/* $NetBSD: m_netbsd13.c,v 1.9 1999/11/05 07:25:14 lukem Exp $ */ /* * top - a top users display for Unix * * SYNOPSIS: For a NetBSD-1.3 (or later) system * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider. * NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn. * NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green. * NetBSD-1.4/UVM port by matthew green. * - * This is the machine-dependent module for NetBSD-1.3 and later * works for: * NetBSD-1.3 * NetBSD-1.3.1 * NetBSD-1.3.2 * NetBSD-1.3.3 * NetBSD-1.3.4 (beta) * and should work for: * NetBSD-1.4 (when released) * * LIBS: -lkvm * * CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR `printf ".include \nxxx:\n.if defined(UVM)\n\techo -DUVM\n.endif\n" | make -s -f-` * * AUTHORS: Christos Zoulas * Steven Wallace * Wolfram Schneider * Arne Helme * Luke Mewburn * matthew green * * * $Id: m_netbsd13.c,v 1.9 1999/11/05 07:25:14 lukem Exp $ */ #define UVM #include #include #include #include #include #include #include #include #include #include #include #if defined(UVM) #include #endif #include "os.h" #include #include #include #include #include #include #include #include #include static int check_nlist __P((struct nlist *)); static int getkval __P((unsigned long, int *, int, char *)); extern char* printable __P((char *)); #include "top.h" #include "machine.h" #include "utils.h" /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" #define PP(pp, field) ((pp)->kp_proc . field) #define EP(pp, field) ((pp)->kp_eproc . field) #define VP(pp, field) ((pp)->kp_eproc.e_vm . field) /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu)))) /* what we consider to be process size: */ #define PROCSIZE(pp) \ (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize)) /* definitions for indices in the nlist array */ static struct nlist nlst[] = { #define X_CCPU 0 { "_ccpu" }, /* 0 */ #define X_CP_TIME 1 { "_cp_time" }, /* 1 */ #define X_HZ 2 { "_hz" }, /* 2 */ #define X_STATHZ 3 { "_stathz" }, /* 3 */ #define X_AVENRUN 4 { "_averunnable" }, /* 4 */ #if !defined(UVM) #define X_CNT 5 { "_cnt" }, #endif { 0 } }; /* * These definitions control the format of the per-process area */ static char header[] = " PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; /* 0123456 -- field to fill in starts at header+6 */ #define UNAME_START 6 #define Proc_format \ "%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s" /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "start", "run\0\0\0", "sleep", "stop", "zomb" #ifdef SDEAD , "dead" #endif }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static int hz; static int ccpu; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long cp_time_offset; static unsigned long avenrun_offset; #if !defined(UVM) static unsigned long cnt_offset; #endif /* these are for calculating cpu state percentages */ static long cp_time[CPUSTATES]; static long cp_old[CPUSTATES]; static long cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[7]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", " ABANDONED, ", NULL }; /* these are for detailing the cpu states */ int cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ int memory_stats[7]; char *memorynames[] = { "K Act, ", "K Inact, ", "K Wired, ", "K Free, ", "K Swap, ", "K Swap free, ", NULL }; /* these are names given to allowed sorting orders -- first is default */ char *ordernames[] = { "cpu", "pri", "res", "size", "state", "time", NULL }; /* forward definitions for comparison functions */ int (*proc_compares[]) __P((struct proc **, struct proc **)) = { compare_cpu, compare_prio, compare_res, compare_size, compare_state, compare_time, NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) int machine_init(statics) struct statics *statics; { int i = 0; int pagesize; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) return -1; /* get the list of symbols we want to access in the kernel */ (void) kvm_nlist(kd, nlst); if (nlst[0].n_type == 0) { fprintf(stderr, "top: nlist failed\n"); return(-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return(-1); } /* get the symbol values out of kmem */ (void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!"); if (!hz) { (void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz), nlst[X_HZ].n_name); } (void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu), nlst[X_CCPU].n_name); /* stash away certain offsets for later use */ cp_time_offset = nlst[X_CP_TIME].n_value; avenrun_offset = nlst[X_AVENRUN].n_value; #if !defined(UVM) cnt_offset = nlst[X_CNT].n_value; #endif /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->order_names = ordernames; /* all done! */ return(0); } char * format_header(uname_field) char *uname_field; { char *ptr; ptr = header + UNAME_START; while (*uname_field != '\0') { *ptr++ = *uname_field++; } return(header); } void get_system_info(si) struct system_info *si; { long total; #if defined(UVM) size_t usize; int mib[2]; struct uvmexp uvmexp; #else struct vmmeter sum; #endif struct swapent *sep, *seporig; int totalsize, size, totalinuse, inuse, ncounted; int rnswap, nswap; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time), nlst[X_CP_TIME].n_name); if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) { int i; warn("can't getloadavg"); for (i = 0; i < NUM_AVERAGES; i++) si->load_avg[i] = 0.0; } /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); #if defined(UVM) mib[0] = CTL_VM; mib[1] = VM_UVMEXP; usize = sizeof(uvmexp); if (sysctl(mib, 2, &uvmexp, &usize, NULL, 0) < 0) { fprintf(stderr, "top: sysctl vm.uvmexp failed: %s\n", strerror(errno)); quit(23); } /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(uvmexp.active); memory_stats[1] = pagetok(uvmexp.inactive); memory_stats[2] = pagetok(uvmexp.wired); memory_stats[3] = pagetok(uvmexp.free); #else /* sum memory statistics */ (void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), "_cnt"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(sum.v_active_count); memory_stats[1] = pagetok(sum.v_inactive_count); memory_stats[2] = pagetok(sum.v_wire_count); memory_stats[3] = pagetok(sum.v_free_count); #endif memory_stats[4] = memory_stats[5] = 0; seporig = NULL; do { nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap < 1) break; /* Use seporig to keep track of the malloc'd memory * base, as sep will be incremented in the for loop * below. */ seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep)); if (sep == NULL) break; rnswap = swapctl(SWAP_STATS, (void *)sep, nswap); if (nswap != rnswap) break; totalsize = totalinuse = ncounted = 0; for (; rnswap-- > 0; sep++) { ncounted++; size = sep->se_nblks; inuse = sep->se_inuse; totalsize += size; totalinuse += inuse; } memory_stats[4] = dbtob(totalinuse) / 1024; memory_stats[5] = dbtob(totalsize) / 1024 - memory_stats[4]; /* Free here, before we malloc again in the next * iteration of this loop. */ if (seporig) { free(seporig); seporig = NULL; } } while (0); /* Catch the case where we malloc'd, but then exited the * loop due to nswap != rnswap. */ if (seporig) free(seporig); memory_stats[6] = -1; /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->last_pid = -1; } static struct handle handle; caddr_t get_process_info(si, sel, compare) struct system_info *si; struct process_select *sel; int (*compare) __P((struct proc **, struct proc **)); { int i; int total_procs; int active_procs; struct kinfo_proc **prefp; struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_system; int show_uid; int show_command; pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL || pbase == NULL) { (void) fprintf(stderr, "top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_system = sel->system; show_uid = sel->uid != -1; show_command = sel->command != NULL; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *)process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { /* * Place pointers to each valid proc structure in pref[]. * Process slots that are actually in use have a non-zero * status field. Processes with P_SYSTEM set are system * processes---these get ignored unless show_sysprocs is set. */ if (PP(pp, p_stat) != 0 && (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) PP(pp, p_stat)]++; if (PP(pp, p_stat) != SZOMB && #ifdef SDEAD PP(pp, p_stat) != SDEAD && #endif (show_idle || (PP(pp, p_pctcpu) != 0) || (PP(pp, p_stat) == SRUN)) && (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid)) { *prefp++ = pp; active_procs++; } } } /* if requested, sort the "interesting" processes */ if (compare != NULL) { qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), (int (*) __P((const void *, const void *)))compare); } /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return((caddr_t)&handle); } char fmt[128]; /* static area where result is built */ char * format_next_process(handle, get_userid) caddr_t handle; char *(*get_userid) __P((int)); { struct kinfo_proc *pp; long cputime; double pct; struct handle *hp; /* find and remember the next proc structure */ hp = (struct handle *)handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's user struct and set cputime */ if ((PP(pp, p_flag) & P_INMEM) == 0) { /* * Print swapped processes as */ char *comm = PP(pp, p_comm); #define COMSIZ sizeof(PP(pp, p_comm)) char buf[COMSIZ]; (void) strncpy(buf, comm, COMSIZ); comm[0] = '<'; (void) strncpy(&comm[1], buf, COMSIZ - 2); comm[COMSIZ - 2] = '\0'; (void) strncat(comm, ">", COMSIZ - 1); comm[COMSIZ - 1] = '\0'; } #if 0 /* This does not produce the correct results */ cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks); #endif cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */ /* calculate the base for cpu percentages */ pct = pctdouble(PP(pp, p_pctcpu)); #define Proc_format \ "%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s" /* format this entry */ sprintf(fmt, Proc_format, PP(pp, p_pid), (*get_userid)(EP(pp, e_pcred.p_ruid)), PP(pp, p_priority) - PZERO, PP(pp, p_nice) - NZERO, format_k(pagetok(PROCSIZE(pp))), format_k(pagetok(VP(pp, vm_rssize))), state_abbrev[(unsigned char) PP(pp, p_stat)], format_time(cputime), 100.0 * weighted_cpu(pct, pp), 100.0 * pct, printable(PP(pp, p_comm))); /* return the result */ return(fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(nlst) struct nlist *nlst; { int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return(i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ static int getkval(offset, ptr, size, refstr) unsigned long offset; int *ptr; int size; char *refstr; { if (kvm_read(kd, offset, (char *) ptr, size) != size) { if (*refstr == '!') { return(0); } else { fprintf(stderr, "top: kvm_read for %s: %s\n", refstr, strerror(errno)); quit(23); } } return(1); } /* comparison routines for qsort */ /* * There are currently four possible comparison routines. main selects * one of these by indexing in to the array proc_compares. * * Possible keys are defined as macros below. Currently these keys are * defined: percent cpu, cpu ticks, process state, resident set size, * total virtual memory usage. The process states are ordered as follows * (from least to most important): WAIT, zombie, sleep, stop, start, run. * The array declaration below maps a process state index into a number * that reflects this ordering. */ /* * First, the possible comparison keys. These are defined in such a way * that they can be merely listed in the source code to define the actual * desired ordering. */ #define ORDERKEY_PCTCPU \ if (lresult = (pctcpu)PP(p2, p_pctcpu) - (pctcpu)PP(p1, p_pctcpu),\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPTICKS \ if (lresult = (pctcpu)PP(p2, p_rtime).tv_sec \ - (pctcpu)PP(p1, p_rtime).tv_sec,\ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(int)PP(p2, p_stat)] - \ sorted_state[(int)PP(p1, p_stat)] ) == 0) #define ORDERKEY_PRIO \ if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0) #define ORDERKEY_RSSIZE \ if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0) #define ORDERKEY_MEM \ if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0) /* * Now the array that maps process state to a weight. * The order of the elements should match those in state_abbrev[] */ static int sorted_state[] = { 0, /* (not used) ? */ 5, /* "start" SIDL */ 4, /* "run" SRUN */ 3, /* "sleep" SSLEEP */ 3, /* "stop" SSTOP */ #ifdef SDEAD 2, /* "dead" SDEAD */ #endif 1, /* "zomb" SZOMB */ }; /* compare_cpu - the comparison function for sorting by cpu percentage */ int compare_cpu(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_prio - the comparison function for sorting by process priority */ int compare_prio(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PRIO ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_state - the comparison function for sorting by process state */ int compare_state(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_STATE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(pp1, pp2) struct proc **pp1, **pp2; { struct kinfo_proc *p1; struct kinfo_proc *p2; int result; pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_MEM ORDERKEY_RSSIZE ; return (result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ int proc_owner(pid) int pid; { int cnt; struct kinfo_proc **prefp; struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (PP(pp, p_pid) == (pid_t)pid) { return((int)EP(pp, e_pcred.p_ruid)); } } return(-1); }