/* $NetBSD: if_aumac.c,v 1.16 2006/03/03 05:35:26 simonb Exp $ */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for Alchemy Semiconductor Au1x00 Ethernet Media * Access Controller. * * TODO: * * Better Rx buffer management; we want to get new Rx buffers * to the chip more quickly than we currently do. */ #include __KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.16 2006/03/03 05:35:26 simonb Exp $"); #include "bpfilter.h" #include "rnd.h" #include #include #include #include #include #include #include #include #include #include #include #include /* for PAGE_SIZE */ #include #include #include #include #if NBPFILTER > 0 #include #endif #if NRND > 0 #include #endif #include #include #include #include #include #include #include #include #include /* * The Au1X00 MAC has 4 transmit and receive descriptors. Each buffer * must consist of a single DMA segment, and must be aligned to a 2K * boundary. Therefore, this driver does not perform DMA directly * to/from mbufs. Instead, we copy the data to/from buffers allocated * at device attach time. * * We also skip the bus_dma dance. The MAC is built in to the CPU, so * there's little point in not making assumptions based on the CPU type. * We also program the Au1X00 cache to be DMA coherent, so the buffers * are accessed via KSEG0 addresses. */ #define AUMAC_NTXDESC 4 #define AUMAC_NTXDESC_MASK (AUMAC_NTXDESC - 1) #define AUMAC_NRXDESC 4 #define AUMAC_NRXDESC_MASK (AUMAC_NRXDESC - 1) #define AUMAC_NEXTTX(x) (((x) + 1) & AUMAC_NTXDESC_MASK) #define AUMAC_NEXTRX(x) (((x) + 1) & AUMAC_NRXDESC_MASK) #define AUMAC_TXBUF_OFFSET 0 #define AUMAC_RXBUF_OFFSET (MAC_BUFLEN * AUMAC_NTXDESC) #define AUMAC_BUFSIZE (MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC)) struct aumac_buf { caddr_t buf_vaddr; /* virtual address of buffer */ bus_addr_t buf_paddr; /* DMA address of buffer */ }; /* * Software state per device. */ struct aumac_softc { struct device sc_dev; /* generic device information */ bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_mac_sh; /* MAC space handle */ bus_space_handle_t sc_macen_sh; /* MAC enable space handle */ bus_space_handle_t sc_dma_sh; /* DMA space handle */ struct ethercom sc_ethercom; /* Ethernet common data */ void *sc_sdhook; /* shutdown hook */ void *sc_ih; /* interrupt cookie */ struct mii_data sc_mii; /* MII/media information */ struct callout sc_tick_ch; /* tick callout */ /* Transmit and receive buffers */ struct aumac_buf sc_txbufs[AUMAC_NTXDESC]; struct aumac_buf sc_rxbufs[AUMAC_NRXDESC]; caddr_t sc_bufaddr; int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next Tx descriptor to use */ int sc_txdirty; /* first dirty Tx descriptor */ int sc_rxptr; /* next ready Rx descriptor */ #if NRND > 0 rndsource_element_t rnd_source; #endif #ifdef AUMAC_EVENT_COUNTERS struct evcnt sc_ev_txstall; /* Tx stalled */ struct evcnt sc_ev_rxstall; /* Rx stalled */ struct evcnt sc_ev_txintr; /* Tx interrupts */ struct evcnt sc_ev_rxintr; /* Rx interrupts */ #endif uint32_t sc_control; /* MAC_CONTROL contents */ uint32_t sc_flowctrl; /* MAC_FLOWCTRL contents */ }; #ifdef AUMAC_EVENT_COUNTERS #define AUMAC_EVCNT_INCR(ev) (ev)->ev_count++ #else #define AUMAC_EVCNT_INCR(ev) /* nothing */ #endif #define AUMAC_INIT_RXDESC(sc, x) \ do { \ bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \ MACDMA_RX_STAT((x)), 0); \ bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh, \ MACDMA_RX_ADDR((x)), \ (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN); \ } while (/*CONSTCOND*/0) static void aumac_start(struct ifnet *); static void aumac_watchdog(struct ifnet *); static int aumac_ioctl(struct ifnet *, u_long, caddr_t); static int aumac_init(struct ifnet *); static void aumac_stop(struct ifnet *, int); static void aumac_shutdown(void *); static void aumac_tick(void *); static void aumac_set_filter(struct aumac_softc *); static void aumac_powerup(struct aumac_softc *); static void aumac_powerdown(struct aumac_softc *); static int aumac_intr(void *); static int aumac_txintr(struct aumac_softc *); static int aumac_rxintr(struct aumac_softc *); static int aumac_mii_readreg(struct device *, int, int); static void aumac_mii_writereg(struct device *, int, int, int); static void aumac_mii_statchg(struct device *); static int aumac_mii_wait(struct aumac_softc *, const char *); static int aumac_mediachange(struct ifnet *); static void aumac_mediastatus(struct ifnet *, struct ifmediareq *); static int aumac_match(struct device *, struct cfdata *, void *); static void aumac_attach(struct device *, struct device *, void *); int aumac_copy_small = 0; CFATTACH_DECL(aumac, sizeof(struct aumac_softc), aumac_match, aumac_attach, NULL, NULL); static int aumac_match(struct device *parent, struct cfdata *cf, void *aux) { struct aubus_attach_args *aa = aux; if (strcmp(aa->aa_name, cf->cf_name) == 0) return (1); return (0); } static void aumac_attach(struct device *parent, struct device *self, void *aux) { uint8_t enaddr[ETHER_ADDR_LEN]; struct aumac_softc *sc = (void *) self; struct aubus_attach_args *aa = aux; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct pglist pglist; paddr_t bufaddr; caddr_t vbufaddr; int i; callout_init(&sc->sc_tick_ch); printf(": Au1X00 10/100 Ethernet\n"); sc->sc_st = aa->aa_st; /* Get the MAC address. */ if (devprop_get(&sc->sc_dev, "mac-addr", enaddr, sizeof(enaddr), NULL) != sizeof(enaddr)) { printf("%s: unable to get mac-addr property\n", sc->sc_dev.dv_xname); return; } printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(enaddr)); /* Map the device. */ if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE], MACx_SIZE, 0, &sc->sc_mac_sh) != 0) { printf("%s: unable to map MAC registers\n", sc->sc_dev.dv_xname); return; } if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE], MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) { printf("%s: unable to map MACEN registers\n", sc->sc_dev.dv_xname); return; } if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE], MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) { printf("%s: unable to map MACDMA registers\n", sc->sc_dev.dv_xname); return; } /* Make sure the MAC is powered off. */ aumac_powerdown(sc); /* Hook up the interrupt handler. */ sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL, aumac_intr, sc); if (sc->sc_ih == NULL) { printf("%s: unable to register interrupt handler\n", sc->sc_dev.dv_xname); return; } /* * Allocate space for the transmit and receive buffers. */ if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0, &pglist, 1, 0)) return; bufaddr = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist)); vbufaddr = (void *)MIPS_PHYS_TO_KSEG0(bufaddr); for (i = 0; i < AUMAC_NTXDESC; i++) { int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN); sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset; sc->sc_txbufs[i].buf_paddr = bufaddr + offset; } for (i = 0; i < AUMAC_NRXDESC; i++) { int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN); sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset; sc->sc_rxbufs[i].buf_paddr = bufaddr + offset; } /* * Power up the MAC before accessing any MAC registers (including * MII configuration. */ aumac_powerup(sc); /* * Initialize the media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = aumac_mii_readreg; sc->sc_mii.mii_writereg = aumac_mii_writereg; sc->sc_mii.mii_statchg = aumac_mii_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, aumac_mediachange, aumac_mediastatus); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = aumac_ioctl; ifp->if_start = aumac_start; ifp->if_watchdog = aumac_watchdog; ifp->if_init = aumac_init; ifp->if_stop = aumac_stop; IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, enaddr); #if NRND > 0 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET, 0); #endif #ifdef AUMAC_EVENT_COUNTERS evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC, NULL, sc->sc_dev.dv_xname, "txstall"); evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC, NULL, sc->sc_dev.dv_xname, "rxstall"); evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC, NULL, sc->sc_dev.dv_xname, "txintr"); evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC, NULL, sc->sc_dev.dv_xname, "rxintr"); #endif /* Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc); if (sc->sc_sdhook == NULL) printf("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); return; } /* * aumac_shutdown: * * Make sure the interface is stopped at reboot time. */ static void aumac_shutdown(void *arg) { struct aumac_softc *sc = arg; aumac_stop(&sc->sc_ethercom.ec_if, 1); /* * XXX aumac_stop leaves device powered up at the moment * XXX but this still isn't enough to keep yamon happy... :-( */ bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0); } /* * aumac_start: [ifnet interface function] * * Start packet transmission on the interface. */ static void aumac_start(struct ifnet *ifp) { struct aumac_softc *sc = ifp->if_softc; struct mbuf *m; int nexttx; if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; /* * Loop through the send queue, setting up transmit descriptors * unitl we drain the queue, or use up all available transmit * descriptors. */ for (;;) { /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m); if (m == NULL) return; /* Get a spare descriptor. */ if (sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; AUMAC_EVCNT_INCR(&sc->sc_ev_txstall); return; } nexttx = sc->sc_txnext; IFQ_DEQUEUE(&ifp->if_snd, m); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ m_copydata(m, 0, m->m_pkthdr.len, sc->sc_txbufs[nexttx].buf_vaddr); /* Zero out the remainder of any short packets. */ if (m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN)) memset(sc->sc_txbufs[nexttx].buf_vaddr + m->m_pkthdr.len, 0, ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len); bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_STAT(nexttx), 0); bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_LEN(nexttx), m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ? ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len); bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_ADDR(nexttx), sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN); /* XXX - needed?? we should be coherent */ bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */, 0 /* XXX */, BUS_SPACE_BARRIER_WRITE); /* Advance the Tx pointer. */ sc->sc_txfree--; sc->sc_txnext = AUMAC_NEXTTX(nexttx); #if NBPFILTER > 0 /* Pass the packet to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* NBPFILTER */ m_freem(m); /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } /* NOTREACHED */ } /* * aumac_watchdog: [ifnet interface function] * * Watchdog timer handler. */ static void aumac_watchdog(struct ifnet *ifp) { struct aumac_softc *sc = ifp->if_softc; printf("%s: device timeout\n", sc->sc_dev.dv_xname); (void) aumac_init(ifp); /* Try to get more packets going. */ aumac_start(ifp); } /* * aumac_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ static int aumac_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct aumac_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) aumac_set_filter(sc); } break; } /* Try to get more packets going. */ aumac_start(ifp); splx(s); return (error); } /* * aumac_intr: * * Interrupt service routine. */ static int aumac_intr(void *arg) { struct aumac_softc *sc = arg; int status; /* * There aren't really any interrupt status bits on the * Au1X00 MAC, and each MAC has a dedicated interrupt * in the CPU's built-in interrupt controller. Just * check for new incoming packets, and then Tx completions * (for status updating). */ if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0) return (0); status = aumac_rxintr(sc); status += aumac_txintr(sc); #if NRND > 0 if (RND_ENABLED(&sc->rnd_source)) rnd_add_uint32(&sc->rnd_source, status); #endif return status; } /* * aumac_txintr: * * Helper; handle transmit interrupts. */ static int aumac_txintr(struct aumac_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; uint32_t stat; int i; int pkts = 0; for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC; i = AUMAC_NEXTTX(i)) { if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0) break; pkts++; /* ACK interrupt. */ bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_ADDR(i), 0); stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_STAT(i)); if (stat & TX_STAT_FA) { /* XXX STATS */ ifp->if_oerrors++; } else ifp->if_opackets++; if (stat & TX_STAT_EC) ifp->if_collisions += 16; else ifp->if_collisions += TX_STAT_CC(stat); sc->sc_txfree++; ifp->if_flags &= ~IFF_OACTIVE; /* Try to queue more packets. */ aumac_start(ifp); } if (pkts) AUMAC_EVCNT_INCR(&sc->sc_ev_txintr); /* Update the dirty descriptor pointer. */ sc->sc_txdirty = i; /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (sc->sc_txfree == AUMAC_NTXDESC) ifp->if_timer = 0; return pkts; } /* * aumac_rxintr: * * Helper; handle receive interrupts. */ static int aumac_rxintr(struct aumac_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m; uint32_t stat; int i, len; int pkts = 0; for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) { if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0) break; pkts++; stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_RX_STAT(i)); #define PRINTERR(str) \ do { \ error++; \ printf("%s: %s\n", sc->sc_dev.dv_xname, str); \ } while (0) if (stat & RX_STAT_ERRS) { int error = 0; if (stat & RX_STAT_MI) PRINTERR("missed frame"); if (stat & RX_STAT_UC) PRINTERR("unknown control frame"); if (stat & RX_STAT_LE) PRINTERR("short frame"); if (stat & RX_STAT_CR) PRINTERR("CRC error"); if (stat & RX_STAT_ME) PRINTERR("medium error"); if (stat & RX_STAT_CS) PRINTERR("late collision"); if (stat & RX_STAT_FL) PRINTERR("frame too big"); if (stat & RX_STAT_RF) PRINTERR("runt frame (collision)"); if (stat & RX_STAT_WT) PRINTERR("watch dog"); if (stat & RX_STAT_DB) { if (stat & (RX_STAT_CS | RX_STAT_RF | RX_STAT_CR)) { if (!error) goto pktok; } else PRINTERR("dribbling bit"); } #undef PRINTERR ifp->if_ierrors++; dropit: /* reuse the current descriptor */ AUMAC_INIT_RXDESC(sc, i); continue; } pktok: len = RX_STAT_L(stat); /* * The Au1X00 MAC includes the CRC with every packet; * trim it off here. */ len -= ETHER_CRC_LEN; /* * Truncate the packet if it's too big to fit in * a single mbuf cluster. */ if (len > MCLBYTES - 2) len = MCLBYTES - 2; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { printf("%s: unable to allocate Rx mbuf\n", sc->sc_dev.dv_xname); goto dropit; } if (len > MHLEN - 2) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { printf("%s: unable to allocate Rx cluster\n", sc->sc_dev.dv_xname); m_freem(m); goto dropit; } } m->m_data += 2; /* align payload */ memcpy(mtod(m, caddr_t), sc->sc_rxbufs[i].buf_vaddr, len); AUMAC_INIT_RXDESC(sc, i); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #if NBPFILTER > 0 /* Pass this up to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* NBPFILTER > 0 */ /* Pass it on. */ (*ifp->if_input)(ifp, m); ifp->if_ipackets++; } if (pkts) AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr); if (pkts == AUMAC_NRXDESC) AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall); /* Update the receive pointer. */ sc->sc_rxptr = i; return pkts; } /* * aumac_tick: * * One second timer, used to tick the MII. */ static void aumac_tick(void *arg) { struct aumac_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc); } /* * aumac_init: [ifnet interface function] * * Initialize the interface. Must be called at splnet(). */ static int aumac_init(struct ifnet *ifp) { struct aumac_softc *sc = ifp->if_softc; int i, error = 0; /* Cancel any pending I/O, reset MAC. */ aumac_stop(ifp, 0); /* Set up the transmit ring. */ for (i = 0; i < AUMAC_NTXDESC; i++) { bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_STAT(i), 0); bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_LEN(i), 0); bus_space_write_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr); } sc->sc_txfree = AUMAC_NTXDESC; sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_TX_ADDR(0))); sc->sc_txdirty = sc->sc_txnext; /* Set up the receive ring. */ for (i = 0; i < AUMAC_NRXDESC; i++) AUMAC_INIT_RXDESC(sc, i); sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh, MACDMA_RX_ADDR(0))); /* * Power up the MAC. */ aumac_powerup(sc); sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE; #if _BYTE_ORDER == _BIG_ENDIAN sc->sc_control |= CONTROL_EM; #endif /* Set the media. */ aumac_mediachange(ifp); /* * Set the receive filter. This will actually start the transmit * and receive processes. */ aumac_set_filter(sc); /* Start the one second clock. */ callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc); /* ...all done! */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; if (error) printf("%s: interface not running\n", sc->sc_dev.dv_xname); return (error); } /* * aumac_stop: [ifnet interface function] * * Stop transmission on the interface. */ static void aumac_stop(struct ifnet *ifp, int disable) { struct aumac_softc *sc = ifp->if_softc; /* Stop the one-second clock. */ callout_stop(&sc->sc_tick_ch); /* Down the MII. */ mii_down(&sc->sc_mii); /* Stop the transmit and receive processes. */ bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0); /* Power down/reset the MAC. */ aumac_powerdown(sc); /* Mark the interface as down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; } /* * aumac_powerdown: * * Power down the MAC. */ static void aumac_powerdown(struct aumac_softc *sc) { /* Disable the MAC clocks, and place the device in reset. */ // bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP); // delay(10000); } /* * aumac_powerup: * * Bring the device out of reset. */ static void aumac_powerup(struct aumac_softc *sc) { /* Enable clocks to the MAC. */ bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP|MACEN_CE); /* Enable MAC, coherent transactions, pass only valid frames. */ bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_E2|MACEN_E1|MACEN_E0|MACEN_CE); delay(20000); } /* * aumac_set_filter: * * Set up the receive filter. */ static void aumac_set_filter(struct aumac_softc *sc) { struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; struct ether_multistep step; const uint8_t *enaddr = LLADDR(ifp->if_sadl); uint32_t mchash[2], crc; sc->sc_control &= ~(CONTROL_PM | CONTROL_PR); /* Stop the receiver. */ bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, sc->sc_control & ~CONTROL_RE); if (ifp->if_flags & IFF_PROMISC) { sc->sc_control |= CONTROL_PR; goto allmulti; } /* Set the station address. */ bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH, enaddr[4] | (enaddr[5] << 8)); bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW, enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24)); sc->sc_control |= CONTROL_HP; mchash[0] = mchash[1] = 0; /* * Set up the multicast address filter by passing all multicast * addresses through a CRC generator, and then using the high * order 6 bits as an index into the 64-bit multicast hash table. * The high order bits select the word, while the rest of the bits * select the bit within the word. */ ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is large enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 most significant bits. */ crc >>= 26; /* Set the corresponding bit in the filter. */ mchash[crc >> 5] |= 1U << (crc & 0x1f); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH, mchash[1]); bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW, mchash[0]); bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, sc->sc_control); return; allmulti: sc->sc_control |= CONTROL_PM; bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, sc->sc_control); } /* * aumac_mediastatus: [ifmedia interface function] * * Get the current interface media status. */ static void aumac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct aumac_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } /* * aumac_mediachange: [ifmedia interface function] * * Set hardware to newly selected media. */ static int aumac_mediachange(struct ifnet *ifp) { struct aumac_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->sc_mii); return (0); } /* * aumac_mii_wait: * * Wait for the MII interface to not be busy. */ static int aumac_mii_wait(struct aumac_softc *sc, const char *msg) { int i; for (i = 0; i < 10000; i++) { if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL) & MIICTRL_MB) == 0) return (0); delay(10); } printf("%s: MII failed to %s\n", sc->sc_dev.dv_xname, msg); return (1); } /* * aumac_mii_readreg: [mii interface function] * * Read a PHY register on the MII. */ static int aumac_mii_readreg(struct device *self, int phy, int reg) { struct aumac_softc *sc = (void *) self; if (aumac_mii_wait(sc, "become ready")) return (0); bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL, MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg)); if (aumac_mii_wait(sc, "complete")) return (0); return (bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA) & MIIDATA_MASK); } /* * aumac_mii_writereg: [mii interface function] * * Write a PHY register on the MII. */ static void aumac_mii_writereg(struct device *self, int phy, int reg, int val) { struct aumac_softc *sc = (void *) self; if (aumac_mii_wait(sc, "become ready")) return; bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val); bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL, MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW); (void) aumac_mii_wait(sc, "complete"); } /* * aumac_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ static void aumac_mii_statchg(struct device *self) { struct aumac_softc *sc = (void *) self; if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) sc->sc_control |= CONTROL_F; else sc->sc_control &= ~CONTROL_F; bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, sc->sc_control); }