/* $NetBSD: if_sip.c,v 1.26 2001/03/09 16:07:20 briggs Exp $ */ /*- * Copyright (c) 1999 Network Computer, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of Network Computer, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for the Silicon Integrated Systems SiS 900 and * SiS 7016 10/100 PCI Ethernet controllers. * * Written by Jason R. Thorpe for Network Computer, Inc. */ #include "opt_inet.h" #include "opt_ns.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include /* for PAGE_SIZE */ #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef INET #include #include #endif #ifdef NS #include #include #endif #include #include #include #include #include #include #include #include #include /* * Transmit descriptor list size. This is arbitrary, but allocate * enough descriptors for 64 pending transmissions, and 16 segments * per packet. This MUST work out to a power of 2. */ #define SIP_NTXSEGS 16 #define SIP_TXQUEUELEN 64 #define SIP_NTXDESC (SIP_TXQUEUELEN * SIP_NTXSEGS) #define SIP_NTXDESC_MASK (SIP_NTXDESC - 1) #define SIP_NEXTTX(x) (((x) + 1) & SIP_NTXDESC_MASK) /* * Receive descriptor list size. We have one Rx buffer per incoming * packet, so this logic is a little simpler. */ #define SIP_NRXDESC 64 #define SIP_NRXDESC_MASK (SIP_NRXDESC - 1) #define SIP_NEXTRX(x) (((x) + 1) & SIP_NRXDESC_MASK) /* * Control structures are DMA'd to the SiS900 chip. We allocate them in * a single clump that maps to a single DMA segment to make several things * easier. */ struct sip_control_data { /* * The transmit descriptors. */ struct sip_desc scd_txdescs[SIP_NTXDESC]; /* * The receive descriptors. */ struct sip_desc scd_rxdescs[SIP_NRXDESC]; }; #define SIP_CDOFF(x) offsetof(struct sip_control_data, x) #define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)]) #define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)]) /* * Software state for transmit jobs. */ struct sip_txsoft { struct mbuf *txs_mbuf; /* head of our mbuf chain */ bus_dmamap_t txs_dmamap; /* our DMA map */ int txs_firstdesc; /* first descriptor in packet */ int txs_lastdesc; /* last descriptor in packet */ SIMPLEQ_ENTRY(sip_txsoft) txs_q; }; SIMPLEQ_HEAD(sip_txsq, sip_txsoft); /* * Software state for receive jobs. */ struct sip_rxsoft { struct mbuf *rxs_mbuf; /* head of our mbuf chain */ bus_dmamap_t rxs_dmamap; /* our DMA map */ }; /* * Software state per device. */ struct sip_softc { struct device sc_dev; /* generic device information */ bus_space_tag_t sc_st; /* bus space tag */ bus_space_handle_t sc_sh; /* bus space handle */ bus_dma_tag_t sc_dmat; /* bus DMA tag */ struct ethercom sc_ethercom; /* ethernet common data */ void *sc_sdhook; /* shutdown hook */ const struct sip_product *sc_model; /* which model are we? */ void *sc_ih; /* interrupt cookie */ struct mii_data sc_mii; /* MII/media information */ struct callout sc_tick_ch; /* tick callout */ bus_dmamap_t sc_cddmamap; /* control data DMA map */ #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr /* * Software state for transmit and receive descriptors. */ struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN]; struct sip_rxsoft sc_rxsoft[SIP_NRXDESC]; /* * Control data structures. */ struct sip_control_data *sc_control_data; #define sc_txdescs sc_control_data->scd_txdescs #define sc_rxdescs sc_control_data->scd_rxdescs u_int32_t sc_txcfg; /* prototype TXCFG register */ u_int32_t sc_rxcfg; /* prototype RXCFG register */ u_int32_t sc_imr; /* prototype IMR register */ u_int32_t sc_rfcr; /* prototype RFCR register */ u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */ u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */ u_int32_t sc_rx_drain_thresh; /* receive drain threshold */ int sc_flags; /* misc. flags; see below */ int sc_txfree; /* number of free Tx descriptors */ int sc_txnext; /* next ready Tx descriptor */ struct sip_txsq sc_txfreeq; /* free Tx descsofts */ struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */ int sc_rxptr; /* next ready Rx descriptor/descsoft */ }; /* sc_flags */ #define SIPF_PAUSED 0x00000001 /* paused (802.3x flow control) */ #define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x))) #define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x))) #define SIP_CDTXSYNC(sc, x, n, ops) \ do { \ int __x, __n; \ \ __x = (x); \ __n = (n); \ \ /* If it will wrap around, sync to the end of the ring. */ \ if ((__x + __n) > SIP_NTXDESC) { \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SIP_CDTXOFF(__x), sizeof(struct sip_desc) * \ (SIP_NTXDESC - __x), (ops)); \ __n -= (SIP_NTXDESC - __x); \ __x = 0; \ } \ \ /* Now sync whatever is left. */ \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SIP_CDTXOFF(__x), sizeof(struct sip_desc) * __n, (ops)); \ } while (0) #define SIP_CDRXSYNC(sc, x, ops) \ bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ SIP_CDRXOFF((x)), sizeof(struct sip_desc), (ops)) /* * Note we rely on MCLBYTES being a power of two below. */ #define SIP_INIT_RXDESC(sc, x) \ do { \ struct sip_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ struct sip_desc *__sipd = &(sc)->sc_rxdescs[(x)]; \ \ __sipd->sipd_link = htole32(SIP_CDRXADDR((sc), SIP_NEXTRX((x)))); \ __sipd->sipd_bufptr = htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr); \ __sipd->sipd_cmdsts = htole32(CMDSTS_INTR | \ ((MCLBYTES - 1) & CMDSTS_SIZE_MASK)); \ SIP_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ } while (0) #define SIP_TIMEOUT 1000 void sip_start __P((struct ifnet *)); void sip_watchdog __P((struct ifnet *)); int sip_ioctl __P((struct ifnet *, u_long, caddr_t)); int sip_init __P((struct ifnet *)); void sip_stop __P((struct ifnet *, int)); void sip_shutdown __P((void *)); void sip_reset __P((struct sip_softc *)); void sip_rxdrain __P((struct sip_softc *)); int sip_add_rxbuf __P((struct sip_softc *, int)); void sip_read_eeprom __P((struct sip_softc *, int, int, u_int16_t *)); void sip_tick __P((void *)); void sip_sis900_set_filter __P((struct sip_softc *)); void sip_dp83815_set_filter __P((struct sip_softc *)); void sip_sis900_read_macaddr __P((struct sip_softc *, u_int8_t *)); void sip_dp83815_read_macaddr __P((struct sip_softc *, u_int8_t *)); int sip_intr __P((void *)); void sip_txintr __P((struct sip_softc *)); void sip_rxintr __P((struct sip_softc *)); int sip_sis900_mii_readreg __P((struct device *, int, int)); void sip_sis900_mii_writereg __P((struct device *, int, int, int)); void sip_sis900_mii_statchg __P((struct device *)); int sip_dp83815_mii_readreg __P((struct device *, int, int)); void sip_dp83815_mii_writereg __P((struct device *, int, int, int)); void sip_dp83815_mii_statchg __P((struct device *)); int sip_mediachange __P((struct ifnet *)); void sip_mediastatus __P((struct ifnet *, struct ifmediareq *)); int sip_match __P((struct device *, struct cfdata *, void *)); void sip_attach __P((struct device *, struct device *, void *)); int sip_copy_small = 0; struct cfattach sip_ca = { sizeof(struct sip_softc), sip_match, sip_attach, }; /* * Descriptions of the variants of the SiS900. */ struct sip_variant { int (*sipv_mii_readreg) __P((struct device *, int, int)); void (*sipv_mii_writereg) __P((struct device *, int, int, int)); void (*sipv_mii_statchg) __P((struct device *)); void (*sipv_set_filter) __P((struct sip_softc *)); void (*sipv_read_macaddr) __P((struct sip_softc *, u_int8_t *)); }; const struct sip_variant sip_variant_sis900 = { sip_sis900_mii_readreg, sip_sis900_mii_writereg, sip_sis900_mii_statchg, sip_sis900_set_filter, sip_sis900_read_macaddr }; const struct sip_variant sip_variant_dp83815 = { sip_dp83815_mii_readreg, sip_dp83815_mii_writereg, sip_dp83815_mii_statchg, sip_dp83815_set_filter, sip_dp83815_read_macaddr }; /* * Devices supported by this driver. */ const struct sip_product { pci_vendor_id_t sip_vendor; pci_product_id_t sip_product; const char *sip_name; const struct sip_variant *sip_variant; } sip_products[] = { { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, "SiS 900 10/100 Ethernet", &sip_variant_sis900 }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016, "SiS 7016 10/100 Ethernet", &sip_variant_sis900 }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815, "NatSemi DP83815 10/100 Ethernet", &sip_variant_dp83815 }, { 0, 0, NULL, NULL }, }; const struct sip_product *sip_lookup __P((const struct pci_attach_args *)); const struct sip_product * sip_lookup(pa) const struct pci_attach_args *pa; { const struct sip_product *sip; for (sip = sip_products; sip->sip_name != NULL; sip++) { if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor && PCI_PRODUCT(pa->pa_id) == sip->sip_product) return (sip); } return (NULL); } int sip_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct pci_attach_args *pa = aux; if (sip_lookup(pa) != NULL) return (1); return (0); } void sip_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct sip_softc *sc = (struct sip_softc *) self; struct pci_attach_args *pa = aux; struct ifnet *ifp = &sc->sc_ethercom.ec_if; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; bus_dma_segment_t seg; int ioh_valid, memh_valid; int i, rseg, error; const struct sip_product *sip; pcireg_t pmode; u_int8_t enaddr[ETHER_ADDR_LEN]; int pmreg; callout_init(&sc->sc_tick_ch); sip = sip_lookup(pa); if (sip == NULL) { printf("\n"); panic("sip_attach: impossible"); } printf(": %s\n", sip->sip_name); sc->sc_model = sip; /* * Map the device. */ ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); if (memh_valid) { sc->sc_st = memt; sc->sc_sh = memh; } else if (ioh_valid) { sc->sc_st = iot; sc->sc_sh = ioh; } else { printf("%s: unable to map device registers\n", sc->sc_dev.dv_xname); return; } sc->sc_dmat = pa->pa_dmat; /* Enable bus mastering. */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* Get it out of power save mode if needed. */ if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3; if (pmode == 3) { /* * The card has lost all configuration data in * this state, so punt. */ printf("%s: unable to wake up from power state D3\n", sc->sc_dev.dv_xname); return; } if (pmode != 0) { printf("%s: waking up from power state D%d\n", sc->sc_dev.dv_xname, pmode); pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0); } } /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sip_intr, sc); if (sc->sc_ih == NULL) { printf("%s: unable to establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sip_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) { printf("%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct sip_control_data), (caddr_t *)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct sip_control_data), 1, sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { printf("%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct sip_control_data), NULL, 0)) != 0) { printf("%s: unable to load control data DMA map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < SIP_TXQUEUELEN; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIP_NTXSEGS, MCLBYTES, 0, 0, &sc->sc_txsoft[i].txs_dmamap)) != 0) { printf("%s: unable to create tx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < SIP_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { printf("%s: unable to create rx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_mbuf = NULL; } /* * Reset the chip to a known state. */ sip_reset(sc); /* * Read the Ethernet address from the EEPROM. */ sip->sip_variant->sipv_read_macaddr(sc, enaddr); printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname, ether_sprintf(enaddr)); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg; sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg; sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, sip_mediachange, sip_mediastatus); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); ifp = &sc->sc_ethercom.ec_if; strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sip_ioctl; ifp->if_start = sip_start; ifp->if_watchdog = sip_watchdog; ifp->if_init = sip_init; ifp->if_stop = sip_stop; IFQ_SET_READY(&ifp->if_snd); /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, enaddr); /* * Make sure the interface is shutdown during reboot. */ sc->sc_sdhook = shutdownhook_establish(sip_shutdown, sc); if (sc->sc_sdhook == NULL) printf("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_5: for (i = 0; i < SIP_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].rxs_dmamap); } fail_4: for (i = 0; i < SIP_TXQUEUELEN; i++) { if (sc->sc_txsoft[i].txs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].txs_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, sizeof(struct sip_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, rseg); fail_0: return; } /* * sip_shutdown: * * Make sure the interface is stopped at reboot time. */ void sip_shutdown(arg) void *arg; { struct sip_softc *sc = arg; sip_stop(&sc->sc_ethercom.ec_if, 1); } /* * sip_start: [ifnet interface function] * * Start packet transmission on the interface. */ void sip_start(ifp) struct ifnet *ifp; { struct sip_softc *sc = ifp->if_softc; struct mbuf *m0, *m; struct sip_txsoft *txs; bus_dmamap_t dmamap; int error, firsttx, nexttx, lasttx, ofree, seg; /* * If we've been told to pause, don't transmit any more packets. */ if (sc->sc_flags & SIPF_PAUSED) ifp->if_flags |= IFF_OACTIVE; if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; /* * Remember the previous number of free descriptors and * the first descriptor we'll use. */ ofree = sc->sc_txfree; firsttx = sc->sc_txnext; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && sc->sc_txfree != 0) { /* * Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; m = NULL; dmamap = txs->txs_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the alloted number of segments, or we * were short on resources. In this case, we'll copy * and try again. */ if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_NOWAIT) != 0) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { printf("%s: unable to allocate Tx mbuf\n", sc->sc_dev.dv_xname); break; } if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { printf("%s: unable to allocate Tx " "cluster\n", sc->sc_dev.dv_xname); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m, BUS_DMA_NOWAIT); if (error) { printf("%s: unable to load Tx buffer, " "error = %d\n", sc->sc_dev.dv_xname, error); break; } } /* * Ensure we have enough descriptors free to describe * the packet. */ if (dmamap->dm_nsegs > sc->sc_txfree) { /* * Not enough free descriptors to transmit this * packet. We haven't committed anything yet, * so just unload the DMA map, put the packet * back on the queue, and punt. Notify the upper * layer that there are not more slots left. * * XXX We could allocate an mbuf and copy, but * XXX is it worth it? */ ifp->if_flags |= IFF_OACTIVE; bus_dmamap_unload(sc->sc_dmat, dmamap); if (m != NULL) m_freem(m); break; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m != NULL) { m_freem(m0); m0 = m; } /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Initialize the transmit descriptors. */ for (nexttx = sc->sc_txnext, seg = 0; seg < dmamap->dm_nsegs; seg++, nexttx = SIP_NEXTTX(nexttx)) { /* * If this is the first descriptor we're * enqueueing, don't set the OWN bit just * yet. That could cause a race condition. * We'll do it below. */ sc->sc_txdescs[nexttx].sipd_bufptr = htole32(dmamap->dm_segs[seg].ds_addr); sc->sc_txdescs[nexttx].sipd_cmdsts = htole32((nexttx == firsttx ? 0 : CMDSTS_OWN) | CMDSTS_MORE | dmamap->dm_segs[seg].ds_len); lasttx = nexttx; } /* Clear the MORE bit on the last segment. */ sc->sc_txdescs[lasttx].sipd_cmdsts &= htole32(~CMDSTS_MORE); /* Sync the descriptors we're using. */ SIP_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Store a pointer to the packet so we can free it later, * and remember what txdirty will be once the packet is * done. */ txs->txs_mbuf = m0; txs->txs_firstdesc = sc->sc_txnext; txs->txs_lastdesc = lasttx; /* Advance the tx pointer. */ sc->sc_txfree -= dmamap->dm_nsegs; sc->sc_txnext = nexttx; SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs, txs_q); SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); #if NBPFILTER > 0 /* * Pass the packet to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif /* NBPFILTER > 0 */ } if (txs == NULL || sc->sc_txfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (sc->sc_txfree != ofree) { /* * Cause a descriptor interrupt to happen on the * last packet we enqueued. */ sc->sc_txdescs[lasttx].sipd_cmdsts |= htole32(CMDSTS_INTR); SIP_CDTXSYNC(sc, lasttx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * The entire packet chain is set up. Give the * first descrptor to the chip now. */ sc->sc_txdescs[firsttx].sipd_cmdsts |= htole32(CMDSTS_OWN); SIP_CDTXSYNC(sc, firsttx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* Start the transmit process. */ if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) & CR_TXE) == 0) { bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP, SIP_CDTXADDR(sc, firsttx)); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE); } /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* * sip_watchdog: [ifnet interface function] * * Watchdog timer handler. */ void sip_watchdog(ifp) struct ifnet *ifp; { struct sip_softc *sc = ifp->if_softc; /* * The chip seems to ignore the CMDSTS_INTR bit sometimes! * If we get a timeout, try and sweep up transmit descriptors. * If we manage to sweep them all up, ignore the lack of * interrupt. */ sip_txintr(sc); if (sc->sc_txfree != SIP_NTXDESC) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; /* Reset the interface. */ (void) sip_init(ifp); } else if (ifp->if_flags & IFF_DEBUG) printf("%s: recovered from device timeout\n", sc->sc_dev.dv_xname); /* Try to get more packets going. */ sip_start(ifp); } /* * sip_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ int sip_ioctl(ifp, cmd, data) struct ifnet *ifp; u_long cmd; caddr_t data; { struct sip_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error; s = splnet(); switch (cmd) { case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ (*sc->sc_model->sip_variant->sipv_set_filter)(sc); error = 0; } break; } /* Try to get more packets going. */ sip_start(ifp); splx(s); return (error); } /* * sip_intr: * * Interrupt service routine. */ int sip_intr(arg) void *arg; { struct sip_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; u_int32_t isr; int handled = 0; for (;;) { /* Reading clears interrupt. */ isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR); if ((isr & sc->sc_imr) == 0) break; handled = 1; if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) { /* Grab any new packets. */ sip_rxintr(sc); if (isr & ISR_RXORN) { printf("%s: receive FIFO overrun\n", sc->sc_dev.dv_xname); /* XXX adjust rx_drain_thresh? */ } if (isr & ISR_RXIDLE) { printf("%s: receive ring overrun\n", sc->sc_dev.dv_xname); /* Get the receive process going again. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RXE); } } if (isr & (ISR_TXURN|ISR_TXDESC)) { /* Sweep up transmit descriptors. */ sip_txintr(sc); if (isr & ISR_TXURN) { u_int32_t thresh; printf("%s: transmit FIFO underrun", sc->sc_dev.dv_xname); thresh = sc->sc_tx_drain_thresh + 1; if (thresh <= TXCFG_DRTH && (thresh * 32) <= (SIP_TXFIFO_SIZE - (sc->sc_tx_fill_thresh * 32))) { printf("; increasing Tx drain " "threshold to %u bytes\n", thresh * 32); sc->sc_tx_drain_thresh = thresh; (void) sip_init(ifp); } else { (void) sip_init(ifp); printf("\n"); } } } if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) { if (isr & ISR_PAUSE_ST) { sc->sc_flags |= SIPF_PAUSED; ifp->if_flags |= IFF_OACTIVE; } if (isr & ISR_PAUSE_END) { sc->sc_flags &= ~SIPF_PAUSED; ifp->if_flags &= ~IFF_OACTIVE; } } if (isr & ISR_HIBERR) { #define PRINTERR(bit, str) \ if (isr & (bit)) \ printf("%s: %s\n", sc->sc_dev.dv_xname, str) PRINTERR(ISR_DPERR, "parity error"); PRINTERR(ISR_SSERR, "system error"); PRINTERR(ISR_RMABT, "master abort"); PRINTERR(ISR_RTABT, "target abort"); PRINTERR(ISR_RXSOVR, "receive status FIFO overrun"); (void) sip_init(ifp); #undef PRINTERR } } /* Try to get more packets going. */ sip_start(ifp); return (handled); } /* * sip_txintr: * * Helper; handle transmit interrupts. */ void sip_txintr(sc) struct sip_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct sip_txsoft *txs; u_int32_t cmdsts; if ((sc->sc_flags & SIPF_PAUSED) == 0) ifp->if_flags &= ~IFF_OACTIVE; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { SIP_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdsts = le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); if (cmdsts & CMDSTS_OWN) break; SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q); sc->sc_txfree += txs->txs_dmamap->dm_nsegs; bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); /* * Check for errors and collisions. */ if (cmdsts & (CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) { if (ifp->if_flags & IFF_DEBUG) { if (CMDSTS_Tx_ED) printf("%s: excessive deferral\n", sc->sc_dev.dv_xname); if (CMDSTS_Tx_EC) { printf("%s: excessive collisions\n", sc->sc_dev.dv_xname); ifp->if_collisions += 16; } } } else { /* Packet was transmitted successfully. */ ifp->if_opackets++; ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts); } } /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (txs == NULL) ifp->if_timer = 0; } /* * sip_rxintr: * * Helper; handle receive interrupts. */ void sip_rxintr(sc) struct sip_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct sip_rxsoft *rxs; struct mbuf *m; u_int32_t cmdsts; int i, len; for (i = sc->sc_rxptr;; i = SIP_NEXTRX(i)) { rxs = &sc->sc_rxsoft[i]; SIP_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cmdsts = le32toh(sc->sc_rxdescs[i].sipd_cmdsts); /* * NOTE: OWN is set if owned by _consumer_. We're the * consumer of the receive ring, so if the bit is clear, * we have processed all of the packets. */ if ((cmdsts & CMDSTS_OWN) == 0) { /* * We have processed all of the receive buffers. */ break; } /* * If any collisions were seen on the wire, count one. */ if (cmdsts & CMDSTS_Rx_COL) ifp->if_collisions++; /* * If an error occurred, update stats, clear the status * word, and leave the packet buffer in place. It will * simply be reused the next time the ring comes around. */ if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_LONG|CMDSTS_Rx_RUNT| CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) { ifp->if_ierrors++; if ((cmdsts & CMDSTS_Rx_RXA) != 0 && (cmdsts & CMDSTS_Rx_RXO) == 0) { /* Receive overrun handled elsewhere. */ printf("%s: receive descriptor error\n", sc->sc_dev.dv_xname); } #define PRINTERR(bit, str) \ if (cmdsts & (bit)) \ printf("%s: %s\n", sc->sc_dev.dv_xname, str) PRINTERR(CMDSTS_Rx_LONG, "packet too long"); PRINTERR(CMDSTS_Rx_RUNT, "runt packet"); PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error"); PRINTERR(CMDSTS_Rx_CRCE, "CRC error"); PRINTERR(CMDSTS_Rx_FAE, "frame alignment error"); #undef PRINTERR SIP_INIT_RXDESC(sc, i); continue; } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * No errors; receive the packet. Note, the SiS 900 * includes the CRC with every packet. */ len = CMDSTS_SIZE(cmdsts); #ifdef __NO_STRICT_ALIGNMENT /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. * * Otherwise, we add a new buffer to the receive * chain. If this fails, we drop the packet and * recycle the old buffer. */ if (sip_copy_small != 0 && len <= MHLEN) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) goto dropit; memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len); SIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); } else { m = rxs->rxs_mbuf; if (sip_add_rxbuf(sc, i) != 0) { dropit: ifp->if_ierrors++; SIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } } #else /* * The SiS 900's receive buffers must be 4-byte aligned. * But this means that the data after the Ethernet header * is misaligned. We must allocate a new buffer and * copy the data, shifted forward 2 bytes. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { dropit: ifp->if_ierrors++; SIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } if (len > (MHLEN - 2)) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); goto dropit; } } m->m_data += 2; /* * Note that we use clusters for incoming frames, so the * buffer is virtually contiguous. */ memcpy(mtod(m, caddr_t), mtod(rxs->rxs_mbuf, caddr_t), len); /* Allow the receive descriptor to continue using its mbuf. */ SIP_INIT_RXDESC(sc, i); bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); #endif /* __NO_STRICT_ALIGNMENT */ ifp->if_ipackets++; m->m_flags |= M_HASFCS; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; #if NBPFILTER > 0 /* * Pass this up to any BPF listeners, but only * pass if up the stack if it's for us. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* NBPFILTER > 0 */ /* Pass it on. */ (*ifp->if_input)(ifp, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; } /* * sip_tick: * * One second timer, used to tick the MII. */ void sip_tick(arg) void *arg; { struct sip_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc); } /* * sip_reset: * * Perform a soft reset on the SiS 900. */ void sip_reset(sc) struct sip_softc *sc; { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; int i; bus_space_write_4(st, sh, SIP_CR, CR_RST); for (i = 0; i < SIP_TIMEOUT; i++) { if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0) break; delay(2); } if (i == SIP_TIMEOUT) printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); delay(1000); } /* * sip_init: [ ifnet interface function ] * * Initialize the interface. Must be called at splnet(). */ int sip_init(ifp) struct ifnet *ifp; { struct sip_softc *sc = ifp->if_softc; bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct sip_txsoft *txs; struct sip_rxsoft *rxs; struct sip_desc *sipd; u_int32_t cfg; int i, error = 0; /* * Cancel any pending I/O. */ sip_stop(ifp, 0); /* * Reset the chip to a known state. */ sip_reset(sc); if ( sc->sc_model->sip_vendor == PCI_VENDOR_NS && sc->sc_model->sip_product == PCI_PRODUCT_NS_DP83815) { /* * DP83815 manual, page 78: * 4.4 Recommended Registers Configuration * For optimum performance of the DP83815, version noted * as DP83815CVNG (SRR = 203h), the listed register * modifications must be followed in sequence... * * It's not clear if this should be 302h or 203h because that * chip name is listed as SRR 302h in the description of the * SRR register. However, my revision 302h DP83815 on the * Netgear FA311 purchased in 02/2001 needs these settings * to avoid tons of errors in AcceptPerfectMatch (non- * IFF_PROMISC) mode. I do not know if other revisions need * this set or not. [briggs -- 09 March 2001] * * Note that only the low-order 12 bits of 0xe4 are documented * and that this sets reserved bits in that register. */ cfg = bus_space_read_4(st, sh, SIP_NS_SRR); if (cfg == 0x302) { bus_space_write_4(st, sh, 0x00cc, 0x0001); bus_space_write_4(st, sh, 0x00e4, 0x189C); bus_space_write_4(st, sh, 0x00fc, 0x0000); bus_space_write_4(st, sh, 0x00f4, 0x5040); bus_space_write_4(st, sh, 0x00f8, 0x008c); } } /* * Initialize the transmit descriptor ring. */ for (i = 0; i < SIP_NTXDESC; i++) { sipd = &sc->sc_txdescs[i]; memset(sipd, 0, sizeof(struct sip_desc)); sipd->sipd_link = htole32(SIP_CDTXADDR(sc, SIP_NEXTTX(i))); } SIP_CDTXSYNC(sc, 0, SIP_NTXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_txfree = SIP_NTXDESC; sc->sc_txnext = 0; /* * Initialize the transmit job descriptors. */ SIMPLEQ_INIT(&sc->sc_txfreeq); SIMPLEQ_INIT(&sc->sc_txdirtyq); for (i = 0; i < SIP_TXQUEUELEN; i++) { txs = &sc->sc_txsoft[i]; txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < SIP_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf == NULL) { if ((error = sip_add_rxbuf(sc, i)) != 0) { printf("%s: unable to allocate or map rx " "buffer %d, error = %d\n", sc->sc_dev.dv_xname, i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ sip_rxdrain(sc); goto out; } } } sc->sc_rxptr = 0; /* * Initialize the configuration register: aggressive PCI * bus request algorithm, default backoff, default OW timer, * default parity error detection. */ cfg = 0; #if BYTE_ORDER == BIG_ENDIAN /* * ...descriptors in big-endian mode. */ #if 0 /* "Big endian mode" does not work properly. */ cfg |= CFG_BEM; #endif #endif bus_space_write_4(st, sh, SIP_CFG, cfg); /* * Initialize the transmit fill and drain thresholds if * we have never done so. */ if (sc->sc_tx_fill_thresh == 0) { /* * XXX This value should be tuned. This is the * minimum (32 bytes), and we may be able to * improve performance by increasing it. */ sc->sc_tx_fill_thresh = 1; } if (sc->sc_tx_drain_thresh == 0) { /* * Start at a drain threshold of 512 bytes. We will * increase it if a DMA underrun occurs. * * XXX The minimum value of this variable should be * tuned. We may be able to improve performance * by starting with a lower value. That, however, * may trash the first few outgoing packets if the * PCI bus is saturated. */ sc->sc_tx_drain_thresh = 512 / 32; } /* * Initialize the prototype TXCFG register. */ sc->sc_txcfg = TXCFG_ATP | TXCFG_MXDMA_512 | (sc->sc_tx_fill_thresh << TXCFG_FLTH_SHIFT) | sc->sc_tx_drain_thresh; bus_space_write_4(st, sh, SIP_TXCFG, sc->sc_txcfg); /* * Initialize the receive drain threshold if we have never * done so. */ if (sc->sc_rx_drain_thresh == 0) { /* * XXX This value should be tuned. This is set to the * maximum of 248 bytes, and we may be able to improve * performance by decreasing it (although we should never * set this value lower than 2; 14 bytes are required to * filter the packet). */ sc->sc_rx_drain_thresh = RXCFG_DRTH >> RXCFG_DRTH_SHIFT; } /* * Initialize the prototype RXCFG register. */ sc->sc_rxcfg = RXCFG_MXDMA_512 | (sc->sc_rx_drain_thresh << RXCFG_DRTH_SHIFT); bus_space_write_4(st, sh, SIP_RXCFG, sc->sc_rxcfg); /* Set up the receive filter. */ (*sc->sc_model->sip_variant->sipv_set_filter)(sc); /* * Give the transmit and receive rings to the chip. */ bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext)); bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr)); /* * Initialize the interrupt mask. */ sc->sc_imr = ISR_DPERR|ISR_SSERR|ISR_RMABT|ISR_RTABT|ISR_RXSOVR| ISR_TXURN|ISR_TXDESC|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC; bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr); /* * Set the current media. Do this after initializing the prototype * IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow * control. */ mii_mediachg(&sc->sc_mii); /* * Enable interrupts. */ bus_space_write_4(st, sh, SIP_IER, IER_IE); /* * Start the transmit and receive processes. */ bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE); /* * Start the one second MII clock. */ callout_reset(&sc->sc_tick_ch, hz, sip_tick, sc); /* * ...all done! */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; out: if (error) printf("%s: interface not running\n", sc->sc_dev.dv_xname); return (error); } /* * sip_drain: * * Drain the receive queue. */ void sip_rxdrain(sc) struct sip_softc *sc; { struct sip_rxsoft *rxs; int i; for (i = 0; i < SIP_NRXDESC; i++) { rxs = &sc->sc_rxsoft[i]; if (rxs->rxs_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); m_freem(rxs->rxs_mbuf); rxs->rxs_mbuf = NULL; } } } /* * sip_stop: [ ifnet interface function ] * * Stop transmission on the interface. */ void sip_stop(ifp, disable) struct ifnet *ifp; int disable; { struct sip_softc *sc = ifp->if_softc; bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct sip_txsoft *txs; u_int32_t cmdsts = 0; /* DEBUG */ /* * Stop the one second clock. */ callout_stop(&sc->sc_tick_ch); /* Down the MII. */ mii_down(&sc->sc_mii); /* * Disable interrupts. */ bus_space_write_4(st, sh, SIP_IER, 0); /* * Stop receiver and transmitter. */ bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD); /* * Release any queued transmit buffers. */ while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { if ((ifp->if_flags & IFF_DEBUG) != 0 && SIMPLEQ_NEXT(txs, txs_q) == NULL && (le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts) & CMDSTS_INTR) == 0) printf("%s: sip_stop: last descriptor does not " "have INTR bit set\n", sc->sc_dev.dv_xname); SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs, txs_q); #ifdef DIAGNOSTIC if (txs->txs_mbuf == NULL) { printf("%s: dirty txsoft with no mbuf chain\n", sc->sc_dev.dv_xname); panic("sip_stop"); } #endif cmdsts |= /* DEBUG */ le32toh(sc->sc_txdescs[txs->txs_lastdesc].sipd_cmdsts); bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); m_freem(txs->txs_mbuf); txs->txs_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); } if (disable) sip_rxdrain(sc); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; if ((ifp->if_flags & IFF_DEBUG) != 0 && (cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != SIP_NTXDESC) printf("%s: sip_stop: no INTR bits set in dirty tx " "descriptors\n", sc->sc_dev.dv_xname); } /* * sip_read_eeprom: * * Read data from the serial EEPROM. */ void sip_read_eeprom(sc, word, wordcnt, data) struct sip_softc *sc; int word, wordcnt; u_int16_t *data; { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; u_int16_t reg; int i, x; for (i = 0; i < wordcnt; i++) { /* Send CHIP SELECT. */ reg = EROMAR_EECS; bus_space_write_4(st, sh, SIP_EROMAR, reg); /* Shift in the READ opcode. */ for (x = 3; x > 0; x--) { if (SIP_EEPROM_OPC_READ & (1 << (x - 1))) reg |= EROMAR_EEDI; else reg &= ~EROMAR_EEDI; bus_space_write_4(st, sh, SIP_EROMAR, reg); bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Shift in address. */ for (x = 6; x > 0; x--) { if ((word + i) & (1 << (x - 1))) reg |= EROMAR_EEDI; else reg &= ~EROMAR_EEDI; bus_space_write_4(st, sh, SIP_EROMAR, reg); bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Shift out data. */ reg = EROMAR_EECS; data[i] = 0; for (x = 16; x > 0; x--) { bus_space_write_4(st, sh, SIP_EROMAR, reg | EROMAR_EESK); delay(4); if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO) data[i] |= (1 << (x - 1)); bus_space_write_4(st, sh, SIP_EROMAR, reg); delay(4); } /* Clear CHIP SELECT. */ bus_space_write_4(st, sh, SIP_EROMAR, 0); delay(4); } } /* * sip_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int sip_add_rxbuf(sc, idx) struct sip_softc *sc; int idx; { struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } if (rxs->rxs_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); rxs->rxs_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: can't load rx DMA map %d, error = %d\n", sc->sc_dev.dv_xname, idx, error); panic("sip_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); SIP_INIT_RXDESC(sc, idx); return (0); } /* * sip_sis900_set_filter: * * Set up the receive filter. */ void sip_sis900_set_filter(sc) struct sip_softc *sc; { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; u_int8_t *cp; struct ether_multistep step; u_int32_t crc, mchash[8]; /* * Initialize the prototype RFCR. */ sc->sc_rfcr = RFCR_RFEN; if (ifp->if_flags & IFF_BROADCAST) sc->sc_rfcr |= RFCR_AAB; if (ifp->if_flags & IFF_PROMISC) { sc->sc_rfcr |= RFCR_AAP; goto allmulti; } /* * Set up the multicast address filter by passing all multicast * addresses through a CRC generator, and then using the high-order * 6 bits as an index into the 128 bit multicast hash table (only * the lower 16 bits of each 32 bit multicast hash register are * valid). The high order bits select the register, while the * rest of the bits select the bit within the register. */ memset(mchash, 0, sizeof(mchash)); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 7 most significant bits. */ crc >>= 25; /* Set the corresponding bit in the hash table. */ mchash[crc >> 4] |= 1 << (crc & 0xf); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->sc_rfcr |= RFCR_AAM; setit: #define FILTER_EMIT(addr, data) \ bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ delay(1); \ bus_space_write_4(st, sh, SIP_RFDR, (data)); \ delay(1) /* * Disable receive filter, and program the node address. */ cp = LLADDR(ifp->if_sadl); FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]); FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]); FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]); if ((ifp->if_flags & IFF_ALLMULTI) == 0) { /* * Program the multicast hash table. */ FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]); FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]); FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]); FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]); FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]); FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]); FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]); FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]); } #undef FILTER_EMIT /* * Re-enable the receiver filter. */ bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); } /* * sip_dp83815_set_filter: * * Set up the receive filter. */ void sip_dp83815_set_filter(sc) struct sip_softc *sc; { bus_space_tag_t st = sc->sc_st; bus_space_handle_t sh = sc->sc_sh; struct ethercom *ec = &sc->sc_ethercom; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct ether_multi *enm; u_int8_t *cp; struct ether_multistep step; u_int32_t crc, mchash[16]; int i; /* * Initialize the prototype RFCR. * Enable the receive filter, and accept ARP * and on Perfect (destination address) Match * If IFF_BROADCAST, also accept all broadcast packets. * If IFF_PROMISC, accept all unicast packets (and later, set * IFF_ALLMULTI and accept all multicast, too). */ sc->sc_rfcr = RFCR_RFEN | RFCR_AARP | RFCR_APM; if (ifp->if_flags & IFF_BROADCAST) sc->sc_rfcr |= RFCR_AAB; if (ifp->if_flags & IFF_PROMISC) { sc->sc_rfcr |= RFCR_AAP; goto allmulti; } /* * Set up the multicast address filter by passing all multicast * addresses through a CRC generator, and then using the high-order * 9 bits as an index into the 512 bit multicast hash table. The * high-order bits select the slot, while the rest of the bits * select the bit within the slot. Note that only the low 16-bits * of each filter word are used, and there are 64 filter words. */ memset(mchash, 0, sizeof(mchash)); ifp->if_flags &= ~IFF_ALLMULTI; ETHER_FIRST_MULTI(step, ec, enm); if (enm != NULL) { while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ goto allmulti; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 9 most significant bits. */ crc >>= 23; /* Set the corresponding bit in the hash table. */ mchash[crc >> 5] |= 1 << (crc & 0x1f); ETHER_NEXT_MULTI(step, enm); } sc->sc_rfcr |= RFCR_MHEN; } goto setit; allmulti: ifp->if_flags |= IFF_ALLMULTI; sc->sc_rfcr |= RFCR_AAM; setit: #define FILTER_EMIT(addr, data) \ bus_space_write_4(st, sh, SIP_RFCR, (addr)); \ delay(1); \ bus_space_write_4(st, sh, SIP_RFDR, (data)); \ delay(1); /* * Disable receive filter, and program the node address. */ cp = LLADDR(ifp->if_sadl); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]); FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]); if ((ifp->if_flags & IFF_ALLMULTI) == 0) { /* * Program the multicast hash table. */ for (i = 0; i < 16; i++) { FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2), mchash[i] & 0xffff); FILTER_EMIT(RFCR_NS_RFADDR_FILTMEM + (i * 2) + 2, (mchash[i] >> 16) & 0xffff); } } #undef FILTER_EMIT /* * Re-enable the receiver filter. */ bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr); } /* * sip_sis900_mii_readreg: [mii interface function] * * Read a PHY register on the MII. */ int sip_sis900_mii_readreg(self, phy, reg) struct device *self; int phy, reg; { struct sip_softc *sc = (struct sip_softc *) self; u_int32_t enphy; /* * The SiS 900 has only an internal PHY on the MII. Only allow * MII address 0. */ if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) return (0); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | ENPHY_RWCMD | ENPHY_ACCESS); do { enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); } while (enphy & ENPHY_ACCESS); return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT); } /* * sip_sis900_mii_writereg: [mii interface function] * * Write a PHY register on the MII. */ void sip_sis900_mii_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct sip_softc *sc = (struct sip_softc *) self; u_int32_t enphy; /* * The SiS 900 has only an internal PHY on the MII. Only allow * MII address 0. */ if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0) return; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY, (val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS); do { enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY); } while (enphy & ENPHY_ACCESS); } /* * sip_sis900_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ void sip_sis900_mii_statchg(self) struct device *self; { struct sip_softc *sc = (struct sip_softc *) self; u_int32_t flowctl; /* * Update TXCFG for full-duplex operation. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); else sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); /* * Update RXCFG for full-duplex or loopback. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) sc->sc_rxcfg |= RXCFG_ATX; else sc->sc_rxcfg &= ~RXCFG_ATX; /* * Update IMR for use of 802.3x flow control. */ if ((sc->sc_mii.mii_media_active & IFM_FLOW) != 0) { sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST); flowctl = FLOWCTL_FLOWEN; } else { sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST); flowctl = 0; } bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl); } /* * sip_dp83815_mii_readreg: [mii interface function] * * Read a PHY register on the MII. */ int sip_dp83815_mii_readreg(self, phy, reg) struct device *self; int phy, reg; { struct sip_softc *sc = (struct sip_softc *) self; u_int32_t val; /* * The DP83815 only has an internal PHY. Only allow * MII address 0. */ if (phy != 0) return (0); /* * Apparently, after a reset, the DP83815 can take a while * to respond. During this recovery period, the BMSR returns * a value of 0. Catch this -- it's not supposed to happen * (the BMSR has some hardcoded-to-1 bits), and wait for the * PHY to come back to life. * * This works out because the BMSR is the first register * read during the PHY probe process. */ do { val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg)); } while (reg == MII_BMSR && val == 0); return (val & 0xffff); } /* * sip_dp83815_mii_writereg: [mii interface function] * * Write a PHY register to the MII. */ void sip_dp83815_mii_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct sip_softc *sc = (struct sip_softc *) self; /* * The DP83815 only has an internal PHY. Only allow * MII address 0. */ if (phy != 0) return; bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val); } /* * sip_dp83815_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ void sip_dp83815_mii_statchg(self) struct device *self; { struct sip_softc *sc = (struct sip_softc *) self; /* * Update TXCFG for full-duplex operation. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0) sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI); else sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI); /* * Update RXCFG for full-duplex or loopback. */ if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 || IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP) sc->sc_rxcfg |= RXCFG_ATX; else sc->sc_rxcfg &= ~RXCFG_ATX; /* * XXX 802.3x flow control. */ bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXCFG, sc->sc_txcfg); bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RXCFG, sc->sc_rxcfg); } void sip_sis900_read_macaddr(sc, enaddr) struct sip_softc *sc; u_int8_t *enaddr; { u_int16_t myea[ETHER_ADDR_LEN / 2]; sip_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1, sizeof(myea) / sizeof(myea[0]), myea); enaddr[0] = myea[0] & 0xff; enaddr[1] = myea[0] >> 8; enaddr[2] = myea[1] & 0xff; enaddr[3] = myea[1] >> 8; enaddr[4] = myea[2] & 0xff; enaddr[5] = myea[2] >> 8; } static u_char bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}; #define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf]) void sip_dp83815_read_macaddr(sc, enaddr) struct sip_softc *sc; u_int8_t *enaddr; { u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea; u_int8_t cksum, *e, match; int i; sip_read_eeprom(sc, 0, sizeof(eeprom_data) / sizeof(eeprom_data[0]), eeprom_data); match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8; match = ~(match - 1); cksum = 0x55; e = (u_int8_t *) eeprom_data; for (i=0 ; isc_dev.dv_xname, cksum, match); } /* * Unrolled because it makes slightly more sense this way. * The DP83815 stores the MAC address in bit 0 of word 6 * through bit 15 of word 8. */ ea = &eeprom_data[6]; enaddr[0] = ((*ea & 0x1) << 7); ea++; enaddr[0] |= ((*ea & 0xFE00) >> 9); enaddr[1] = ((*ea & 0x1FE) >> 1); enaddr[2] = ((*ea & 0x1) << 7); ea++; enaddr[2] |= ((*ea & 0xFE00) >> 9); enaddr[3] = ((*ea & 0x1FE) >> 1); enaddr[4] = ((*ea & 0x1) << 7); ea++; enaddr[4] |= ((*ea & 0xFE00) >> 9); enaddr[5] = ((*ea & 0x1FE) >> 1); /* * In case that's not weird enough, we also need to reverse * the bits in each byte. This all actually makes more sense * if you think about the EEPROM storage as an array of bits * being shifted into bytes, but that's not how we're looking * at it here... */ for (i=0 ; i<6 ; i++) enaddr[i] = bbr(enaddr[i]); } /* * sip_mediastatus: [ifmedia interface function] * * Get the current interface media status. */ void sip_mediastatus(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sip_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } /* * sip_mediachange: [ifmedia interface function] * * Set hardware to newly-selected media. */ int sip_mediachange(ifp) struct ifnet *ifp; { struct sip_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->sc_mii); return (0); }