/* $NetBSD: scsipi_base.c,v 1.84 2003/02/03 23:51:00 thorpej Exp $ */ /*- * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum; by Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: scsipi_base.c,v 1.84 2003/02/03 23:51:00 thorpej Exp $"); #include "opt_scsi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int scsipi_complete __P((struct scsipi_xfer *)); void scsipi_request_sense __P((struct scsipi_xfer *)); int scsipi_enqueue __P((struct scsipi_xfer *)); void scsipi_run_queue __P((struct scsipi_channel *chan)); void scsipi_completion_thread __P((void *)); void scsipi_get_tag __P((struct scsipi_xfer *)); void scsipi_put_tag __P((struct scsipi_xfer *)); int scsipi_get_resource __P((struct scsipi_channel *)); void scsipi_put_resource __P((struct scsipi_channel *)); __inline int scsipi_grow_resources __P((struct scsipi_channel *)); void scsipi_async_event_max_openings __P((struct scsipi_channel *, struct scsipi_max_openings *)); void scsipi_async_event_xfer_mode __P((struct scsipi_channel *, struct scsipi_xfer_mode *)); void scsipi_async_event_channel_reset __P((struct scsipi_channel *)); struct pool scsipi_xfer_pool; /* * scsipi_init: * * Called when a scsibus or atapibus is attached to the system * to initialize shared data structures. */ void scsipi_init() { static int scsipi_init_done; if (scsipi_init_done) return; scsipi_init_done = 1; /* Initialize the scsipi_xfer pool. */ pool_init(&scsipi_xfer_pool, sizeof(struct scsipi_xfer), 0, 0, 0, "scxspl", NULL); } /* * scsipi_channel_init: * * Initialize a scsipi_channel when it is attached. */ int scsipi_channel_init(chan) struct scsipi_channel *chan; { int i; /* Initialize shared data. */ scsipi_init(); /* Initialize the queues. */ TAILQ_INIT(&chan->chan_queue); TAILQ_INIT(&chan->chan_complete); for (i = 0; i < SCSIPI_CHAN_PERIPH_BUCKETS; i++) LIST_INIT(&chan->chan_periphtab[i]); /* * Create the asynchronous completion thread. */ kthread_create(scsipi_create_completion_thread, chan); return (0); } /* * scsipi_channel_shutdown: * * Shutdown a scsipi_channel. */ void scsipi_channel_shutdown(chan) struct scsipi_channel *chan; { /* * Shut down the completion thread. */ chan->chan_tflags |= SCSIPI_CHANT_SHUTDOWN; wakeup(&chan->chan_complete); /* * Now wait for the thread to exit. */ while (chan->chan_thread != NULL) (void) tsleep(&chan->chan_thread, PRIBIO, "scshut", 0); } static uint32_t scsipi_chan_periph_hash(uint64_t t, uint64_t l) { uint32_t hash; hash = hash32_buf(&t, sizeof(t), HASH32_BUF_INIT); hash = hash32_buf(&l, sizeof(l), hash); return (hash & SCSIPI_CHAN_PERIPH_HASHMASK); } /* * scsipi_insert_periph: * * Insert a periph into the channel. */ void scsipi_insert_periph(chan, periph) struct scsipi_channel *chan; struct scsipi_periph *periph; { uint32_t hash; int s; hash = scsipi_chan_periph_hash(periph->periph_target, periph->periph_lun); s = splbio(); LIST_INSERT_HEAD(&chan->chan_periphtab[hash], periph, periph_hash); splx(s); } /* * scsipi_remove_periph: * * Remove a periph from the channel. */ void scsipi_remove_periph(chan, periph) struct scsipi_channel *chan; struct scsipi_periph *periph; { int s; s = splbio(); LIST_REMOVE(periph, periph_hash); splx(s); } /* * scsipi_lookup_periph: * * Lookup a periph on the specified channel. */ struct scsipi_periph * scsipi_lookup_periph(chan, target, lun) struct scsipi_channel *chan; int target, lun; { struct scsipi_periph *periph; uint32_t hash; int s; if (target >= chan->chan_ntargets || lun >= chan->chan_nluns) return (NULL); hash = scsipi_chan_periph_hash(target, lun); s = splbio(); LIST_FOREACH(periph, &chan->chan_periphtab[hash], periph_hash) { if (periph->periph_target == target && periph->periph_lun == lun) break; } splx(s); return (periph); } /* * scsipi_get_resource: * * Allocate a single xfer `resource' from the channel. * * NOTE: Must be called at splbio(). */ int scsipi_get_resource(chan) struct scsipi_channel *chan; { struct scsipi_adapter *adapt = chan->chan_adapter; if (chan->chan_flags & SCSIPI_CHAN_OPENINGS) { if (chan->chan_openings > 0) { chan->chan_openings--; return (1); } return (0); } if (adapt->adapt_openings > 0) { adapt->adapt_openings--; return (1); } return (0); } /* * scsipi_grow_resources: * * Attempt to grow resources for a channel. If this succeeds, * we allocate one for our caller. * * NOTE: Must be called at splbio(). */ __inline int scsipi_grow_resources(chan) struct scsipi_channel *chan; { if (chan->chan_flags & SCSIPI_CHAN_CANGROW) { if ((chan->chan_flags & SCSIPI_CHAN_TACTIVE) == 0) { scsipi_adapter_request(chan, ADAPTER_REQ_GROW_RESOURCES, NULL); return (scsipi_get_resource(chan)); } /* * ask the channel thread to do it. It'll have to thaw the * queue */ scsipi_channel_freeze(chan, 1); chan->chan_tflags |= SCSIPI_CHANT_GROWRES; wakeup(&chan->chan_complete); return (0); } return (0); } /* * scsipi_put_resource: * * Free a single xfer `resource' to the channel. * * NOTE: Must be called at splbio(). */ void scsipi_put_resource(chan) struct scsipi_channel *chan; { struct scsipi_adapter *adapt = chan->chan_adapter; if (chan->chan_flags & SCSIPI_CHAN_OPENINGS) chan->chan_openings++; else adapt->adapt_openings++; } /* * scsipi_get_tag: * * Get a tag ID for the specified xfer. * * NOTE: Must be called at splbio(). */ void scsipi_get_tag(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; int bit, tag; u_int word; for (word = 0; word < PERIPH_NTAGWORDS; word++) { bit = ffs(periph->periph_freetags[word]); if (bit != 0) break; } #ifdef DIAGNOSTIC if (word == PERIPH_NTAGWORDS) { scsipi_printaddr(periph); printf("no free tags\n"); panic("scsipi_get_tag"); } #endif bit -= 1; periph->periph_freetags[word] &= ~(1 << bit); tag = (word << 5) | bit; /* XXX Should eventually disallow this completely. */ if (tag >= periph->periph_openings) { scsipi_printaddr(periph); printf("WARNING: tag %d greater than available openings %d\n", tag, periph->periph_openings); } xs->xs_tag_id = tag; } /* * scsipi_put_tag: * * Put the tag ID for the specified xfer back into the pool. * * NOTE: Must be called at splbio(). */ void scsipi_put_tag(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; int word, bit; word = xs->xs_tag_id >> 5; bit = xs->xs_tag_id & 0x1f; periph->periph_freetags[word] |= (1 << bit); } /* * scsipi_get_xs: * * Allocate an xfer descriptor and associate it with the * specified peripherial. If the peripherial has no more * available command openings, we either block waiting for * one to become available, or fail. */ struct scsipi_xfer * scsipi_get_xs(periph, flags) struct scsipi_periph *periph; int flags; { struct scsipi_xfer *xs; int s; SC_DEBUG(periph, SCSIPI_DB3, ("scsipi_get_xs\n")); /* * If we're cold, make sure we poll. */ if (cold) flags |= XS_CTL_NOSLEEP | XS_CTL_POLL; #ifdef DIAGNOSTIC /* * URGENT commands can never be ASYNC. */ if ((flags & (XS_CTL_URGENT|XS_CTL_ASYNC)) == (XS_CTL_URGENT|XS_CTL_ASYNC)) { scsipi_printaddr(periph); printf("URGENT and ASYNC\n"); panic("scsipi_get_xs"); } #endif s = splbio(); /* * Wait for a command opening to become available. Rules: * * - All xfers must wait for an available opening. * Exception: URGENT xfers can proceed when * active == openings, because we use the opening * of the command we're recovering for. * - if the periph has sense pending, only URGENT & REQSENSE * xfers may proceed. * * - If the periph is recovering, only URGENT xfers may * proceed. * * - If the periph is currently executing a recovery * command, URGENT commands must block, because only * one recovery command can execute at a time. */ for (;;) { if (flags & XS_CTL_URGENT) { if (periph->periph_active > periph->periph_openings) goto wait_for_opening; if (periph->periph_flags & PERIPH_SENSE) { if ((flags & XS_CTL_REQSENSE) == 0) goto wait_for_opening; } else { if ((periph->periph_flags & PERIPH_RECOVERY_ACTIVE) != 0) goto wait_for_opening; periph->periph_flags |= PERIPH_RECOVERY_ACTIVE; } break; } if (periph->periph_active >= periph->periph_openings || (periph->periph_flags & PERIPH_RECOVERING) != 0) goto wait_for_opening; periph->periph_active++; break; wait_for_opening: if (flags & XS_CTL_NOSLEEP) { splx(s); return (NULL); } SC_DEBUG(periph, SCSIPI_DB3, ("sleeping\n")); periph->periph_flags |= PERIPH_WAITING; (void) tsleep(periph, PRIBIO, "getxs", 0); } SC_DEBUG(periph, SCSIPI_DB3, ("calling pool_get\n")); xs = pool_get(&scsipi_xfer_pool, ((flags & XS_CTL_NOSLEEP) != 0 ? PR_NOWAIT : PR_WAITOK)); if (xs == NULL) { if (flags & XS_CTL_URGENT) { if ((flags & XS_CTL_REQSENSE) == 0) periph->periph_flags &= ~PERIPH_RECOVERY_ACTIVE; } else periph->periph_active--; scsipi_printaddr(periph); printf("unable to allocate %sscsipi_xfer\n", (flags & XS_CTL_URGENT) ? "URGENT " : ""); } splx(s); SC_DEBUG(periph, SCSIPI_DB3, ("returning\n")); if (xs != NULL) { callout_init(&xs->xs_callout); memset(xs, 0, sizeof(*xs)); xs->xs_periph = periph; xs->xs_control = flags; xs->xs_status = 0; s = splbio(); TAILQ_INSERT_TAIL(&periph->periph_xferq, xs, device_q); splx(s); } return (xs); } /* * scsipi_put_xs: * * Release an xfer descriptor, decreasing the outstanding command * count for the peripherial. If there is a thread waiting for * an opening, wake it up. If not, kick any queued I/O the * peripherial may have. * * NOTE: Must be called at splbio(). */ void scsipi_put_xs(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; int flags = xs->xs_control; SC_DEBUG(periph, SCSIPI_DB3, ("scsipi_free_xs\n")); TAILQ_REMOVE(&periph->periph_xferq, xs, device_q); pool_put(&scsipi_xfer_pool, xs); #ifdef DIAGNOSTIC if ((periph->periph_flags & PERIPH_RECOVERY_ACTIVE) != 0 && periph->periph_active == 0) { scsipi_printaddr(periph); printf("recovery without a command to recovery for\n"); panic("scsipi_put_xs"); } #endif if (flags & XS_CTL_URGENT) { if ((flags & XS_CTL_REQSENSE) == 0) periph->periph_flags &= ~PERIPH_RECOVERY_ACTIVE; } else periph->periph_active--; if (periph->periph_active == 0 && (periph->periph_flags & PERIPH_WAITDRAIN) != 0) { periph->periph_flags &= ~PERIPH_WAITDRAIN; wakeup(&periph->periph_active); } if (periph->periph_flags & PERIPH_WAITING) { periph->periph_flags &= ~PERIPH_WAITING; wakeup(periph); } else { if (periph->periph_switch->psw_start != NULL) { SC_DEBUG(periph, SCSIPI_DB2, ("calling private start()\n")); (*periph->periph_switch->psw_start)(periph); } } } /* * scsipi_channel_freeze: * * Freeze a channel's xfer queue. */ void scsipi_channel_freeze(chan, count) struct scsipi_channel *chan; int count; { int s; s = splbio(); chan->chan_qfreeze += count; splx(s); } /* * scsipi_channel_thaw: * * Thaw a channel's xfer queue. */ void scsipi_channel_thaw(chan, count) struct scsipi_channel *chan; int count; { int s; s = splbio(); chan->chan_qfreeze -= count; /* * Don't let the freeze count go negative. * * Presumably the adapter driver could keep track of this, * but it might just be easier to do this here so as to allow * multiple callers, including those outside the adapter driver. */ if (chan->chan_qfreeze < 0) { chan->chan_qfreeze = 0; } splx(s); /* * Kick the channel's queue here. Note, we may be running in * interrupt context (softclock or HBA's interrupt), so the adapter * driver had better not sleep. */ if (chan->chan_qfreeze == 0) scsipi_run_queue(chan); } /* * scsipi_channel_timed_thaw: * * Thaw a channel after some time has expired. This will also * run the channel's queue if the freeze count has reached 0. */ void scsipi_channel_timed_thaw(arg) void *arg; { struct scsipi_channel *chan = arg; scsipi_channel_thaw(chan, 1); } /* * scsipi_periph_freeze: * * Freeze a device's xfer queue. */ void scsipi_periph_freeze(periph, count) struct scsipi_periph *periph; int count; { int s; s = splbio(); periph->periph_qfreeze += count; splx(s); } /* * scsipi_periph_thaw: * * Thaw a device's xfer queue. */ void scsipi_periph_thaw(periph, count) struct scsipi_periph *periph; int count; { int s; s = splbio(); periph->periph_qfreeze -= count; #ifdef DIAGNOSTIC if (periph->periph_qfreeze < 0) { static const char pc[] = "periph freeze count < 0"; scsipi_printaddr(periph); printf("%s\n", pc); panic(pc); } #endif if (periph->periph_qfreeze == 0 && (periph->periph_flags & PERIPH_WAITING) != 0) wakeup(periph); splx(s); } /* * scsipi_periph_timed_thaw: * * Thaw a device after some time has expired. */ void scsipi_periph_timed_thaw(arg) void *arg; { int s; struct scsipi_periph *periph = arg; callout_stop(&periph->periph_callout); s = splbio(); scsipi_periph_thaw(periph, 1); if ((periph->periph_channel->chan_flags & SCSIPI_CHAN_TACTIVE) == 0) { /* * Kick the channel's queue here. Note, we're running in * interrupt context (softclock), so the adapter driver * had better not sleep. */ scsipi_run_queue(periph->periph_channel); } else { /* * Tell the completion thread to kick the channel's queue here. */ periph->periph_channel->chan_tflags |= SCSIPI_CHANT_KICK; wakeup(&periph->periph_channel->chan_complete); } splx(s); } /* * scsipi_wait_drain: * * Wait for a periph's pending xfers to drain. */ void scsipi_wait_drain(periph) struct scsipi_periph *periph; { int s; s = splbio(); while (periph->periph_active != 0) { periph->periph_flags |= PERIPH_WAITDRAIN; (void) tsleep(&periph->periph_active, PRIBIO, "sxdrn", 0); } splx(s); } /* * scsipi_kill_pending: * * Kill off all pending xfers for a periph. * * NOTE: Must be called at splbio(). */ void scsipi_kill_pending(periph) struct scsipi_periph *periph; { (*periph->periph_channel->chan_bustype->bustype_kill_pending)(periph); #ifdef DIAGNOSTIC if (TAILQ_FIRST(&periph->periph_xferq) != NULL) panic("scsipi_kill_pending"); #endif scsipi_wait_drain(periph); } /* * scsipi_interpret_sense: * * Look at the returned sense and act on the error, determining * the unix error number to pass back. (0 = report no error) * * NOTE: If we return ERESTART, we are expected to haved * thawed the device! * * THIS IS THE DEFAULT ERROR HANDLER FOR SCSI DEVICES. */ int scsipi_interpret_sense(xs) struct scsipi_xfer *xs; { struct scsipi_sense_data *sense; struct scsipi_periph *periph = xs->xs_periph; u_int8_t key; int error; #ifndef SCSIVERBOSE u_int32_t info; static char *error_mes[] = { "soft error (corrected)", "not ready", "medium error", "non-media hardware failure", "illegal request", "unit attention", "readonly device", "no data found", "vendor unique", "copy aborted", "command aborted", "search returned equal", "volume overflow", "verify miscompare", "unknown error key" }; #endif sense = &xs->sense.scsi_sense; #ifdef SCSIPI_DEBUG if (periph->periph_flags & SCSIPI_DB1) { int count; scsipi_printaddr(periph); printf(" sense debug information:\n"); printf("\tcode 0x%x valid 0x%x\n", sense->error_code & SSD_ERRCODE, sense->error_code & SSD_ERRCODE_VALID ? 1 : 0); printf("\tseg 0x%x key 0x%x ili 0x%x eom 0x%x fmark 0x%x\n", sense->segment, sense->flags & SSD_KEY, sense->flags & SSD_ILI ? 1 : 0, sense->flags & SSD_EOM ? 1 : 0, sense->flags & SSD_FILEMARK ? 1 : 0); printf("\ninfo: 0x%x 0x%x 0x%x 0x%x followed by %d " "extra bytes\n", sense->info[0], sense->info[1], sense->info[2], sense->info[3], sense->extra_len); printf("\textra: "); for (count = 0; count < ADD_BYTES_LIM(sense); count++) printf("0x%x ", sense->cmd_spec_info[count]); printf("\n"); } #endif /* * If the periph has it's own error handler, call it first. * If it returns a legit error value, return that, otherwise * it wants us to continue with normal error processing. */ if (periph->periph_switch->psw_error != NULL) { SC_DEBUG(periph, SCSIPI_DB2, ("calling private err_handler()\n")); error = (*periph->periph_switch->psw_error)(xs); if (error != EJUSTRETURN) return (error); } /* otherwise use the default */ switch (sense->error_code & SSD_ERRCODE) { /* * Old SCSI-1 and SASI devices respond with * codes other than 70. */ case 0x00: /* no error (command completed OK) */ return (0); case 0x04: /* drive not ready after it was selected */ if ((periph->periph_flags & PERIPH_REMOVABLE) != 0) periph->periph_flags &= ~PERIPH_MEDIA_LOADED; if ((xs->xs_control & XS_CTL_IGNORE_NOT_READY) != 0) return (0); /* XXX - display some sort of error here? */ return (EIO); case 0x20: /* invalid command */ if ((xs->xs_control & XS_CTL_IGNORE_ILLEGAL_REQUEST) != 0) return (0); return (EINVAL); case 0x25: /* invalid LUN (Adaptec ACB-4000) */ return (EACCES); /* * If it's code 70, use the extended stuff and * interpret the key */ case 0x71: /* delayed error */ scsipi_printaddr(periph); key = sense->flags & SSD_KEY; printf(" DEFERRED ERROR, key = 0x%x\n", key); /* FALLTHROUGH */ case 0x70: #ifndef SCSIVERBOSE if ((sense->error_code & SSD_ERRCODE_VALID) != 0) info = _4btol(sense->info); else info = 0; #endif key = sense->flags & SSD_KEY; switch (key) { case SKEY_NO_SENSE: case SKEY_RECOVERED_ERROR: if (xs->resid == xs->datalen && xs->datalen) { /* * Why is this here? */ xs->resid = 0; /* not short read */ } case SKEY_EQUAL: error = 0; break; case SKEY_NOT_READY: if ((periph->periph_flags & PERIPH_REMOVABLE) != 0) periph->periph_flags &= ~PERIPH_MEDIA_LOADED; if ((xs->xs_control & XS_CTL_IGNORE_NOT_READY) != 0) return (0); if (sense->add_sense_code == 0x3A) { error = ENODEV; /* Medium not present */ if (xs->xs_control & XS_CTL_SILENT_NODEV) return (error); } else error = EIO; if ((xs->xs_control & XS_CTL_SILENT) != 0) return (error); break; case SKEY_ILLEGAL_REQUEST: if ((xs->xs_control & XS_CTL_IGNORE_ILLEGAL_REQUEST) != 0) return (0); /* * Handle the case where a device reports * Logical Unit Not Supported during discovery. */ if ((xs->xs_control & XS_CTL_DISCOVERY) != 0 && sense->add_sense_code == 0x25 && sense->add_sense_code_qual == 0x00) return (EINVAL); if ((xs->xs_control & XS_CTL_SILENT) != 0) return (EIO); error = EINVAL; break; case SKEY_UNIT_ATTENTION: if (sense->add_sense_code == 0x29 && sense->add_sense_code_qual == 0x00) { /* device or bus reset */ return (ERESTART); } if ((periph->periph_flags & PERIPH_REMOVABLE) != 0) periph->periph_flags &= ~PERIPH_MEDIA_LOADED; if ((xs->xs_control & XS_CTL_IGNORE_MEDIA_CHANGE) != 0 || /* XXX Should reupload any transient state. */ (periph->periph_flags & PERIPH_REMOVABLE) == 0) { return (ERESTART); } if ((xs->xs_control & XS_CTL_SILENT) != 0) return (EIO); error = EIO; break; case SKEY_WRITE_PROTECT: error = EROFS; break; case SKEY_BLANK_CHECK: error = 0; break; case SKEY_ABORTED_COMMAND: error = ERESTART; break; case SKEY_VOLUME_OVERFLOW: error = ENOSPC; break; default: error = EIO; break; } #ifdef SCSIVERBOSE if (key && (xs->xs_control & XS_CTL_SILENT) == 0) scsipi_print_sense(xs, 0); #else if (key) { scsipi_printaddr(periph); printf("%s", error_mes[key - 1]); if ((sense->error_code & SSD_ERRCODE_VALID) != 0) { switch (key) { case SKEY_NOT_READY: case SKEY_ILLEGAL_REQUEST: case SKEY_UNIT_ATTENTION: case SKEY_WRITE_PROTECT: break; case SKEY_BLANK_CHECK: printf(", requested size: %d (decimal)", info); break; case SKEY_ABORTED_COMMAND: if (xs->xs_retries) printf(", retrying"); printf(", cmd 0x%x, info 0x%x", xs->cmd->opcode, info); break; default: printf(", info = %d (decimal)", info); } } if (sense->extra_len != 0) { int n; printf(", data ="); for (n = 0; n < sense->extra_len; n++) printf(" %02x", sense->cmd_spec_info[n]); } printf("\n"); } #endif return (error); /* * Some other code, just report it */ default: #if defined(SCSIDEBUG) || defined(DEBUG) { static char *uc = "undecodable sense error"; int i; u_int8_t *cptr = (u_int8_t *) sense; scsipi_printaddr(periph); if (xs->cmd == &xs->cmdstore) { printf("%s for opcode 0x%x, data=", uc, xs->cmdstore.opcode); } else { printf("%s, data=", uc); } for (i = 0; i < sizeof (sense); i++) printf(" 0x%02x", *(cptr++) & 0xff); printf("\n"); } #else scsipi_printaddr(periph); printf("Sense Error Code 0x%x", sense->error_code & SSD_ERRCODE); if ((sense->error_code & SSD_ERRCODE_VALID) != 0) { struct scsipi_sense_data_unextended *usense = (struct scsipi_sense_data_unextended *)sense; printf(" at block no. %d (decimal)", _3btol(usense->block)); } printf("\n"); #endif return (EIO); } } /* * scsipi_size: * * Find out from the device what its capacity is. */ u_long scsipi_size(periph, flags) struct scsipi_periph *periph; int flags; { struct scsipi_read_cap_data rdcap; struct scsipi_read_capacity scsipi_cmd; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = READ_CAPACITY; /* * If the command works, interpret the result as a 4 byte * number of blocks */ if (scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), (u_char *)&rdcap, sizeof(rdcap), SCSIPIRETRIES, 20000, NULL, flags | XS_CTL_DATA_IN | XS_CTL_DATA_ONSTACK | XS_CTL_SILENT) != 0) return (0); return (_4btol(rdcap.addr) + 1); } /* * scsipi_test_unit_ready: * * Issue a `test unit ready' request. */ int scsipi_test_unit_ready(periph, flags) struct scsipi_periph *periph; int flags; { struct scsipi_test_unit_ready scsipi_cmd; /* some ATAPI drives don't support TEST_UNIT_READY. Sigh */ if (periph->periph_quirks & PQUIRK_NOTUR) return (0); memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = TEST_UNIT_READY; return (scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), 0, 0, SCSIPIRETRIES, 10000, NULL, flags)); } /* * scsipi_inquire: * * Ask the device about itself. */ int scsipi_inquire(periph, inqbuf, flags) struct scsipi_periph *periph; struct scsipi_inquiry_data *inqbuf; int flags; { struct scsipi_inquiry scsipi_cmd; int error; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = INQUIRY; scsipi_cmd.length = sizeof(struct scsipi_inquiry_data); error = scsipi_command(periph, (struct scsipi_generic *) &scsipi_cmd, sizeof(scsipi_cmd), (u_char *) inqbuf, sizeof(struct scsipi_inquiry_data), SCSIPIRETRIES, 10000, NULL, XS_CTL_DATA_IN | flags); #ifdef SCSI_OLD_NOINQUIRY /* * Kludge for the Adaptec ACB-4000 SCSI->MFM translator. * This board doesn't support the INQUIRY command at all. */ if (error == EINVAL || error == EACCES) { /* * Conjure up an INQUIRY response. */ inqbuf->device = (error == EINVAL ? SID_QUAL_LU_PRESENT : SID_QUAL_LU_NOTPRESENT) | T_DIRECT; inqbuf->dev_qual2 = 0; inqbuf->version = 0; inqbuf->response_format = SID_FORMAT_SCSI1; inqbuf->additional_length = 3 + 28; inqbuf->flags1 = inqbuf->flags2 = inqbuf->flags3 = 0; memcpy(inqbuf->vendor, "ADAPTEC ", sizeof(inqbuf->vendor)); memcpy(inqbuf->product, "ACB-4000 ", sizeof(inqbuf->product)); memcpy(inqbuf->revision, " ", sizeof(inqbuf->revision)); error = 0; } /* * Kludge for the Emulex MT-02 SCSI->QIC translator. * This board gives an empty response to an INQUIRY command. */ else if (error == 0 && inqbuf->device == (SID_QUAL_LU_PRESENT | T_DIRECT) && inqbuf->dev_qual2 == 0 && inqbuf->version == 0 && inqbuf->response_format == SID_FORMAT_SCSI1) { /* * Fill out the INQUIRY response. */ inqbuf->device = (SID_QUAL_LU_PRESENT | T_SEQUENTIAL); inqbuf->dev_qual2 = SID_REMOVABLE; inqbuf->additional_length = 3 + 28; inqbuf->flags1 = inqbuf->flags2 = inqbuf->flags3 = 0; memcpy(inqbuf->vendor, "EMULEX ", sizeof(inqbuf->vendor)); memcpy(inqbuf->product, "MT-02 QIC ", sizeof(inqbuf->product)); memcpy(inqbuf->revision, " ", sizeof(inqbuf->revision)); } #endif /* SCSI_OLD_NOINQUIRY */ return error; } /* * scsipi_prevent: * * Prevent or allow the user to remove the media */ int scsipi_prevent(periph, type, flags) struct scsipi_periph *periph; int type, flags; { struct scsipi_prevent scsipi_cmd; if (periph->periph_quirks & PQUIRK_NODOORLOCK) return (0); memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = PREVENT_ALLOW; scsipi_cmd.how = type; return (scsipi_command(periph, (struct scsipi_generic *) &scsipi_cmd, sizeof(scsipi_cmd), 0, 0, SCSIPIRETRIES, 5000, NULL, flags)); } /* * scsipi_start: * * Send a START UNIT. */ int scsipi_start(periph, type, flags) struct scsipi_periph *periph; int type, flags; { struct scsipi_start_stop scsipi_cmd; if (periph->periph_quirks & PQUIRK_NOSTARTUNIT) return 0; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = START_STOP; scsipi_cmd.byte2 = 0x00; scsipi_cmd.how = type; return (scsipi_command(periph, (struct scsipi_generic *) &scsipi_cmd, sizeof(scsipi_cmd), 0, 0, SCSIPIRETRIES, (type & SSS_START) ? 60000 : 10000, NULL, flags)); } /* * scsipi_mode_sense, scsipi_mode_sense_big: * get a sense page from a device */ int scsipi_mode_sense(periph, byte2, page, data, len, flags, retries, timeout) struct scsipi_periph *periph; int byte2, page, len, flags, retries, timeout; struct scsipi_mode_header *data; { struct scsipi_mode_sense scsipi_cmd; int error; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = MODE_SENSE; scsipi_cmd.byte2 = byte2; scsipi_cmd.page = page; if (scsipi_periph_bustype(periph) == SCSIPI_BUSTYPE_ATAPI) _lto2b(len, scsipi_cmd.u_len.atapi.length); else scsipi_cmd.u_len.scsi.length = len & 0xff; error = scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), (void *)data, len, retries, timeout, NULL, flags | XS_CTL_DATA_IN); SC_DEBUG(periph, SCSIPI_DB2, ("scsipi_mode_sense: error=%d\n", error)); return (error); } int scsipi_mode_sense_big(periph, byte2, page, data, len, flags, retries, timeout) struct scsipi_periph *periph; int byte2, page, len, flags, retries, timeout; struct scsipi_mode_header_big *data; { struct scsipi_mode_sense_big scsipi_cmd; int error; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = MODE_SENSE_BIG; scsipi_cmd.byte2 = byte2; scsipi_cmd.page = page; _lto2b(len, scsipi_cmd.length); error = scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), (void *)data, len, retries, timeout, NULL, flags | XS_CTL_DATA_IN); SC_DEBUG(periph, SCSIPI_DB2, ("scsipi_mode_sense_big: error=%d\n", error)); return (error); } int scsipi_mode_select(periph, byte2, data, len, flags, retries, timeout) struct scsipi_periph *periph; int byte2, len, flags, retries, timeout; struct scsipi_mode_header *data; { struct scsipi_mode_select scsipi_cmd; int error; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = MODE_SELECT; scsipi_cmd.byte2 = byte2; if (scsipi_periph_bustype(periph) == SCSIPI_BUSTYPE_ATAPI) _lto2b(len, scsipi_cmd.u_len.atapi.length); else scsipi_cmd.u_len.scsi.length = len & 0xff; error = scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), (void *)data, len, retries, timeout, NULL, flags | XS_CTL_DATA_OUT); SC_DEBUG(periph, SCSIPI_DB2, ("scsipi_mode_select: error=%d\n", error)); return (error); } int scsipi_mode_select_big(periph, byte2, data, len, flags, retries, timeout) struct scsipi_periph *periph; int byte2, len, flags, retries, timeout; struct scsipi_mode_header_big *data; { struct scsipi_mode_select_big scsipi_cmd; int error; memset(&scsipi_cmd, 0, sizeof(scsipi_cmd)); scsipi_cmd.opcode = MODE_SELECT_BIG; scsipi_cmd.byte2 = byte2; _lto2b(len, scsipi_cmd.length); error = scsipi_command(periph, (struct scsipi_generic *)&scsipi_cmd, sizeof(scsipi_cmd), (void *)data, len, retries, timeout, NULL, flags | XS_CTL_DATA_OUT); SC_DEBUG(periph, SCSIPI_DB2, ("scsipi_mode_select: error=%d\n", error)); return (error); } /* * scsipi_done: * * This routine is called by an adapter's interrupt handler when * an xfer is completed. */ void scsipi_done(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; struct scsipi_channel *chan = periph->periph_channel; int s, freezecnt; SC_DEBUG(periph, SCSIPI_DB2, ("scsipi_done\n")); #ifdef SCSIPI_DEBUG if (periph->periph_dbflags & SCSIPI_DB1) show_scsipi_cmd(xs); #endif s = splbio(); /* * The resource this command was using is now free. */ scsipi_put_resource(chan); xs->xs_periph->periph_sent--; /* * If the command was tagged, free the tag. */ if (XS_CTL_TAGTYPE(xs) != 0) scsipi_put_tag(xs); else periph->periph_flags &= ~PERIPH_UNTAG; /* Mark the command as `done'. */ xs->xs_status |= XS_STS_DONE; #ifdef DIAGNOSTIC if ((xs->xs_control & (XS_CTL_ASYNC|XS_CTL_POLL)) == (XS_CTL_ASYNC|XS_CTL_POLL)) panic("scsipi_done: ASYNC and POLL"); #endif /* * If the xfer had an error of any sort, freeze the * periph's queue. Freeze it again if we were requested * to do so in the xfer. */ freezecnt = 0; if (xs->error != XS_NOERROR) freezecnt++; if (xs->xs_control & XS_CTL_FREEZE_PERIPH) freezecnt++; if (freezecnt != 0) scsipi_periph_freeze(periph, freezecnt); /* * record the xfer with a pending sense, in case a SCSI reset is * received before the thread is waked up. */ if (xs->error == XS_BUSY && xs->status == SCSI_CHECK) { periph->periph_flags |= PERIPH_SENSE; periph->periph_xscheck = xs; } /* * If this was an xfer that was not to complete asynchronously, * let the requesting thread perform error checking/handling * in its context. */ if ((xs->xs_control & XS_CTL_ASYNC) == 0) { splx(s); /* * If it's a polling job, just return, to unwind the * call graph. We don't need to restart the queue, * because pollings jobs are treated specially, and * are really only used during crash dumps anyway * (XXX or during boot-time autconfiguration of * ATAPI devices). */ if (xs->xs_control & XS_CTL_POLL) return; wakeup(xs); goto out; } /* * Catch the extremely common case of I/O completing * without error; no use in taking a context switch * if we can handle it in interrupt context. */ if (xs->error == XS_NOERROR) { splx(s); (void) scsipi_complete(xs); goto out; } /* * There is an error on this xfer. Put it on the channel's * completion queue, and wake up the completion thread. */ TAILQ_INSERT_TAIL(&chan->chan_complete, xs, channel_q); splx(s); wakeup(&chan->chan_complete); out: /* * If there are more xfers on the channel's queue, attempt to * run them. */ scsipi_run_queue(chan); } /* * scsipi_complete: * * Completion of a scsipi_xfer. This is the guts of scsipi_done(). * * NOTE: This routine MUST be called with valid thread context * except for the case where the following two conditions are * true: * * xs->error == XS_NOERROR * XS_CTL_ASYNC is set in xs->xs_control * * The semantics of this routine can be tricky, so here is an * explanation: * * 0 Xfer completed successfully. * * ERESTART Xfer had an error, but was restarted. * * anything else Xfer had an error, return value is Unix * errno. * * If the return value is anything but ERESTART: * * - If XS_CTL_ASYNC is set, `xs' has been freed back to * the pool. * - If there is a buf associated with the xfer, * it has been biodone()'d. */ int scsipi_complete(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; struct scsipi_channel *chan = periph->periph_channel; struct buf *bp; int error, s; #ifdef DIAGNOSTIC if ((xs->xs_control & XS_CTL_ASYNC) != 0 && xs->bp == NULL) panic("scsipi_complete: XS_CTL_ASYNC but no buf"); #endif /* * If command terminated with a CHECK CONDITION, we need to issue a * REQUEST_SENSE command. Once the REQUEST_SENSE has been processed * we'll have the real status. * Must be processed at splbio() to avoid missing a SCSI bus reset * for this command. */ s = splbio(); if (xs->error == XS_BUSY && xs->status == SCSI_CHECK) { /* request sense for a request sense ? */ if (xs->xs_control & XS_CTL_REQSENSE) { scsipi_printaddr(periph); printf("request sense for a request sense ?\n"); /* XXX maybe we should reset the device ? */ /* we've been frozen because xs->error != XS_NOERROR */ scsipi_periph_thaw(periph, 1); splx(s); if (xs->resid < xs->datalen) { printf("we read %d bytes of sense anyway:\n", xs->datalen - xs->resid); #ifdef SCSIVERBOSE scsipi_print_sense_data((void *)xs->data, 0); #endif } return EINVAL; } scsipi_request_sense(xs); } splx(s); /* * If it's a user level request, bypass all usual completion * processing, let the user work it out.. */ if ((xs->xs_control & XS_CTL_USERCMD) != 0) { SC_DEBUG(periph, SCSIPI_DB3, ("calling user done()\n")); if (xs->error != XS_NOERROR) scsipi_periph_thaw(periph, 1); scsipi_user_done(xs); SC_DEBUG(periph, SCSIPI_DB3, ("returned from user done()\n ")); return 0; } switch (xs->error) { case XS_NOERROR: error = 0; break; case XS_SENSE: case XS_SHORTSENSE: error = (*chan->chan_bustype->bustype_interpret_sense)(xs); break; case XS_RESOURCE_SHORTAGE: /* * XXX Should freeze channel's queue. */ scsipi_printaddr(periph); printf("adapter resource shortage\n"); /* FALLTHROUGH */ case XS_BUSY: if (xs->error == XS_BUSY && xs->status == SCSI_QUEUE_FULL) { struct scsipi_max_openings mo; /* * We set the openings to active - 1, assuming that * the command that got us here is the first one that * can't fit into the device's queue. If that's not * the case, I guess we'll find out soon enough. */ mo.mo_target = periph->periph_target; mo.mo_lun = periph->periph_lun; if (periph->periph_active < periph->periph_openings) mo.mo_openings = periph->periph_active - 1; else mo.mo_openings = periph->periph_openings - 1; #ifdef DIAGNOSTIC if (mo.mo_openings < 0) { scsipi_printaddr(periph); printf("QUEUE FULL resulted in < 0 openings\n"); panic("scsipi_done"); } #endif if (mo.mo_openings == 0) { scsipi_printaddr(periph); printf("QUEUE FULL resulted in 0 openings\n"); mo.mo_openings = 1; } scsipi_async_event(chan, ASYNC_EVENT_MAX_OPENINGS, &mo); error = ERESTART; } else if (xs->xs_retries != 0) { xs->xs_retries--; /* * Wait one second, and try again. */ if ((xs->xs_control & XS_CTL_POLL) || (chan->chan_flags & SCSIPI_CHAN_TACTIVE) == 0) { delay(1000000); } else if (!callout_pending(&periph->periph_callout)) { scsipi_periph_freeze(periph, 1); callout_reset(&periph->periph_callout, hz, scsipi_periph_timed_thaw, periph); } error = ERESTART; } else error = EBUSY; break; case XS_REQUEUE: error = ERESTART; break; case XS_SELTIMEOUT: case XS_TIMEOUT: /* * If the device hasn't gone away, honor retry counts. * * Note that if we're in the middle of probing it, * it won't be found because it isn't here yet so * we won't honor the retry count in that case. */ if (scsipi_lookup_periph(chan, periph->periph_target, periph->periph_lun) && xs->xs_retries != 0) { xs->xs_retries--; error = ERESTART; } else error = EIO; break; case XS_RESET: if (xs->xs_control & XS_CTL_REQSENSE) { /* * request sense interrupted by reset: signal it * with EINTR return code. */ error = EINTR; } else { if (xs->xs_retries != 0) { xs->xs_retries--; error = ERESTART; } else error = EIO; } break; case XS_DRIVER_STUFFUP: scsipi_printaddr(periph); printf("generic HBA error\n"); error = EIO; break; default: scsipi_printaddr(periph); printf("invalid return code from adapter: %d\n", xs->error); error = EIO; break; } s = splbio(); if (error == ERESTART) { /* * If we get here, the periph has been thawed and frozen * again if we had to issue recovery commands. Alternatively, * it may have been frozen again and in a timed thaw. In * any case, we thaw the periph once we re-enqueue the * command. Once the periph is fully thawed, it will begin * operation again. */ xs->error = XS_NOERROR; xs->status = SCSI_OK; xs->xs_status &= ~XS_STS_DONE; xs->xs_requeuecnt++; error = scsipi_enqueue(xs); if (error == 0) { scsipi_periph_thaw(periph, 1); splx(s); return (ERESTART); } } /* * scsipi_done() freezes the queue if not XS_NOERROR. * Thaw it here. */ if (xs->error != XS_NOERROR) scsipi_periph_thaw(periph, 1); /* * Set buffer fields in case the periph * switch done func uses them */ if ((bp = xs->bp) != NULL) { if (error) { bp->b_error = error; bp->b_flags |= B_ERROR; bp->b_resid = bp->b_bcount; } else { bp->b_error = 0; bp->b_resid = xs->resid; } } if (periph->periph_switch->psw_done) periph->periph_switch->psw_done(xs); if (bp) biodone(bp); if (xs->xs_control & XS_CTL_ASYNC) scsipi_put_xs(xs); splx(s); return (error); } /* * Issue a request sense for the given scsipi_xfer. Called when the xfer * returns with a CHECK_CONDITION status. Must be called in valid thread * context and at splbio(). */ void scsipi_request_sense(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; int flags, error; struct scsipi_sense cmd; periph->periph_flags |= PERIPH_SENSE; /* if command was polling, request sense will too */ flags = xs->xs_control & XS_CTL_POLL; /* Polling commands can't sleep */ if (flags) flags |= XS_CTL_NOSLEEP; flags |= XS_CTL_REQSENSE | XS_CTL_URGENT | XS_CTL_DATA_IN | XS_CTL_THAW_PERIPH | XS_CTL_FREEZE_PERIPH; memset(&cmd, 0, sizeof(cmd)); cmd.opcode = REQUEST_SENSE; cmd.length = sizeof(struct scsipi_sense_data); error = scsipi_command(periph, (struct scsipi_generic *) &cmd, sizeof(cmd), (u_char*)&xs->sense.scsi_sense, sizeof(struct scsipi_sense_data), 0, 1000, NULL, flags); periph->periph_flags &= ~PERIPH_SENSE; periph->periph_xscheck = NULL; switch(error) { case 0: /* we have a valid sense */ xs->error = XS_SENSE; return; case EINTR: /* REQUEST_SENSE interrupted by bus reset. */ xs->error = XS_RESET; return; case EIO: /* request sense coudn't be performed */ /* * XXX this isn't quite right but we don't have anything * better for now */ xs->error = XS_DRIVER_STUFFUP; return; default: /* Notify that request sense failed. */ xs->error = XS_DRIVER_STUFFUP; scsipi_printaddr(periph); printf("request sense failed with error %d\n", error); return; } } /* * scsipi_enqueue: * * Enqueue an xfer on a channel. */ int scsipi_enqueue(xs) struct scsipi_xfer *xs; { struct scsipi_channel *chan = xs->xs_periph->periph_channel; struct scsipi_xfer *qxs; int s; s = splbio(); /* * If the xfer is to be polled, and there are already jobs on * the queue, we can't proceed. */ if ((xs->xs_control & XS_CTL_POLL) != 0 && TAILQ_FIRST(&chan->chan_queue) != NULL) { splx(s); xs->error = XS_DRIVER_STUFFUP; return (EAGAIN); } /* * If we have an URGENT xfer, it's an error recovery command * and it should just go on the head of the channel's queue. */ if (xs->xs_control & XS_CTL_URGENT) { TAILQ_INSERT_HEAD(&chan->chan_queue, xs, channel_q); goto out; } /* * If this xfer has already been on the queue before, we * need to reinsert it in the correct order. That order is: * * Immediately before the first xfer for this periph * with a requeuecnt less than xs->xs_requeuecnt. * * Failing that, at the end of the queue. (We'll end up * there naturally.) */ if (xs->xs_requeuecnt != 0) { for (qxs = TAILQ_FIRST(&chan->chan_queue); qxs != NULL; qxs = TAILQ_NEXT(qxs, channel_q)) { if (qxs->xs_periph == xs->xs_periph && qxs->xs_requeuecnt < xs->xs_requeuecnt) break; } if (qxs != NULL) { TAILQ_INSERT_AFTER(&chan->chan_queue, qxs, xs, channel_q); goto out; } } TAILQ_INSERT_TAIL(&chan->chan_queue, xs, channel_q); out: if (xs->xs_control & XS_CTL_THAW_PERIPH) scsipi_periph_thaw(xs->xs_periph, 1); splx(s); return (0); } /* * scsipi_run_queue: * * Start as many xfers as possible running on the channel. */ void scsipi_run_queue(chan) struct scsipi_channel *chan; { struct scsipi_xfer *xs; struct scsipi_periph *periph; int s; for (;;) { s = splbio(); /* * If the channel is frozen, we can't do any work right * now. */ if (chan->chan_qfreeze != 0) { splx(s); return; } /* * Look for work to do, and make sure we can do it. */ for (xs = TAILQ_FIRST(&chan->chan_queue); xs != NULL; xs = TAILQ_NEXT(xs, channel_q)) { periph = xs->xs_periph; if ((periph->periph_sent >= periph->periph_openings) || periph->periph_qfreeze != 0 || (periph->periph_flags & PERIPH_UNTAG) != 0) continue; if ((periph->periph_flags & (PERIPH_RECOVERING | PERIPH_SENSE)) != 0 && (xs->xs_control & XS_CTL_URGENT) == 0) continue; /* * We can issue this xfer! */ goto got_one; } /* * Can't find any work to do right now. */ splx(s); return; got_one: /* * Have an xfer to run. Allocate a resource from * the adapter to run it. If we can't allocate that * resource, we don't dequeue the xfer. */ if (scsipi_get_resource(chan) == 0) { /* * Adapter is out of resources. If the adapter * supports it, attempt to grow them. */ if (scsipi_grow_resources(chan) == 0) { /* * Wasn't able to grow resources, * nothing more we can do. */ if (xs->xs_control & XS_CTL_POLL) { scsipi_printaddr(xs->xs_periph); printf("polling command but no " "adapter resources"); /* We'll panic shortly... */ } splx(s); /* * XXX: We should be able to note that * XXX: that resources are needed here! */ return; } /* * scsipi_grow_resources() allocated the resource * for us. */ } /* * We have a resource to run this xfer, do it! */ TAILQ_REMOVE(&chan->chan_queue, xs, channel_q); /* * If the command is to be tagged, allocate a tag ID * for it. */ if (XS_CTL_TAGTYPE(xs) != 0) scsipi_get_tag(xs); else periph->periph_flags |= PERIPH_UNTAG; periph->periph_sent++; splx(s); scsipi_adapter_request(chan, ADAPTER_REQ_RUN_XFER, xs); } #ifdef DIAGNOSTIC panic("scsipi_run_queue: impossible"); #endif } /* * scsipi_execute_xs: * * Begin execution of an xfer, waiting for it to complete, if necessary. */ int scsipi_execute_xs(xs) struct scsipi_xfer *xs; { struct scsipi_periph *periph = xs->xs_periph; struct scsipi_channel *chan = periph->periph_channel; int oasync, async, poll, retries, error, s; xs->xs_status &= ~XS_STS_DONE; xs->error = XS_NOERROR; xs->resid = xs->datalen; xs->status = SCSI_OK; #ifdef SCSIPI_DEBUG if (xs->xs_periph->periph_dbflags & SCSIPI_DB3) { printf("scsipi_execute_xs: "); show_scsipi_xs(xs); printf("\n"); } #endif /* * Deal with command tagging: * * - If the device's current operating mode doesn't * include tagged queueing, clear the tag mask. * * - If the device's current operating mode *does* * include tagged queueing, set the tag_type in * the xfer to the appropriate byte for the tag * message. */ if ((PERIPH_XFER_MODE(periph) & PERIPH_CAP_TQING) == 0 || (xs->xs_control & XS_CTL_REQSENSE)) { xs->xs_control &= ~XS_CTL_TAGMASK; xs->xs_tag_type = 0; } else { /* * If the request doesn't specify a tag, give Head * tags to URGENT operations and Ordered tags to * everything else. */ if (XS_CTL_TAGTYPE(xs) == 0) { if (xs->xs_control & XS_CTL_URGENT) xs->xs_control |= XS_CTL_HEAD_TAG; else xs->xs_control |= XS_CTL_ORDERED_TAG; } switch (XS_CTL_TAGTYPE(xs)) { case XS_CTL_ORDERED_TAG: xs->xs_tag_type = MSG_ORDERED_Q_TAG; break; case XS_CTL_SIMPLE_TAG: xs->xs_tag_type = MSG_SIMPLE_Q_TAG; break; case XS_CTL_HEAD_TAG: xs->xs_tag_type = MSG_HEAD_OF_Q_TAG; break; default: scsipi_printaddr(periph); printf("invalid tag mask 0x%08x\n", XS_CTL_TAGTYPE(xs)); panic("scsipi_execute_xs"); } } /* If the adaptor wants us to poll, poll. */ if (chan->chan_adapter->adapt_flags & SCSIPI_ADAPT_POLL_ONLY) xs->xs_control |= XS_CTL_POLL; /* * If we don't yet have a completion thread, or we are to poll for * completion, clear the ASYNC flag. */ oasync = (xs->xs_control & XS_CTL_ASYNC); if (chan->chan_thread == NULL || (xs->xs_control & XS_CTL_POLL) != 0) xs->xs_control &= ~XS_CTL_ASYNC; async = (xs->xs_control & XS_CTL_ASYNC); poll = (xs->xs_control & XS_CTL_POLL); retries = xs->xs_retries; /* for polling commands */ #ifdef DIAGNOSTIC if (oasync != 0 && xs->bp == NULL) panic("scsipi_execute_xs: XS_CTL_ASYNC but no buf"); #endif /* * Enqueue the transfer. If we're not polling for completion, this * should ALWAYS return `no error'. */ try_again: error = scsipi_enqueue(xs); if (error) { if (poll == 0) { scsipi_printaddr(periph); printf("not polling, but enqueue failed with %d\n", error); panic("scsipi_execute_xs"); } scsipi_printaddr(periph); printf("failed to enqueue polling command"); if (retries != 0) { printf(", retrying...\n"); delay(1000000); retries--; goto try_again; } printf("\n"); goto free_xs; } restarted: scsipi_run_queue(chan); /* * The xfer is enqueued, and possibly running. If it's to be * completed asynchronously, just return now. */ if (async) return (EJUSTRETURN); /* * Not an asynchronous command; wait for it to complete. */ s = splbio(); while ((xs->xs_status & XS_STS_DONE) == 0) { if (poll) { scsipi_printaddr(periph); printf("polling command not done\n"); panic("scsipi_execute_xs"); } (void) tsleep(xs, PRIBIO, "xscmd", 0); } splx(s); /* * Command is complete. scsipi_done() has awakened us to perform * the error handling. */ error = scsipi_complete(xs); if (error == ERESTART) goto restarted; /* * If it was meant to run async and we cleared aync ourselve, * don't return an error here. It has already been handled */ if (oasync) error = EJUSTRETURN; /* * Command completed successfully or fatal error occurred. Fall * into.... */ free_xs: s = splbio(); scsipi_put_xs(xs); splx(s); /* * Kick the queue, keep it running in case it stopped for some * reason. */ scsipi_run_queue(chan); return (error); } /* * scsipi_completion_thread: * * This is the completion thread. We wait for errors on * asynchronous xfers, and perform the error handling * function, restarting the command, if necessary. */ void scsipi_completion_thread(arg) void *arg; { struct scsipi_channel *chan = arg; struct scsipi_xfer *xs; int s; if (chan->chan_init_cb) (*chan->chan_init_cb)(chan, chan->chan_init_cb_arg); s = splbio(); chan->chan_flags |= SCSIPI_CHAN_TACTIVE; splx(s); for (;;) { s = splbio(); xs = TAILQ_FIRST(&chan->chan_complete); if (xs == NULL && chan->chan_tflags == 0) { /* nothing to do; wait */ (void) tsleep(&chan->chan_complete, PRIBIO, "sccomp", 0); splx(s); continue; } if (chan->chan_tflags & SCSIPI_CHANT_CALLBACK) { /* call chan_callback from thread context */ chan->chan_tflags &= ~SCSIPI_CHANT_CALLBACK; chan->chan_callback(chan, chan->chan_callback_arg); splx(s); continue; } if (chan->chan_tflags & SCSIPI_CHANT_GROWRES) { /* attempt to get more openings for this channel */ chan->chan_tflags &= ~SCSIPI_CHANT_GROWRES; scsipi_adapter_request(chan, ADAPTER_REQ_GROW_RESOURCES, NULL); scsipi_channel_thaw(chan, 1); splx(s); continue; } if (chan->chan_tflags & SCSIPI_CHANT_KICK) { /* explicitly run the queues for this channel */ chan->chan_tflags &= ~SCSIPI_CHANT_KICK; scsipi_run_queue(chan); splx(s); continue; } if (chan->chan_tflags & SCSIPI_CHANT_SHUTDOWN) { splx(s); break; } if (xs) { TAILQ_REMOVE(&chan->chan_complete, xs, channel_q); splx(s); /* * Have an xfer with an error; process it. */ (void) scsipi_complete(xs); /* * Kick the queue; keep it running if it was stopped * for some reason. */ scsipi_run_queue(chan); } else { splx(s); } } chan->chan_thread = NULL; /* In case parent is waiting for us to exit. */ wakeup(&chan->chan_thread); kthread_exit(0); } /* * scsipi_create_completion_thread: * * Callback to actually create the completion thread. */ void scsipi_create_completion_thread(arg) void *arg; { struct scsipi_channel *chan = arg; struct scsipi_adapter *adapt = chan->chan_adapter; if (kthread_create1(scsipi_completion_thread, chan, &chan->chan_thread, "%s", chan->chan_name)) { printf("%s: unable to create completion thread for " "channel %d\n", adapt->adapt_dev->dv_xname, chan->chan_channel); panic("scsipi_create_completion_thread"); } } /* * scsipi_thread_call_callback: * * request to call a callback from the completion thread */ int scsipi_thread_call_callback(chan, callback, arg) struct scsipi_channel *chan; void (*callback) __P((struct scsipi_channel *, void *)); void *arg; { int s; s = splbio(); if ((chan->chan_flags & SCSIPI_CHAN_TACTIVE) == 0) { /* kernel thread doesn't exist yet */ splx(s); return ESRCH; } if (chan->chan_tflags & SCSIPI_CHANT_CALLBACK) { splx(s); return EBUSY; } scsipi_channel_freeze(chan, 1); chan->chan_callback = callback; chan->chan_callback_arg = arg; chan->chan_tflags |= SCSIPI_CHANT_CALLBACK; wakeup(&chan->chan_complete); splx(s); return(0); } /* * scsipi_async_event: * * Handle an asynchronous event from an adapter. */ void scsipi_async_event(chan, event, arg) struct scsipi_channel *chan; scsipi_async_event_t event; void *arg; { int s; s = splbio(); switch (event) { case ASYNC_EVENT_MAX_OPENINGS: scsipi_async_event_max_openings(chan, (struct scsipi_max_openings *)arg); break; case ASYNC_EVENT_XFER_MODE: scsipi_async_event_xfer_mode(chan, (struct scsipi_xfer_mode *)arg); break; case ASYNC_EVENT_RESET: scsipi_async_event_channel_reset(chan); break; } splx(s); } /* * scsipi_print_xfer_mode: * * Print a periph's capabilities. */ void scsipi_print_xfer_mode(periph) struct scsipi_periph *periph; { int period, freq, speed, mbs; if ((periph->periph_flags & PERIPH_MODE_VALID) == 0) return; printf("%s: ", periph->periph_dev->dv_xname); if (periph->periph_mode & (PERIPH_CAP_SYNC | PERIPH_CAP_DT)) { period = scsipi_sync_factor_to_period(periph->periph_period); printf("sync (%d.%dns offset %d)", period / 10, period % 10, periph->periph_offset); } else printf("async"); if (periph->periph_mode & PERIPH_CAP_WIDE32) printf(", 32-bit"); else if (periph->periph_mode & (PERIPH_CAP_WIDE16 | PERIPH_CAP_DT)) printf(", 16-bit"); else printf(", 8-bit"); if (periph->periph_mode & (PERIPH_CAP_SYNC | PERIPH_CAP_DT)) { freq = scsipi_sync_factor_to_freq(periph->periph_period); speed = freq; if (periph->periph_mode & PERIPH_CAP_WIDE32) speed *= 4; else if (periph->periph_mode & (PERIPH_CAP_WIDE16 | PERIPH_CAP_DT)) speed *= 2; mbs = speed / 1000; if (mbs > 0) printf(" (%d.%03dMB/s)", mbs, speed % 1000); else printf(" (%dKB/s)", speed % 1000); } printf(" transfers"); if (periph->periph_mode & PERIPH_CAP_TQING) printf(", tagged queueing"); printf("\n"); } /* * scsipi_async_event_max_openings: * * Update the maximum number of outstanding commands a * device may have. */ void scsipi_async_event_max_openings(chan, mo) struct scsipi_channel *chan; struct scsipi_max_openings *mo; { struct scsipi_periph *periph; int minlun, maxlun; if (mo->mo_lun == -1) { /* * Wildcarded; apply it to all LUNs. */ minlun = 0; maxlun = chan->chan_nluns - 1; } else minlun = maxlun = mo->mo_lun; /* XXX This could really suck with a large LUN space. */ for (; minlun <= maxlun; minlun++) { periph = scsipi_lookup_periph(chan, mo->mo_target, minlun); if (periph == NULL) continue; if (mo->mo_openings < periph->periph_openings) periph->periph_openings = mo->mo_openings; else if (mo->mo_openings > periph->periph_openings && (periph->periph_flags & PERIPH_GROW_OPENINGS) != 0) periph->periph_openings = mo->mo_openings; } } /* * scsipi_async_event_xfer_mode: * * Update the xfer mode for all periphs sharing the * specified I_T Nexus. */ void scsipi_async_event_xfer_mode(chan, xm) struct scsipi_channel *chan; struct scsipi_xfer_mode *xm; { struct scsipi_periph *periph; int lun, announce, mode, period, offset; for (lun = 0; lun < chan->chan_nluns; lun++) { periph = scsipi_lookup_periph(chan, xm->xm_target, lun); if (periph == NULL) continue; announce = 0; /* * Clamp the xfer mode down to this periph's capabilities. */ mode = xm->xm_mode & periph->periph_cap; if (mode & PERIPH_CAP_SYNC) { period = xm->xm_period; offset = xm->xm_offset; } else { period = 0; offset = 0; } /* * If we do not have a valid xfer mode yet, or the parameters * are different, announce them. */ if ((periph->periph_flags & PERIPH_MODE_VALID) == 0 || periph->periph_mode != mode || periph->periph_period != period || periph->periph_offset != offset) announce = 1; periph->periph_mode = mode; periph->periph_period = period; periph->periph_offset = offset; periph->periph_flags |= PERIPH_MODE_VALID; if (announce) scsipi_print_xfer_mode(periph); } } /* * scsipi_set_xfer_mode: * * Set the xfer mode for the specified I_T Nexus. */ void scsipi_set_xfer_mode(chan, target, immed) struct scsipi_channel *chan; int target, immed; { struct scsipi_xfer_mode xm; struct scsipi_periph *itperiph; int lun, s; /* * Go to the minimal xfer mode. */ xm.xm_target = target; xm.xm_mode = 0; xm.xm_period = 0; /* ignored */ xm.xm_offset = 0; /* ignored */ /* * Find the first LUN we know about on this I_T Nexus. */ for (itperiph = NULL, lun = 0; lun < chan->chan_nluns; lun++) { itperiph = scsipi_lookup_periph(chan, target, lun); if (itperiph != NULL) break; } if (itperiph != NULL) { xm.xm_mode = itperiph->periph_cap; /* * Now issue the request to the adapter. */ s = splbio(); scsipi_adapter_request(chan, ADAPTER_REQ_SET_XFER_MODE, &xm); splx(s); /* * If we want this to happen immediately, issue a dummy * command, since most adapters can't really negotiate unless * they're executing a job. */ if (immed != 0) { (void) scsipi_test_unit_ready(itperiph, XS_CTL_DISCOVERY | XS_CTL_IGNORE_ILLEGAL_REQUEST | XS_CTL_IGNORE_NOT_READY | XS_CTL_IGNORE_MEDIA_CHANGE); } } } /* * scsipi_channel_reset: * * handle scsi bus reset * called at splbio */ void scsipi_async_event_channel_reset(chan) struct scsipi_channel *chan; { struct scsipi_xfer *xs, *xs_next; struct scsipi_periph *periph; int target, lun; /* * Channel has been reset. Also mark as reset pending REQUEST_SENSE * commands; as the sense is not available any more. * can't call scsipi_done() from here, as the command has not been * sent to the adapter yet (this would corrupt accounting). */ for (xs = TAILQ_FIRST(&chan->chan_queue); xs != NULL; xs = xs_next) { xs_next = TAILQ_NEXT(xs, channel_q); if (xs->xs_control & XS_CTL_REQSENSE) { TAILQ_REMOVE(&chan->chan_queue, xs, channel_q); xs->error = XS_RESET; if ((xs->xs_control & XS_CTL_ASYNC) != 0) TAILQ_INSERT_TAIL(&chan->chan_complete, xs, channel_q); } } wakeup(&chan->chan_complete); /* Catch xs with pending sense which may not have a REQSENSE xs yet */ for (target = 0; target < chan->chan_ntargets; target++) { if (target == chan->chan_id) continue; for (lun = 0; lun < chan->chan_nluns; lun++) { periph = scsipi_lookup_periph(chan, target, lun); if (periph) { xs = periph->periph_xscheck; if (xs) xs->error = XS_RESET; } } } } /* * scsipi_target_detach: * * detach all periph associated with a I_T * must be called from valid thread context */ int scsipi_target_detach(chan, target, lun, flags) struct scsipi_channel *chan; int target, lun; int flags; { struct scsipi_periph *periph; int ctarget, mintarget, maxtarget; int clun, minlun, maxlun; int error; if (target == -1) { mintarget = 0; maxtarget = chan->chan_ntargets; } else { if (target == chan->chan_id) return EINVAL; if (target < 0 || target >= chan->chan_ntargets) return EINVAL; mintarget = target; maxtarget = target + 1; } if (lun == -1) { minlun = 0; maxlun = chan->chan_nluns; } else { if (lun < 0 || lun >= chan->chan_nluns) return EINVAL; minlun = lun; maxlun = lun + 1; } for (ctarget = mintarget; ctarget < maxtarget; ctarget++) { if (ctarget == chan->chan_id) continue; for (clun = minlun; clun < maxlun; clun++) { periph = scsipi_lookup_periph(chan, ctarget, clun); if (periph == NULL) continue; error = config_detach(periph->periph_dev, flags); if (error) return (error); scsipi_remove_periph(chan, periph); free(periph, M_DEVBUF); } } return(0); } /* * scsipi_adapter_addref: * * Add a reference to the adapter pointed to by the provided * link, enabling the adapter if necessary. */ int scsipi_adapter_addref(adapt) struct scsipi_adapter *adapt; { int s, error = 0; s = splbio(); if (adapt->adapt_refcnt++ == 0 && adapt->adapt_enable != NULL) { error = (*adapt->adapt_enable)(adapt->adapt_dev, 1); if (error) adapt->adapt_refcnt--; } splx(s); return (error); } /* * scsipi_adapter_delref: * * Delete a reference to the adapter pointed to by the provided * link, disabling the adapter if possible. */ void scsipi_adapter_delref(adapt) struct scsipi_adapter *adapt; { int s; s = splbio(); if (adapt->adapt_refcnt-- == 1 && adapt->adapt_enable != NULL) (void) (*adapt->adapt_enable)(adapt->adapt_dev, 0); splx(s); } struct scsipi_syncparam { int ss_factor; int ss_period; /* ns * 10 */ } scsipi_syncparams[] = { { 0x09, 125 }, { 0x0a, 250 }, { 0x0b, 303 }, { 0x0c, 500 }, }; const int scsipi_nsyncparams = sizeof(scsipi_syncparams) / sizeof(scsipi_syncparams[0]); int scsipi_sync_period_to_factor(period) int period; /* ns * 10 */ { int i; for (i = 0; i < scsipi_nsyncparams; i++) { if (period <= scsipi_syncparams[i].ss_period) return (scsipi_syncparams[i].ss_factor); } return ((period / 10) / 4); } int scsipi_sync_factor_to_period(factor) int factor; { int i; for (i = 0; i < scsipi_nsyncparams; i++) { if (factor == scsipi_syncparams[i].ss_factor) return (scsipi_syncparams[i].ss_period); } return ((factor * 4) * 10); } int scsipi_sync_factor_to_freq(factor) int factor; { int i; for (i = 0; i < scsipi_nsyncparams; i++) { if (factor == scsipi_syncparams[i].ss_factor) return (10000000 / scsipi_syncparams[i].ss_period); } return (10000000 / ((factor * 4) * 10)); } #ifdef SCSIPI_DEBUG /* * Given a scsipi_xfer, dump the request, in all it's glory */ void show_scsipi_xs(xs) struct scsipi_xfer *xs; { printf("xs(%p): ", xs); printf("xs_control(0x%08x)", xs->xs_control); printf("xs_status(0x%08x)", xs->xs_status); printf("periph(%p)", xs->xs_periph); printf("retr(0x%x)", xs->xs_retries); printf("timo(0x%x)", xs->timeout); printf("cmd(%p)", xs->cmd); printf("len(0x%x)", xs->cmdlen); printf("data(%p)", xs->data); printf("len(0x%x)", xs->datalen); printf("res(0x%x)", xs->resid); printf("err(0x%x)", xs->error); printf("bp(%p)", xs->bp); show_scsipi_cmd(xs); } void show_scsipi_cmd(xs) struct scsipi_xfer *xs; { u_char *b = (u_char *) xs->cmd; int i = 0; scsipi_printaddr(xs->xs_periph); printf(" command: "); if ((xs->xs_control & XS_CTL_RESET) == 0) { while (i < xs->cmdlen) { if (i) printf(","); printf("0x%x", b[i++]); } printf("-[%d bytes]\n", xs->datalen); if (xs->datalen) show_mem(xs->data, min(64, xs->datalen)); } else printf("-RESET-\n"); } void show_mem(address, num) u_char *address; int num; { int x; printf("------------------------------"); for (x = 0; x < num; x++) { if ((x % 16) == 0) printf("\n%03d: ", x); printf("%02x ", *address++); } printf("\n------------------------------\n"); } #endif /* SCSIPI_DEBUG */