */ WI_SETVAL(WI_RID_PROMISC, 1); } WI_SETVAL(WI_RID_CNFAUTHMODE, sc->wi_authtype); } } /* Set multicast filter. */ wi_setmulti(sc); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->wi_portnum, 0, 0, 0); /* scanning variable is modal, therefore reinit to OFF, in case it was on. */ sc->wi_scanning=0; sc->wi_naps=0; if ((error = wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { printf("%s: tx buffer allocation failed\n", sc->sc_dev.dv_xname); goto out; } sc->wi_tx_data_id = id; if ((error = wi_alloc_nicmem(sc, 1518 + sizeof(struct wi_frame) + 8, &id)) != 0) { printf("%s: mgmt. buffer allocation failed\n", sc->sc_dev.dv_xname); goto out; } sc->wi_tx_mgmt_id = id; /* Enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); wihap_init(sc); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; callout_reset(&sc->wi_inquire_ch, hz * 60, wi_inquire, sc); out: if (error) { ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; printf("%s: interface not running\n", sc->sc_dev.dv_xname); } return (error); } static const u_int32_t crc32_tab[] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; #define RC4STATE 256 #define RC4KEYLEN 16 #define RC4SWAP(x,y) \ do { u_int8_t t = state[x]; state[x] = state[y]; state[y] = t; } while(0) static void wi_do_hostencrypt(struct wi_softc *sc, caddr_t buf, int len) { u_int32_t i, crc, klen; u_int8_t state[RC4STATE], key[RC4KEYLEN]; u_int8_t x, y, *dat; if (!sc->wi_icv_flag) { sc->wi_icv = arc4random(); sc->wi_icv_flag++; } else sc->wi_icv++; /* * Skip 'bad' IVs from Fluhrer/Mantin/Shamir: * (B, 255, N) with 3 <= B < 8 */ if (sc->wi_icv >= 0x03ff00 && (sc->wi_icv & 0xf8ff00) == 0x00ff00) sc->wi_icv += 0x000100; /* prepend 24bit IV to tx key, byte order does not matter */ key[0] = sc->wi_icv >> 16; key[1] = sc->wi_icv >> 8; key[2] = sc->wi_icv; klen = le16toh(sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keylen) + IEEE80211_WEP_IVLEN; klen = (klen >= RC4KEYLEN) ? RC4KEYLEN : RC4KEYLEN/2; bcopy((char *)&sc->wi_keys.wi_keys[sc->wi_tx_key].wi_keydat, (char *)key + IEEE80211_WEP_IVLEN, klen - IEEE80211_WEP_IVLEN); /* rc4 keysetup */ x = y = 0; for (i = 0; i < RC4STATE; i++) state[i] = i; for (i = 0; i < RC4STATE; i++) { y = (key[x] + state[i] + y) % RC4STATE; RC4SWAP(i, y); x = (x + 1) % klen; } /* output: IV, tx keyid, rc4(data), rc4(crc32(data)) */ dat = buf; dat[0] = key[0]; dat[1] = key[1]; dat[2] = key[2]; dat[3] = sc->wi_tx_key << 6; /* pad and keyid */ dat += 4; /* compute rc4 over data, crc32 over data */ crc = ~0; x = y = 0; for (i = 0; i < len; i++) { x = (x + 1) % RC4STATE; y = (state[x] + y) % RC4STATE; RC4SWAP(x, y); crc = crc32_tab[(crc ^ dat[i]) & 0xff] ^ (crc >> 8); dat[i] ^= state[(state[x] + state[y]) % RC4STATE]; } crc = ~crc; dat += len; /* append little-endian crc32 and encrypt */ dat[0] = crc; dat[1] = crc >> 8; dat[2] = crc >> 16; dat[3] = crc >> 24; for (i = 0; i < IEEE80211_WEP_CRCLEN; i++) { x = (x + 1) % RC4STATE; y = (state[x] + y) % RC4STATE; RC4SWAP(x, y); dat[i] ^= state[(state[x] + state[y]) % RC4STATE]; } } static void wi_start(ifp) struct ifnet *ifp; { struct wi_softc *sc; struct mbuf *m0; struct wi_frame tx_frame; struct ether_header *eh; int id; sc = ifp->if_softc; if (ifp->if_flags & IFF_OACTIVE) return; nextpkt: IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) return; memset((char *)&tx_frame, 0, sizeof(tx_frame)); tx_frame.wi_frame_ctl = htole16(WI_FTYPE_DATA); id = sc->wi_tx_data_id; eh = mtod(m0, struct ether_header *); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { if (wihap_check_tx(&sc->wi_hostap_info, eh->ether_dhost, &tx_frame.wi_tx_rate) == 0 && (ifp->if_flags & IFF_PROMISC) == 0) { if (ifp->if_flags & IFF_DEBUG) printf("%s: Host-AP: dropping unassoc " "dst %s\n", sc->sc_dev.dv_xname, ether_sprintf(eh->ether_dhost)); m_freem(m0); goto nextpkt; } } /* * Use RFC1042 encoding for IP and ARP datagrams, * 802.3 for anything else. */ if (eh->ether_type == htons(ETHERTYPE_IP) || eh->ether_type == htons(ETHERTYPE_ARP) || eh->ether_type == htons(ETHERTYPE_REVARP) || eh->ether_type == htons(ETHERTYPE_IPV6)) { memcpy((char *)&tx_frame.wi_addr1, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP) { tx_frame.wi_tx_ctl |= htole16(WI_ENC_TX_MGMT);/* XXX */ tx_frame.wi_frame_ctl |= htole16(WI_FCTL_FROMDS); if (sc->wi_use_wep) tx_frame.wi_frame_ctl |= htole16(WI_FCTL_WEP); memcpy((char *)&tx_frame.wi_addr2, (char *)LLADDR(ifp->if_sadl), ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_addr3, (char *)&eh->ether_shost, ETHER_ADDR_LEN); } else memcpy((char *)&tx_frame.wi_addr2, (char *)&eh->ether_shost, ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_dst_addr, (char *)&eh->ether_dhost, ETHER_ADDR_LEN); memcpy((char *)&tx_frame.wi_src_addr, (char *)&eh->ether_shost, ETHER_ADDR_LEN); tx_frame.wi_dat_len = m0->m_pkthdr.len - WI_SNAPHDR_LEN; tx_frame.wi_dat[0] = htons(WI_SNAP_WORD0); tx_frame.wi_dat[1] = htons(WI_SNAP_WORD1); tx_frame.wi_len = htons(m0->m_pkthdr.len - WI_SNAPHDR_LEN); tx_frame.wi_type = eh->ether_type; if (sc->wi_ptype == WI_PORTTYPE_HOSTAP && sc->wi_use_wep) { /* Do host encryption. */ memcpy(&sc->wi_txbuf[4], &tx_frame.wi_dat[0], 8); m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf[12]); wi_do_hostencrypt(sc, (caddr_t)&sc->wi_txbuf, tx_frame.wi_dat_len); tx_frame.wi_dat_len += IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_CRCLEN; tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 18); } else { m_copydata(m0, sizeof(struct ether_header), m0->m_pkthdr.len - sizeof(struct ether_header), (caddr_t)&sc->wi_txbuf); tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET, (caddr_t)&sc->wi_txbuf, (m0->m_pkthdr.len - sizeof(struct ether_header)) + 2); } } else { tx_frame.wi_dat_len = htole16(m0->m_pkthdr.len); if (sc->wi_ptype == WI_PORTTYPE_HOSTAP && sc->wi_use_wep) { /* Do host encryption. (XXX - not implemented) */ printf("%s: host encryption not implemented " "for 802.3\n", sc->sc_dev.dv_xname); } else { m_copydata(m0, 0, m0->m_pkthdr.len, (caddr_t)&sc->wi_txbuf); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_3_OFFSET, (caddr_t)&sc->wi_txbuf, m0->m_pkthdr.len + 2); } } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of * this frame to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif m_freem(m0); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) printf("%s: xmit failed\n", sc->sc_dev.dv_xname); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } int wi_mgmt_xmit(sc, data, len) struct wi_softc *sc; caddr_t data; int len; { struct wi_frame tx_frame; int id; struct wi_80211_hdr *hdr; caddr_t dptr; hdr = (struct wi_80211_hdr *)data; dptr = data + sizeof(struct wi_80211_hdr); memset((char *)&tx_frame, 0, sizeof(tx_frame)); id = sc->wi_tx_mgmt_id; memcpy((char *)&tx_frame.wi_frame_ctl, (char *)hdr, sizeof(struct wi_80211_hdr)); tx_frame.wi_tx_ctl = htole16(WI_ENC_TX_MGMT); tx_frame.wi_dat_len = len - sizeof(struct wi_80211_hdr); tx_frame.wi_len = htole16(tx_frame.wi_dat_len); tx_frame.wi_dat_len = htole16(tx_frame.wi_dat_len); wi_write_data(sc, id, 0, (caddr_t)&tx_frame, sizeof(struct wi_frame)); wi_write_data(sc, id, WI_802_11_OFFSET_RAW, dptr, (len - sizeof(struct wi_80211_hdr)) + 2); if (wi_cmd(sc, WI_CMD_TX|WI_RECLAIM, id, 0, 0)) { printf("%s: xmit failed\n", sc->sc_dev.dv_xname); return(EIO); } return(0); } static void wi_stop(ifp, disable) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; wihap_shutdown(sc); CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE|sc->wi_portnum, 0, 0, 0); callout_stop(&sc->wi_inquire_ch); callout_stop(&sc->wi_scan_sh); if (disable) { if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } } ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); ifp->if_timer = 0; } static void wi_watchdog(ifp) struct ifnet *ifp; { struct wi_softc *sc; sc = ifp->if_softc; printf("%s: device timeout\n", sc->sc_dev.dv_xname); wi_init(ifp); ifp->if_oerrors++; return; } void wi_shutdown(sc) struct wi_softc *sc; { int s; s = splnet(); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } splx(s); } int wi_activate(self, act) struct device *self; enum devact act; { struct wi_softc *sc = (struct wi_softc *)self; int rv = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: rv = EOPNOTSUPP; break; case DVACT_DEACTIVATE: if_deactivate(&sc->sc_ethercom.ec_if); break; } splx(s); return (rv); } static void wi_get_id(sc) struct wi_softc *sc; { struct wi_ltv_ver ver; struct wi_card_ident *id; /* getting chip identity */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_CARD_ID; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); printf("%s: using ", sc->sc_dev.dv_xname); sc->sc_firmware_type = WI_NOTYPE; for (id = wi_card_ident; id->card_name != NULL; id++) { if (le16toh(ver.wi_ver[0]) == id->card_id) { printf("%s", id->card_name); sc->sc_firmware_type = id->firm_type; break; } } if (sc->sc_firmware_type == WI_NOTYPE) { if (le16toh(ver.wi_ver[0]) & 0x8000) { printf("Unknown PRISM2 chip"); sc->sc_firmware_type = WI_INTERSIL; } else { printf("Unknown Lucent chip"); sc->sc_firmware_type = WI_LUCENT; } } /* get primary firmware version (Only Prism chips) */ if (sc->sc_firmware_type != WI_LUCENT) { memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_PRI_IDENTITY; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); LE16TOH(ver.wi_ver[1]); LE16TOH(ver.wi_ver[2]); LE16TOH(ver.wi_ver[3]); sc->sc_pri_firmware_ver = ver.wi_ver[2] * 10000 + ver.wi_ver[3] * 100 + ver.wi_ver[1]; } /* get station firmware version */ memset(&ver, 0, sizeof(ver)); ver.wi_type = WI_RID_STA_IDENTITY; ver.wi_len = 5; wi_read_record(sc, (struct wi_ltv_gen *)&ver); LE16TOH(ver.wi_ver[1]); LE16TOH(ver.wi_ver[2]); LE16TOH(ver.wi_ver[3]); sc->sc_sta_firmware_ver = ver.wi_ver[2] * 10000 + ver.wi_ver[3] * 100 + ver.wi_ver[1]; if (sc->sc_firmware_type == WI_INTERSIL && (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) { struct wi_ltv_str sver; char *p; memset(&sver, 0, sizeof(sver)); sver.wi_type = WI_RID_SYMBOL_IDENTITY; sver.wi_len = 7; /* value should be the format like "V2.00-11" */ if (wi_read_record(sc, (struct wi_ltv_gen *)&sver) == 0 && *(p = (char *)sver.wi_str) >= 'A' && p[2] == '.' && p[5] == '-' && p[8] == '\0') { sc->sc_firmware_type = WI_SYMBOL; sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + (p[3] - '0') * 1000 + (p[4] - '0') * 100 + (p[6] - '0') * 10 + (p[7] - '0'); } } printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, sc->sc_firmware_type == WI_LUCENT ? "Lucent" : (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000, (sc->sc_pri_firmware_ver % 10000) / 100, sc->sc_pri_firmware_ver % 100); printf("Station (%u.%u.%u)\n", sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100, sc->sc_sta_firmware_ver % 100); return; } int wi_detach(sc) struct wi_softc *sc; { struct ifnet *ifp = sc->sc_ifp; int s; if (!sc->sc_attached) return (0); s = splnet(); callout_stop(&sc->wi_inquire_ch); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); sc->sc_enabled = 0; } splx(s); return (0); } void wi_power(sc, why) struct wi_softc *sc; int why; { int s; if (!sc->sc_enabled) return; s = splnet(); switch (why) { case PWR_SUSPEND: case PWR_STANDBY: wi_stop(sc->sc_ifp, 0); if (sc->sc_enabled) { if (sc->sc_disable) (*sc->sc_disable)(sc); } break; case PWR_RESUME: sc->sc_enabled = 0; wi_init(sc->sc_ifp); (void)wi_intr(sc); break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } splx(s); } static int wi_set_ssid(ws, id, len) struct ieee80211_nwid *ws; u_int8_t *id; int len; { if (len > IEEE80211_NWID_LEN) return (EINVAL); ws->i_len = len; memcpy(ws->i_nwid, id, len); return (0); } static void wi_request_fill_ssid(wreq, ws) struct wi_req *wreq; struct ieee80211_nwid *ws; { int len = ws->i_len; memset(&wreq->wi_val[0], 0, sizeof(wreq->wi_val)); wreq->wi_val[0] = htole16(len); wreq->wi_len = roundup(len, 2) / 2 + 2; memcpy(&wreq->wi_val[1], ws->i_nwid, len); } static int wi_write_ssid(sc, type, wreq, ws) struct wi_softc *sc; int type; struct wi_req *wreq; struct ieee80211_nwid *ws; { wreq->wi_type = type; wi_request_fill_ssid(wreq, ws); return (wi_write_record(sc, (struct wi_ltv_gen *)wreq)); } static int wi_sync_media(sc, ptype, txrate) struct wi_softc *sc; int ptype; int txrate; { int media = sc->sc_media.ifm_cur->ifm_media; int options = IFM_OPTIONS(media); int subtype; switch (txrate) { case 1: subtype = IFM_IEEE80211_DS1; break; case 2: subtype = IFM_IEEE80211_DS2; break; case 3: subtype = IFM_AUTO; break; case 5: subtype = IFM_IEEE80211_DS5; break; case 11: subtype = IFM_IEEE80211_DS11; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } options &= ~IFM_OMASK; switch (ptype) { case WI_PORTTYPE_BSS: /* default port type */ break; case WI_PORTTYPE_ADHOC: options |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case WI_PORTTYPE_IBSS: options |= IFM_IEEE80211_ADHOC; break; default: subtype = IFM_MANUAL; /* Unable to represent */ break; } media = IFM_MAKEWORD(IFM_TYPE(media), subtype, options, IFM_INST(media)); if (ifmedia_match(&sc->sc_media, media, sc->sc_media.ifm_mask) == NULL) return (EINVAL); ifmedia_set(&sc->sc_media, media); sc->wi_ptype = ptype; sc->wi_tx_rate = txrate; return (0); } static int wi_media_change(ifp) struct ifnet *ifp; { struct wi_softc *sc = ifp->if_softc; int otype = sc->wi_ptype; int orate = sc->wi_tx_rate; int ocreate_ibss = sc->wi_create_ibss; sc->wi_create_ibss = 0; switch (sc->sc_media.ifm_cur->ifm_media & IFM_OMASK) { case 0: sc->wi_ptype = WI_PORTTYPE_BSS; break; case IFM_IEEE80211_HOSTAP: sc->wi_ptype = WI_PORTTYPE_HOSTAP; break; case IFM_IEEE80211_ADHOC: sc->wi_ptype = WI_PORTTYPE_IBSS; if (sc->wi_flags & WI_FLAGS_HAS_CREATE_IBSS) sc->wi_create_ibss = 1; break; case IFM_IEEE80211_ADHOC | IFM_FLAG0: sc->wi_ptype = WI_PORTTYPE_ADHOC; break; default: /* Invalid combination. */ sc->wi_create_ibss = ocreate_ibss; return (EINVAL); } switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) { case IFM_IEEE80211_DS1: sc->wi_tx_rate = 1; break; case IFM_IEEE80211_DS2: sc->wi_tx_rate = 2; break; case IFM_AUTO: sc->wi_tx_rate = 3; break; case IFM_IEEE80211_DS5: sc->wi_tx_rate = 5; break; case IFM_IEEE80211_DS11: sc->wi_tx_rate = 11; break; } if (sc->sc_enabled != 0) { if (otype != sc->wi_ptype || orate != sc->wi_tx_rate || ocreate_ibss != sc->wi_create_ibss) wi_init(ifp); } ifp->if_baudrate = ifmedia_baudrate(sc->sc_media.ifm_cur->ifm_media); return (0); } static void wi_media_status(ifp, imr) struct ifnet *ifp; struct ifmediareq *imr; { struct wi_softc *sc = ifp->if_softc; if (sc->sc_enabled == 0) { imr->ifm_active = IFM_IEEE80211|IFM_NONE; imr->ifm_status = 0; return; } imr->ifm_active = sc->sc_media.ifm_cur->ifm_media; imr->ifm_status = IFM_AVALID|IFM_ACTIVE; } static int wi_set_nwkey(sc, nwkey) struct wi_softc *sc; struct ieee80211_nwkey *nwkey; { int i, error; size_t len; struct wi_req wreq; struct wi_ltv_keys *wk = (struct wi_ltv_keys *)&wreq; if ((sc->wi_flags & WI_FLAGS_HAS_WEP) == 0) return ENODEV; if (nwkey->i_defkid <= 0 || nwkey->i_defkid > IEEE80211_WEP_NKID) return EINVAL; memcpy(wk, &sc->wi_keys, sizeof(*wk)); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; len = nwkey->i_key[i].i_keylen; if (len > sizeof(wk->wi_keys[i].wi_keydat)) return EINVAL; error = copyin(nwkey->i_key[i].i_keydat, wk->wi_keys[i].wi_keydat, len); if (error) return error; wk->wi_keys[i].wi_keylen = htole16(len); } wk->wi_len = (sizeof(*wk) / 2) + 1; wk->wi_type = WI_RID_DEFLT_CRYPT_KEYS; if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; wreq.wi_len = 2; wreq.wi_type = WI_RID_TX_CRYPT_KEY; wreq.wi_val[0] = htole16(nwkey->i_defkid - 1); if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; wreq.wi_type = WI_RID_ENCRYPTION; wreq.wi_val[0] = htole16(nwkey->i_wepon); if (sc->sc_enabled != 0) { error = wi_write_record(sc, (struct wi_ltv_gen *)&wreq); if (error) return error; } error = wi_setdef(sc, &wreq); if (error) return error; if (sc->sc_enabled != 0) wi_init(&sc->sc_ethercom.ec_if); return 0; } static int wi_get_nwkey(sc, nwkey) struct wi_softc *sc; struct ieee80211_nwkey *nwkey; { int i, len, error; struct wi_ltv_keys *wk = &sc->wi_keys; if ((sc->wi_flags & WI_FLAGS_HAS_WEP) == 0) return ENODEV; nwkey->i_wepon = sc->wi_use_wep; nwkey->i_defkid = sc->wi_tx_key + 1; /* do not show any keys to non-root user */ error = suser(curproc->p_ucred, &curproc->p_acflag); for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (nwkey->i_key[i].i_keydat == NULL) continue; /* error holds results of suser() for the first time */ if (error) return error; len = le16toh(wk->wi_keys[i].wi_keylen); if (nwkey->i_key[i].i_keylen < len) return ENOSPC; nwkey->i_key[i].i_keylen = len; error = copyout(wk->wi_keys[i].wi_keydat, nwkey->i_key[i].i_keydat, len); if (error) return error; } return 0; } static int wi_set_pm(struct wi_softc *sc, struct ieee80211_power *power) { sc->wi_pm_enabled = power->i_enabled; sc->wi_max_sleep = power->i_maxsleep; if (sc->sc_enabled) return (wi_init(&sc->sc_ethercom.ec_if)); return (0); } static int wi_get_pm(struct wi_softc *sc, struct ieee80211_power *power) { power->i_enabled = sc->wi_pm_enabled; power->i_maxsleep = sc->wi_max_sleep; return (0); }