/* $NetBSD: ffs_alloc.c,v 1.3 2001/11/22 02:47:26 lukem Exp $ */ /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95 */ #include #ifndef __lint __RCSID("$NetBSD: ffs_alloc.c,v 1.3 2001/11/22 02:47:26 lukem Exp $"); #endif /* !__lint */ #include #include #include #include #include "ufs/ufs/ufs_bswap.h" #include "ufs/ufs/inode.h" #include "ufs/ffs/fs.h" #include "ffs/buf.h" #include "ffs/ffs_extern.h" static int scanc(u_int, const u_char *, const u_char *, int); static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int); static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t); static u_long ffs_hashalloc(struct inode *, int, long, int, ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int)); static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int); /* in ffs_tables.c */ extern const int inside[], around[]; extern const u_char * const fragtbl[]; /* * Allocate a block in the file system. * * The size of the requested block is given, which must be some * multiple of fs_fsize and <= fs_bsize. * A preference may be optionally specified. If a preference is given * the following hierarchy is used to allocate a block: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate a block in the same cylinder group. * 4) quadradically rehash into other cylinder groups, until an * available block is located. * If no block preference is given the following hierarchy is used * to allocate a block: * 1) allocate a block in the cylinder group that contains the * inode for the file. * 2) quadradically rehash into other cylinder groups, until an * available block is located. */ int ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size, ufs_daddr_t *bnp) { struct fs *fs = ip->i_fs; ufs_daddr_t bno; int cg; *bnp = 0; if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { errx(1, "ffs_alloc: bad size: bsize %d size %d", fs->fs_bsize, size); } if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) goto nospace; if (bpref >= fs->fs_size) bpref = 0; if (bpref == 0) cg = ino_to_cg(fs, ip->i_number); else cg = dtog(fs, bpref); bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size, ffs_alloccg); if (bno > 0) { ip->i_ffs_blocks += btodb(size); *bnp = bno; return (0); } nospace: return (ENOSPC); } /* * Select the desired position for the next block in a file. The file is * logically divided into sections. The first section is composed of the * direct blocks. Each additional section contains fs_maxbpg blocks. * * If no blocks have been allocated in the first section, the policy is to * request a block in the same cylinder group as the inode that describes * the file. If no blocks have been allocated in any other section, the * policy is to place the section in a cylinder group with a greater than * average number of free blocks. An appropriate cylinder group is found * by using a rotor that sweeps the cylinder groups. When a new group of * blocks is needed, the sweep begins in the cylinder group following the * cylinder group from which the previous allocation was made. The sweep * continues until a cylinder group with greater than the average number * of free blocks is found. If the allocation is for the first block in an * indirect block, the information on the previous allocation is unavailable; * here a best guess is made based upon the logical block number being * allocated. * * If a section is already partially allocated, the policy is to * contiguously allocate fs_maxcontig blocks. The end of one of these * contiguous blocks and the beginning of the next is physically separated * so that the disk head will be in transit between them for at least * fs_rotdelay milliseconds. This is to allow time for the processor to * schedule another I/O transfer. */ ufs_daddr_t ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap) { struct fs *fs; int cg; int avgbfree, startcg; ufs_daddr_t nextblk; fs = ip->i_fs; if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { if (lbn < NDADDR + NINDIR(fs)) { cg = ino_to_cg(fs, ip->i_number); return (fs->fs_fpg * cg + fs->fs_frag); } /* * Find a cylinder with greater than average number of * unused data blocks. */ if (indx == 0 || bap[indx - 1] == 0) startcg = ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg; else startcg = dtog(fs, ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1); startcg %= fs->fs_ncg; avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; for (cg = startcg; cg < fs->fs_ncg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } for (cg = 0; cg <= startcg; cg++) if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { fs->fs_cgrotor = cg; return (fs->fs_fpg * cg + fs->fs_frag); } return (0); } /* * One or more previous blocks have been laid out. If less * than fs_maxcontig previous blocks are contiguous, the * next block is requested contiguously, otherwise it is * requested rotationally delayed by fs_rotdelay milliseconds. */ nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag; if (indx < fs->fs_maxcontig || ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) + blkstofrags(fs, fs->fs_maxcontig) != nextblk) return (nextblk); if (fs->fs_rotdelay != 0) /* * Here we convert ms of delay to frags as: * (frags) = (ms) * (rev/sec) * (sect/rev) / * ((sect/frag) * (ms/sec)) * then round up to the next block. */ nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect / (NSPF(fs) * 1000), fs->fs_frag); return (nextblk); } /* * Implement the cylinder overflow algorithm. * * The policy implemented by this algorithm is: * 1) allocate the block in its requested cylinder group. * 2) quadradically rehash on the cylinder group number. * 3) brute force search for a free block. * * `size': size for data blocks, mode for inodes */ /*VARARGS5*/ static u_long ffs_hashalloc(struct inode *ip, int cg, long pref, int size, ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int)) { struct fs *fs; long result; int i, icg = cg; fs = ip->i_fs; /* * 1: preferred cylinder group */ result = (*allocator)(ip, cg, pref, size); if (result) return (result); /* * 2: quadratic rehash */ for (i = 1; i < fs->fs_ncg; i *= 2) { cg += i; if (cg >= fs->fs_ncg) cg -= fs->fs_ncg; result = (*allocator)(ip, cg, 0, size); if (result) return (result); } /* * 3: brute force search * Note that we start at i == 2, since 0 was checked initially, * and 1 is always checked in the quadratic rehash. */ cg = (icg + 2) % fs->fs_ncg; for (i = 2; i < fs->fs_ncg; i++) { result = (*allocator)(ip, cg, 0, size); if (result) return (result); cg++; if (cg == fs->fs_ncg) cg = 0; } return (0); } /* * Determine whether a block can be allocated. * * Check to see if a block of the appropriate size is available, * and if it is, allocate it. */ static ufs_daddr_t ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size) { struct cg *cgp; struct buf *bp; ufs_daddr_t bno, blkno; int error, frags, allocsiz, i; struct fs *fs = ip->i_fs; const int needswap = UFS_FSNEEDSWAP(fs); if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) return (0); error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return (0); } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp, needswap) || (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) { brelse(bp); return (0); } if (size == fs->fs_bsize) { bno = ffs_alloccgblk(ip, bp, bpref); bdwrite(bp); return (bno); } /* * check to see if any fragments are already available * allocsiz is the size which will be allocated, hacking * it down to a smaller size if necessary */ frags = numfrags(fs, size); for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) if (cgp->cg_frsum[allocsiz] != 0) break; if (allocsiz == fs->fs_frag) { /* * no fragments were available, so a block will be * allocated, and hacked up */ if (cgp->cg_cs.cs_nbfree == 0) { brelse(bp); return (0); } bno = ffs_alloccgblk(ip, bp, bpref); bpref = dtogd(fs, bno); for (i = frags; i < fs->fs_frag; i++) setbit(cg_blksfree(cgp, needswap), bpref + i); i = fs->fs_frag - frags; ufs_add32(cgp->cg_cs.cs_nffree, i, needswap); fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; fs->fs_fmod = 1; ufs_add32(cgp->cg_frsum[i], 1, needswap); bdwrite(bp); return (bno); } bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); for (i = 0; i < frags; i++) clrbit(cg_blksfree(cgp, needswap), bno + i); ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap); fs->fs_cstotal.cs_nffree -= frags; fs->fs_cs(fs, cg).cs_nffree -= frags; fs->fs_fmod = 1; ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap); if (frags != allocsiz) ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap); blkno = cg * fs->fs_fpg + bno; bdwrite(bp); return blkno; } /* * Allocate a block in a cylinder group. * * This algorithm implements the following policy: * 1) allocate the requested block. * 2) allocate a rotationally optimal block in the same cylinder. * 3) allocate the next available block on the block rotor for the * specified cylinder group. * Note that this routine only allocates fs_bsize blocks; these * blocks may be fragmented by the routine that allocates them. */ static ufs_daddr_t ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref) { struct cg *cgp; ufs_daddr_t bno, blkno; int cylno, pos, delta; short *cylbp; int i; struct fs *fs = ip->i_fs; const int needswap = UFS_FSNEEDSWAP(fs); cgp = (struct cg *)bp->b_data; if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) { bpref = ufs_rw32(cgp->cg_rotor, needswap); goto norot; } bpref = blknum(fs, bpref); bpref = dtogd(fs, bpref); /* * if the requested block is available, use it */ if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragstoblks(fs, bpref))) { bno = bpref; goto gotit; } if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) { /* * Block layout information is not available. * Leaving bpref unchanged means we take the * next available free block following the one * we just allocated. Hopefully this will at * least hit a track cache on drives of unknown * geometry (e.g. SCSI). */ goto norot; } /* * check for a block available on the same cylinder */ cylno = cbtocylno(fs, bpref); if (cg_blktot(cgp, needswap)[cylno] == 0) goto norot; /* * check the summary information to see if a block is * available in the requested cylinder starting at the * requested rotational position and proceeding around. */ cylbp = cg_blks(fs, cgp, cylno, needswap); pos = cbtorpos(fs, bpref); for (i = pos; i < fs->fs_nrpos; i++) if (ufs_rw16(cylbp[i], needswap) > 0) break; if (i == fs->fs_nrpos) for (i = 0; i < pos; i++) if (ufs_rw16(cylbp[i], needswap) > 0) break; if (ufs_rw16(cylbp[i], needswap) > 0) { /* * found a rotational position, now find the actual * block. A panic if none is actually there. */ pos = cylno % fs->fs_cpc; bno = (cylno - pos) * fs->fs_spc / NSPB(fs); if (fs_postbl(fs, pos)[i] == -1) { errx(1, "ffs_alloccgblk: cyl groups corrupted: pos %d i %d", pos, i); } for (i = fs_postbl(fs, pos)[i];; ) { if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) { bno = blkstofrags(fs, (bno + i)); goto gotit; } delta = fs_rotbl(fs)[i]; if (delta <= 0 || delta + i > fragstoblks(fs, fs->fs_fpg)) break; i += delta; } errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d", pos, i); } norot: /* * no blocks in the requested cylinder, so take next * available one in this cylinder group. */ bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); if (bno < 0) return (0); cgp->cg_rotor = ufs_rw32(bno, needswap); gotit: blkno = fragstoblks(fs, bno); ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno); ffs_clusteracct(fs, cgp, blkno, -1); ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap); fs->fs_cstotal.cs_nbfree--; fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--; cylno = cbtocylno(fs, bno); ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1, needswap); ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap); fs->fs_fmod = 1; blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno; return (blkno); } /* * Free a block or fragment. * * The specified block or fragment is placed back in the * free map. If a fragment is deallocated, a possible * block reassembly is checked. */ void ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size) { struct cg *cgp; struct buf *bp; ufs_daddr_t blkno; int i, error, cg, blk, frags, bbase; struct fs *fs = ip->i_fs; const int needswap = UFS_FSNEEDSWAP(fs); if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { errx(1, "blkfree: bad size: bno %u bsize %d size %ld", bno, fs->fs_bsize, size); } cg = dtog(fs, bno); if ((u_int)bno >= fs->fs_size) { warnx("bad block %d, ino %d\n", bno, ip->i_number); return; } error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize, &bp); if (error) { brelse(bp); return; } cgp = (struct cg *)bp->b_data; if (!cg_chkmagic(cgp, needswap)) { brelse(bp); return; } bno = dtogd(fs, bno); if (size == fs->fs_bsize) { blkno = fragstoblks(fs, bno); if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) { errx(1, "blkfree: freeing free block %d", bno); } ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno); ffs_clusteracct(fs, cgp, blkno, 1); ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap); fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bno); ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1, needswap); ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap); } else { bbase = bno - fragnum(fs, bno); /* * decrement the counts associated with the old frags */ blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap); /* * deallocate the fragment */ frags = numfrags(fs, size); for (i = 0; i < frags; i++) { if (isset(cg_blksfree(cgp, needswap), bno + i)) { errx(1, "blkfree: freeing free frag: block %d", bno + i); } setbit(cg_blksfree(cgp, needswap), bno + i); } ufs_add32(cgp->cg_cs.cs_nffree, i, needswap); fs->fs_cstotal.cs_nffree += i; fs->fs_cs(fs, cg).cs_nffree += i; /* * add back in counts associated with the new frags */ blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap); /* * if a complete block has been reassembled, account for it */ blkno = fragstoblks(fs, bbase); if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) { ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap); fs->fs_cstotal.cs_nffree -= fs->fs_frag; fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; ffs_clusteracct(fs, cgp, blkno, 1); ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap); fs->fs_cstotal.cs_nbfree++; fs->fs_cs(fs, cg).cs_nbfree++; i = cbtocylno(fs, bbase); ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bbase)], 1, needswap); ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap); } } fs->fs_fmod = 1; bdwrite(bp); } static int scanc(u_int size, const u_char *cp, const u_char table[], int mask) { const u_char *end = &cp[size]; while (cp < end && (table[*cp] & mask) == 0) cp++; return (end - cp); } /* * Find a block of the specified size in the specified cylinder group. * * It is a panic if a request is made to find a block if none are * available. */ static ufs_daddr_t ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz) { ufs_daddr_t bno; int start, len, loc, i; int blk, field, subfield, pos; int ostart, olen; const int needswap = UFS_FSNEEDSWAP(fs); /* * find the fragment by searching through the free block * map for an appropriate bit pattern */ if (bpref) start = dtogd(fs, bpref) / NBBY; else start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY; len = howmany(fs->fs_fpg, NBBY) - start; ostart = start; olen = len; loc = scanc((u_int)len, (const u_char *)&cg_blksfree(cgp, needswap)[start], (const u_char *)fragtbl[fs->fs_frag], (1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { len = start + 1; start = 0; loc = scanc((u_int)len, (const u_char *)&cg_blksfree(cgp, needswap)[0], (const u_char *)fragtbl[fs->fs_frag], (1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); if (loc == 0) { errx(1, "ffs_alloccg: map corrupted: start %d len %d offset %d %ld", ostart, olen, ufs_rw32(cgp->cg_freeoff, needswap), (long)cg_blksfree(cgp, needswap) - (long)cgp); /* NOTREACHED */ } } bno = (start + len - loc) * NBBY; cgp->cg_frotor = ufs_rw32(bno, needswap); /* * found the byte in the map * sift through the bits to find the selected frag */ for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { blk = blkmap(fs, cg_blksfree(cgp, needswap), bno); blk <<= 1; field = around[allocsiz]; subfield = inside[allocsiz]; for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { if ((blk & field) == subfield) return (bno + pos); field <<= 1; subfield <<= 1; } } errx(1, "ffs_alloccg: block not in map: bno %d", bno); return (-1); } /* * Update the cluster map because of an allocation or free. * * Cnt == 1 means free; cnt == -1 means allocating. */ void ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt) { int32_t *sump; int32_t *lp; u_char *freemapp, *mapp; int i, start, end, forw, back, map, bit; const int needswap = UFS_FSNEEDSWAP(fs); if (fs->fs_contigsumsize <= 0) return; freemapp = cg_clustersfree(cgp, needswap); sump = cg_clustersum(cgp, needswap); /* * Allocate or clear the actual block. */ if (cnt > 0) setbit(freemapp, blkno); else clrbit(freemapp, blkno); /* * Find the size of the cluster going forward. */ start = blkno + 1; end = start + fs->fs_contigsumsize; if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap)) end = ufs_rw32(cgp->cg_nclusterblks, needswap); mapp = &freemapp[start / NBBY]; map = *mapp++; bit = 1 << (start % NBBY); for (i = start; i < end; i++) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != (NBBY - 1)) { bit <<= 1; } else { map = *mapp++; bit = 1; } } forw = i - start; /* * Find the size of the cluster going backward. */ start = blkno - 1; end = start - fs->fs_contigsumsize; if (end < 0) end = -1; mapp = &freemapp[start / NBBY]; map = *mapp--; bit = 1 << (start % NBBY); for (i = start; i > end; i--) { if ((map & bit) == 0) break; if ((i & (NBBY - 1)) != 0) { bit >>= 1; } else { map = *mapp--; bit = 1 << (NBBY - 1); } } back = start - i; /* * Account for old cluster and the possibly new forward and * back clusters. */ i = back + forw + 1; if (i > fs->fs_contigsumsize) i = fs->fs_contigsumsize; ufs_add32(sump[i], cnt, needswap); if (back > 0) ufs_add32(sump[back], -cnt, needswap); if (forw > 0) ufs_add32(sump[forw], -cnt, needswap); /* * Update cluster summary information. */ lp = &sump[fs->fs_contigsumsize]; for (i = fs->fs_contigsumsize; i > 0; i--) if (ufs_rw32(*lp--, needswap) > 0) break; fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i; }