/* $NetBSD: impyu.S,v 1.2 2003/10/10 15:07:43 chs Exp $ */ /* $OpenBSD: impyu.S,v 1.5 2001/03/29 03:58:18 mickey Exp $ */ /* * Copyright 1996 1995 by Open Software Foundation, Inc. * All Rights Reserved * * Permission to use, copy, modify, and distribute this software and * its documentation for any purpose and without fee is hereby granted, * provided that the above copyright notice appears in all copies and * that both the copyright notice and this permission notice appear in * supporting documentation. * * OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, * NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION * WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /* * pmk1.1 */ /* * (c) Copyright 1986 HEWLETT-PACKARD COMPANY * * To anyone who acknowledges that this file is provided "AS IS" * without any express or implied warranty: * permission to use, copy, modify, and distribute this file * for any purpose is hereby granted without fee, provided that * the above copyright notice and this notice appears in all * copies, and that the name of Hewlett-Packard Company not be * used in advertising or publicity pertaining to distribution * of the software without specific, written prior permission. * Hewlett-Packard Company makes no representations about the * suitability of this software for any purpose. */ #include /**************************************************************************** * *Implement an integer multiply routine for 32-bit operands and 64-bit product * with operand values of zero (multiplicand only) and 2**32reated specially. * The algorithm uses the multiplier, four bits at a time, from right to left, * to generate partial product. Execution speed is more important than program * size in this implementation. * *****************************************************************************/ ; ; Definitions - General registers ; gr0: .equ 0 ; General register zero pu: .equ 3 ; upper part of product pl: .equ 4 ; lower part of product op2: .equ 4 ; multiplier op1: .equ 5 ; multiplicand cnt: .equ 6 ; count in multiply brindex:.equ 7 ; index into the br. table saveop2:.equ 8 ; save op2 if high bit of multiplicand ; is set pc: .equ 9 ; carry bit of product, = 00...01 pm: .equ 10 ; value of -1 used in shifting temp: .equ 6 ;**************************************************************************** .export impyu,entry .text .align 4 .proc .callinfo ; ;**************************************************************************** impyu: stws,ma pu,4(%sp) ; save registers on stack stws,ma pl,4(%sp) ; save registers on stack stws,ma op1,4(%sp) ; save registers on stack stws,ma cnt,4(%sp) ; save registers on stack stws,ma brindex,4(%sp) ; save registers on stack stws,ma saveop2,4(%sp) ; save registers on stack stws,ma pc,4(%sp) ; save registers on stack stws,ma pm,4(%sp) ; save registers on stack ; ; Start multiply process ; ldws 0(%arg0),op1 ; get multiplicand ldws 0(%arg1),op2 ; get multiplier addib,= 0,op1,fini0 ; op1 = 0, product = 0 addi 0,gr0,pu ; clear product bb,>= op1,0,mpy1 ; test msb of multiplicand addi 0,gr0,saveop2 ; clear saveop2 ; ; msb of multiplicand is set so will save multiplier for a final ; addition into the result ; extru,= op1,31,31,op1 ; clear msb of multiplicand b mpy1 ; if op1 < 2**32, start multiply add op2,gr0,saveop2 ; save op2 in saveop2 shd gr0,op2,1,pu ; shift op2 left 31 for result b fini ; go to finish shd op2,gr0,1,pl ; mpy1: addi -1,gr0,pm ; initialize pm to 111...1 addi 1,gr0,pc ; initialize pc to 00...01 movib,tr 8,cnt,mloop ; set count for mpy loop extru op2,31,4,brindex ; 4 bits as index into table ; .align 8 ; b sh4c ; br. if sign overflow sh4n: shd pu,pl,4,pl ; shift product right 4 bits addib,<= -1,cnt,mulend ; reduce count by 1, exit if extru pu,27,28,pu ; <= zero ; mloop: blr brindex,gr0 ; br. into table ; entries of 2 words extru op2,27,4,brindex ; next 4 bits into index ; ; ; branch table for the multiplication process with four multiplier bits ; mtable: ; two words per entry ; ; ---- bits = 0000 ---- shift product 4 bits ------------------------------- ; b sh4n+4 ; just shift partial shd pu,pl,4,pl ; product right 4 bits ; ; ---- bits = 0001 ---- add op1, then shift 4 bits ; addb,tr op1,pu,sh4n+4 ; add op1 to product, to shift shd pu,pl,4,pl ; product right 4 bits ; ; ---- bits = 0010 ---- add op1, add op1, then shift 4 bits ; addb,tr op1,pu,sh4n ; add 2*op1, to shift addb,uv op1,pu,sh4c ; product right 4 bits ; ; ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits ; addb,tr op1,pu,sh4n-4 ; add op1 & 2*op1, shift sh1add,nuv op1,pu,pu ; product right 4 bits ; ; ---- bits = 0100 ---- shift 2, add op1, shift 2 ; b sh2sa shd pu,pl,2,pl ; shift product 2 bits ; ; ---- bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again ; addb,tr op1,pu,sh2us ; add op1 to product shd pu,pl,2,pl ; shift 2 bits ; ; ---- bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again ; addb,tr op1,pu,sh2c ; add 2*op1, to shift 2 bits addb,nuv op1,pu,sh2us ; br. if not overflow ; ; ---- bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1 ; b sh3s sub pu,op1,pu ; subtract op1, br. to sh3s ; ; ---- bits = 1000 ---- shift 3, add op1, shift 1 ; b sh3sa shd pu,pl,3,pl ; shift product right 3 bits ; ; ---- bits = 1001 ---- add op1, shift 3, add op1, shift 1 ; addb,tr op1,pu,sh3us ; add op1, to shift 3, add op1, shd pu,pl,3,pl ; and shift 1 ; ; ---- bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1 ; addb,tr op1,pu,sh3c ; add 2*op1, to shift 3 bits addb,nuv op1,pu,sh3us ; br. if no overflow ; ; ---- bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index ; addib,tr 1,brindex,sh2s ; add 1 to index, subtract op1, sub pu,op1,pu ; shift 2 with minus sign ; ; ---- bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index ; addib,tr 1,brindex,sh2sb ; add 1 to index, to shift shd pu,pl,2,pl ; shift right 2 bits signed ; ; ---- bits = 1101 ---- add op1, shift 2, add -op1, shift 2 ; addb,tr op1,pu,sh2ns ; add op1, to shift 2 shd pu,pl,2,pl ; right 2 unsigned, etc. ; ; ---- bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed ; addib,tr 1,brindex,sh1sa ; add 1 to index, to shift shd pu,pl,1,pl ; shift 1 bit ; ; ---- bits = 1111 ---- add -op1, shift 4 signed ; addib,tr 1,brindex,sh4s ; add 1 to index, subtract op1, sub pu,op1,pu ; to shift 4 signed ; ; ---- bits = 10000 ---- shift 4 signed ; addib,tr 1,brindex,sh4s+4 ; add 1 to index shd pu,pl,4,pl ; shift 4 signed ; ; ---- end of table --------------------------------------------------------- ; sh4s: shd pu,pl,4,pl addib,> -1,cnt,mloop ; decrement count, loop if > 0 shd pm,pu,4,pu ; shift 4, minus signed addb,tr op1,pu,lastadd ; do one more add, then finish addb,=,n saveop2,gr0,fini ; check saveop2 ; sh4c: addib,> -1,cnt,mloop ; decrement count, loop if > 0 shd pc,pu,4,pu ; shift 4 with overflow b lastadd ; end of multiply addb,=,n saveop2,gr0,fini ; check saveop2 ; sh3c: shd pu,pl,3,pl ; shift product 3 bits shd pc,pu,3,pu ; shift 3 signed addb,tr op1,pu,sh1 ; add op1, to shift 1 bit shd pu,pl,1,pl ; sh3us: extru pu,28,29,pu ; shift 3 unsigned addb,tr op1,pu,sh1 ; add op1, to shift 1 bit shd pu,pl,1,pl ; sh3sa: extrs pu,28,29,pu ; shift 3 signed addb,tr op1,pu,sh1 ; add op1, to shift 1 bit shd pu,pl,1,pl ; sh3s: shd pu,pl,3,pl ; shift 3 minus signed shd pm,pu,3,pu addb,tr op1,pu,sh1 ; add op1, to shift 1 bit shd pu,pl,1,pl ; sh1: addib,> -1,cnt,mloop ; loop if count > 0 extru pu,30,31,pu b lastadd ; end of multiply addb,=,n saveop2,gr0,fini ; check saveop2 ; sh2ns: addib,tr 1,brindex,sh2sb+4 ; increment index extru pu,29,30,pu ; shift unsigned ; sh2s: shd pu,pl,2,pl ; shift with minus sign shd pm,pu,2,pu ; sub pu,op1,pu ; subtract op1 shd pu,pl,2,pl ; shift with minus sign addib,> -1,cnt,mloop ; decrement count, loop if > 0 shd pm,pu,2,pu ; shift with minus sign addb,tr op1,pu,lastadd ; do one more add, then finish addb,=,n saveop2,gr0,fini ; check saveop2 ; sh2sb: extrs pu,29,30,pu ; shift 2 signed sub pu,op1,pu ; subtract op1 from product shd pu,pl,2,pl ; shift with minus sign addib,> -1,cnt,mloop ; decrement count, loop if > 0 shd pm,pu,2,pu ; shift with minus sign addb,tr op1,pu,lastadd ; do one more add, then finish addb,=,n saveop2,gr0,fini ; check saveop2 ; sh1sa: extrs pu,30,31,pu ; signed sub pu,op1,pu ; subtract op1 from product shd pu,pl,3,pl ; shift 3 with minus sign addib,> -1,cnt,mloop ; decrement count, loop if >0 shd pm,pu,3,pu addb,tr op1,pu,lastadd ; do one more add, then finish addb,=,n saveop2,gr0,fini ; check saveop2 ; fini0: movib,tr 0,pl,fini ; product = 0 as op1 = 0 stws pu,0(%arg2) ; save high part of result ; sh2us: extru pu,29,30,pu ; shift 2 unsigned addb,tr op1,pu,sh2a ; add op1 shd pu,pl,2,pl ; shift 2 bits ; sh2c: shd pu,pl,2,pl shd pc,pu,2,pu ; shift with carry addb,tr op1,pu,sh2a ; add op1 to product shd pu,pl,2,pl ; br. to sh2 to shift pu ; sh2sa: extrs pu,29,30,pu ; shift with sign addb,tr op1,pu,sh2a ; add op1 to product shd pu,pl,2,pl ; br. to sh2 to shift pu ; sh2a: addib,> -1,cnt,mloop ; loop if count > 0 extru pu,29,30,pu ; mulend: addb,=,n saveop2,gr0,fini ; check saveop2 lastadd:shd saveop2,gr0,1,temp ; if saveop2 <> 0, shift it shd gr0,saveop2,1,saveop2 ; left 31 and add to result add pl,temp,pl addc pu,saveop2,pu ; ; finish ; fini: stws pu,0(%arg2) ; save high part of result stws pl,4(%arg2) ; save low part of result ldws,mb -4(%sp),pm ; restore registers ldws,mb -4(%sp),pc ; restore registers ldws,mb -4(%sp),saveop2 ; restore registers ldws,mb -4(%sp),brindex ; restore registers ldws,mb -4(%sp),cnt ; restore registers ldws,mb -4(%sp),op1 ; restore registers ldws,mb -4(%sp),pl ; restore registers bv 0(%rp) ; return ldws,mb -4(%sp),pu ; restore registers .procend .end