/* $NetBSD: bus.h,v 1.32 2002/05/07 06:45:22 uwe Exp $ */ /*- * Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1996 Charles M. Hannum. All rights reserved. * Copyright (c) 1996 Christopher G. Demetriou. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Christopher G. Demetriou * for the NetBSD Project. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _SPARC_BUS_H_ #define _SPARC_BUS_H_ #define SPARC_BUS_SPACE 0 /* * Bus address and size types */ typedef u_long bus_space_handle_t; typedef u_int64_t bus_addr_t; typedef u_long bus_size_t; /* bus_addr_t is extended to 64-bits and has the iospace encoded in it */ #define BUS_ADDR_IOSPACE(x) ((x)>>32) #define BUS_ADDR_PADDR(x) ((x)&0xffffffff) #define BUS_ADDR(io, pa) \ ((((u_int64_t)(u_int32_t)(io))<<32) | (u_int32_t)(pa)) /* * Access methods for bus resources and address space. */ typedef struct sparc_bus_space_tag *bus_space_tag_t; struct sparc_bus_space_tag { void *cookie; bus_space_tag_t parent; int (*sparc_bus_map) __P(( bus_space_tag_t, bus_addr_t, bus_size_t, int, /*flags*/ vaddr_t, /*preferred vaddr*/ bus_space_handle_t *)); int (*sparc_bus_unmap) __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t)); int (*sparc_bus_subregion) __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t, /*offset*/ bus_size_t, /*size*/ bus_space_handle_t *)); void (*sparc_bus_barrier) __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t, /*offset*/ bus_size_t, /*size*/ int)); /*flags*/ paddr_t (*sparc_bus_mmap) __P(( bus_space_tag_t, bus_addr_t, off_t, int, /*prot*/ int)); /*flags*/ void *(*sparc_intr_establish) __P(( bus_space_tag_t, int, /*bus-specific intr*/ int, /*device class level, see machine/intr.h*/ int, /*flags*/ int (*) __P((void *)), /*handler*/ void *)); /*handler arg*/ }; #if 0 /* * The following macro could be used to generate the bus_space*() functions * but it uses a gcc extension and is ANSI-only. #define PROTO_bus_space_xxx __P((bus_space_tag_t t, ...)) #define RETURNTYPE_bus_space_xxx void * #define BUSFUN(name, returntype, t, args...) \ __inline__ RETURNTYPE_##name \ bus_##name PROTO_##name \ { \ while (t->sparc_##name == NULL) \ t = t->parent; \ return (*(t)->sparc_##name)(t, args); \ } */ #endif /* * Bus space function prototypes. * In bus_space_map2(), supply a special virtual address only if you * get it from ../sparc/vaddrs.h. */ static int bus_space_map __P(( bus_space_tag_t, bus_addr_t, bus_size_t, int, /*flags*/ bus_space_handle_t *)); static int bus_space_map2 __P(( bus_space_tag_t, bus_addr_t, bus_size_t, int, /*flags*/ vaddr_t, /*preferred vaddr*/ bus_space_handle_t *)); static int bus_space_unmap __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t)); static int bus_space_subregion __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *)); static void bus_space_barrier __P(( bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_size_t, int)); static paddr_t bus_space_mmap __P(( bus_space_tag_t, bus_addr_t, /**/ off_t, int, /*prot*/ int)); /*flags*/ static void *bus_intr_establish __P(( bus_space_tag_t, int, /*bus-specific intr*/ int, /*device class level, see machine/intr.h*/ int, /*flags*/ int (*) __P((void *)), /*handler*/ void *)); /*handler arg*/ /* This macro finds the first "upstream" implementation of method `f' */ #define _BS_CALL(t,f) \ while (t->f == NULL) \ t = t->parent; \ return (*(t)->f) static __inline__ int bus_space_map(t, a, s, f, hp) bus_space_tag_t t; bus_addr_t a; bus_size_t s; int f; bus_space_handle_t *hp; { _BS_CALL(t, sparc_bus_map)(t, a, s, f, (vaddr_t)0, hp); } static __inline__ int bus_space_map2(t, a, s, f, v, hp) bus_space_tag_t t; bus_addr_t a; bus_size_t s; int f; vaddr_t v; bus_space_handle_t *hp; { _BS_CALL(t, sparc_bus_map)(t, a, s, f, v, hp); } static __inline__ int bus_space_unmap(t, h, s) bus_space_tag_t t; bus_space_handle_t h; bus_size_t s; { _BS_CALL(t, sparc_bus_unmap)(t, h, s); } static __inline__ int bus_space_subregion(t, h, o, s, hp) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; bus_size_t s; bus_space_handle_t *hp; { _BS_CALL(t, sparc_bus_subregion)(t, h, o, s, hp); } static __inline__ paddr_t bus_space_mmap(t, a, o, p, f) bus_space_tag_t t; bus_addr_t a; off_t o; int p; int f; { _BS_CALL(t, sparc_bus_mmap)(t, a, o, p, f); } static __inline__ void * bus_intr_establish(t, p, l, f, h, a) bus_space_tag_t t; int p; int l; int f; int (*h)__P((void *)); void *a; { _BS_CALL(t, sparc_intr_establish)(t, p, l, f, h, a); } static __inline__ void bus_space_barrier(t, h, o, s, f) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o; bus_size_t s; int f; { _BS_CALL(t, sparc_bus_barrier)(t, h, o, s, f); } #if 0 int bus_space_alloc __P((bus_space_tag_t t, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp)); void bus_space_free __P((bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size)); #endif #define bus_space_vaddr(t, h) ((void)(t), (void *)(h)) /* flags for bus space map functions */ #define BUS_SPACE_MAP_CACHEABLE 0x0001 #define BUS_SPACE_MAP_LINEAR 0x0002 #define BUS_SPACE_MAP_PREFETCHABLE 0x0004 #define BUS_SPACE_MAP_BUS1 0x0100 /* placeholders for bus functions... */ #define BUS_SPACE_MAP_BUS2 0x0200 #define BUS_SPACE_MAP_BUS3 0x0400 #define BUS_SPACE_MAP_BUS4 0x0800 /* flags for intr_establish() */ #define BUS_INTR_ESTABLISH_FASTTRAP 1 #define BUS_INTR_ESTABLISH_SOFTINTR 2 /* flags for bus_space_barrier() */ #define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */ #define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */ /* * Device space probe assistant. * The optional callback function's arguments are: * the temporary virtual address * the passed `arg' argument */ int bus_space_probe __P(( bus_space_tag_t, bus_addr_t, bus_size_t, /* probe size */ size_t, /* offset */ int, /* flags */ int (*) __P((void *, void *)), /* callback function */ void *)); /* callback arg */ /* * u_intN_t bus_space_read_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset)); * * Read a 1, 2, 4, or 8 byte quantity from bus space * described by tag/handle/offset. */ #define bus_space_read_1(t, h, o) \ ((void)(t), *(volatile u_int8_t *)((h) + (o))) #define bus_space_read_2(t, h, o) \ ((void)(t), *(volatile u_int16_t *)((h) + (o))) #define bus_space_read_4(t, h, o) \ ((void)(t), *(volatile u_int32_t *)((h) + (o))) #define bus_space_read_8(t, h, o) \ ((void)(t), *(volatile u_int64_t *)((h) + (o))) #define bus_space_read_stream_1 bus_space_read_1 #define bus_space_read_stream_2 bus_space_read_2 #define bus_space_read_stream_4 bus_space_read_4 #define bus_space_read_stream_8 bus_space_read_8 /* * void bus_space_write_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t value)); * * Write the 1, 2, 4, or 8 byte value `value' to bus space * described by tag/handle/offset. */ #define bus_space_write_1(t, h, o, v) do { \ ((void)(t), (void)(*(volatile u_int8_t *)((h) + (o)) = (v))); \ } while (/* CONSTCOND */ 0) #define bus_space_write_2(t, h, o, v) do { \ ((void)(t), (void)(*(volatile u_int16_t *)((h) + (o)) = (v))); \ } while (/* CONSTCOND */ 0) #define bus_space_write_4(t, h, o, v) do { \ ((void)(t), (void)(*(volatile u_int32_t *)((h) + (o)) = (v))); \ } while (/* CONSTCOND */ 0) #define bus_space_write_8(t, h, o, v) do { \ ((void)(t), (void)(*(volatile u_int64_t *)((h) + (o)) = (v))); \ } while (/* CONSTCOND */ 0) #define bus_space_write_stream_1 bus_space_write_1 #define bus_space_write_stream_2 bus_space_write_2 #define bus_space_write_stream_4 bus_space_write_4 #define bus_space_write_stream_8 bus_space_write_8 /* * void bus_space_read_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * u_intN_t *addr, bus_size_t count)); * * Read `count' 1, 2, 4, or 8 byte quantities from bus space * described by tag/handle/offset and copy into buffer provided. */ static void bus_space_read_multi_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t *, bus_size_t)); static void bus_space_read_multi_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t)); static void bus_space_read_multi_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t)); static void bus_space_read_multi_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int64_t *, bus_size_t)); static __inline__ void bus_space_read_multi_1(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int8_t *a; { while (c-- > 0) *a++ = bus_space_read_1(t, h, o); } static __inline__ void bus_space_read_multi_2(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int16_t *a; { while (c-- > 0) *a++ = bus_space_read_2(t, h, o); } static __inline__ void bus_space_read_multi_4(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int32_t *a; { while (c-- > 0) *a++ = bus_space_read_4(t, h, o); } static __inline__ void bus_space_read_multi_8(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int64_t *a; { while (c-- > 0) *a++ = bus_space_read_8(t, h, o); } #define bus_space_read_multi_stream_1 bus_space_read_multi_1 #define bus_space_read_multi_stream_2 bus_space_read_multi_2 #define bus_space_read_multi_stream_4 bus_space_read_multi_4 #define bus_space_read_multi_stream_8 bus_space_read_multi_8 /* * void bus_space_write_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, * const u_intN_t *addr, bus_size_t count)); * * Write `count' 1, 2, 4, or 8 byte quantities from the buffer * provided to bus space described by tag/handle/offset. */ static void bus_space_write_multi_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int8_t *, bus_size_t)); static void bus_space_write_multi_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t *, bus_size_t)); static void bus_space_write_multi_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t *, bus_size_t)); static void bus_space_write_multi_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int64_t *, bus_size_t)); static __inline__ void bus_space_write_multi_1(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int8_t *a; { while (c-- > 0) bus_space_write_1(t, h, o, *a++); } static __inline__ void bus_space_write_multi_2(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int16_t *a; { while (c-- > 0) bus_space_write_2(t, h, o, *a++); } static __inline__ void bus_space_write_multi_4(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int32_t *a; { while (c-- > 0) bus_space_write_4(t, h, o, *a++); } static __inline__ void bus_space_write_multi_8(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int64_t *a; { while (c-- > 0) bus_space_write_8(t, h, o, *a++); } #define bus_space_write_multi_stream_1 bus_space_write_multi_1 #define bus_space_write_multi_stream_2 bus_space_write_multi_2 #define bus_space_write_multi_stream_4 bus_space_write_multi_4 #define bus_space_write_multi_stream_8 bus_space_write_multi_8 /* * void bus_space_set_multi_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t offset, u_intN_t val, * bus_size_t count)); * * Write the 1, 2, 4, or 8 byte value `val' to bus space described * by tag/handle/offset `count' times. */ static void bus_space_set_multi_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int8_t, bus_size_t)); static void bus_space_set_multi_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t, bus_size_t)); static void bus_space_set_multi_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t, bus_size_t)); static void bus_space_set_multi_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int64_t, bus_size_t)); static __inline__ void bus_space_set_multi_1(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int8_t v; { while (c-- > 0) bus_space_write_1(t, h, o, v); } static __inline__ void bus_space_set_multi_2(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int16_t v; { while (c-- > 0) bus_space_write_2(t, h, o, v); } static __inline__ void bus_space_set_multi_4(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int32_t v; { while (c-- > 0) bus_space_write_4(t, h, o, v); } static __inline__ void bus_space_set_multi_8(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int64_t v; { while (c-- > 0) bus_space_write_8(t, h, o, v); } /* * void bus_space_read_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t off, * u_intN_t *addr, bus_size_t count)); * */ static void bus_space_read_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int8_t *, bus_size_t)); static void bus_space_read_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int16_t *, bus_size_t)); static void bus_space_read_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int32_t *, bus_size_t)); static void bus_space_read_region_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, u_int64_t *, bus_size_t)); static __inline__ void bus_space_read_region_1(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int8_t *a; { for (; c; a++, c--, o++) *a = bus_space_read_1(t, h, o); } static __inline__ void bus_space_read_region_2(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int16_t *a; { for (; c; a++, c--, o+=2) *a = bus_space_read_2(t, h, o); } static __inline__ void bus_space_read_region_4(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int32_t *a; { for (; c; a++, c--, o+=4) *a = bus_space_read_4(t, h, o); } static __inline__ void bus_space_read_region_8(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; u_int64_t *a; { for (; c; a++, c--, o+=8) *a = bus_space_read_8(t, h, o); } /* * void bus_space_write_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t off, * u_intN_t *addr, bus_size_t count)); * */ static void bus_space_write_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int8_t *, bus_size_t)); static void bus_space_write_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t *, bus_size_t)); static void bus_space_write_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t *, bus_size_t)); static void bus_space_write_region_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int64_t *, bus_size_t)); static __inline__ void bus_space_write_region_1(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int8_t *a; { for (; c; a++, c--, o++) bus_space_write_1(t, h, o, *a); } static __inline__ void bus_space_write_region_2(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int16_t *a; { for (; c; a++, c--, o+=2) bus_space_write_2(t, h, o, *a); } static __inline__ void bus_space_write_region_4(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int32_t *a; { for (; c; a++, c--, o+=4) bus_space_write_4(t, h, o, *a); } static __inline__ void bus_space_write_region_8(t, h, o, a, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int64_t *a; { for (; c; a++, c--, o+=8) bus_space_write_8(t, h, o, *a); } /* * void bus_space_set_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh, bus_size_t off, * u_intN_t *addr, bus_size_t count)); * */ static void bus_space_set_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int8_t, bus_size_t)); static void bus_space_set_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int16_t, bus_size_t)); static void bus_space_set_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int32_t, bus_size_t)); static void bus_space_set_region_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, const u_int64_t, bus_size_t)); static __inline__ void bus_space_set_region_1(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int8_t v; { for (; c; c--, o++) bus_space_write_1(t, h, o, v); } static __inline__ void bus_space_set_region_2(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int16_t v; { for (; c; c--, o+=2) bus_space_write_2(t, h, o, v); } static __inline__ void bus_space_set_region_4(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int32_t v; { for (; c; c--, o+=4) bus_space_write_4(t, h, o, v); } static __inline__ void bus_space_set_region_8(t, h, o, v, c) bus_space_tag_t t; bus_space_handle_t h; bus_size_t o, c; const u_int64_t v; { for (; c; c--, o+=8) bus_space_write_8(t, h, o, v); } /* * void bus_space_copy_region_N __P((bus_space_tag_t tag, * bus_space_handle_t bsh1, bus_size_t off1, * bus_space_handle_t bsh2, bus_size_t off2, * bus_size_t count)); * * Copy `count' 1, 2, 4, or 8 byte values from bus space starting * at tag/bsh1/off1 to bus space starting at tag/bsh2/off2. */ static void bus_space_copy_region_1 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t)); static void bus_space_copy_region_2 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t)); static void bus_space_copy_region_4 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t)); static void bus_space_copy_region_8 __P((bus_space_tag_t, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t)); static __inline__ void bus_space_copy_region_1(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1, h2; bus_size_t o1, o2; bus_size_t c; { for (; c; c--, o1++, o2++) bus_space_write_1(t, h1, o1, bus_space_read_1(t, h2, o2)); } static __inline__ void bus_space_copy_region_2(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1, h2; bus_size_t o1, o2; bus_size_t c; { for (; c; c--, o1+=2, o2+=2) bus_space_write_2(t, h1, o1, bus_space_read_2(t, h2, o2)); } static __inline__ void bus_space_copy_region_4(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1, h2; bus_size_t o1, o2; bus_size_t c; { for (; c; c--, o1+=4, o2+=4) bus_space_write_4(t, h1, o1, bus_space_read_4(t, h2, o2)); } static __inline__ void bus_space_copy_region_8(t, h1, o1, h2, o2, c) bus_space_tag_t t; bus_space_handle_t h1, h2; bus_size_t o1, o2; bus_size_t c; { for (; c; c--, o1+=8, o2+=8) bus_space_write_8(t, h1, o1, bus_space_read_8(t, h2, o2)); } #define BUS_SPACE_ALIGNED_POINTER(p, t) ALIGNED_POINTER(p, t) /*--------------------------------*/ /* * Flags used in various bus DMA methods. */ #define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */ #define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */ #define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */ #define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */ #define BUS_DMA_STREAMING 0x008 /* hint: sequential, unidirectional */ #define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */ #define BUS_DMA_BUS2 0x020 #define BUS_DMA_BUS3 0x040 #define BUS_DMA_BUS4 0x080 #define BUS_DMA_READ 0x100 /* mapping is device -> memory only */ #define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */ /* For devices that have a 24-bit address space */ #define BUS_DMA_24BIT BUS_DMA_BUS1 /* Internal flag: current DVMA address is equal to the KVA buffer address */ #define _BUS_DMA_DIRECTMAP BUS_DMA_BUS2 /* Forwards needed by prototypes below. */ struct mbuf; struct uio; /* * Operations performed by bus_dmamap_sync(). */ #define BUS_DMASYNC_PREREAD 0x01 /* pre-read synchronization */ #define BUS_DMASYNC_POSTREAD 0x02 /* post-read synchronization */ #define BUS_DMASYNC_PREWRITE 0x04 /* pre-write synchronization */ #define BUS_DMASYNC_POSTWRITE 0x08 /* post-write synchronization */ typedef struct sparc_bus_dma_tag *bus_dma_tag_t; typedef struct sparc_bus_dmamap *bus_dmamap_t; /* * bus_dma_segment_t * * Describes a single contiguous DMA transaction. Values * are suitable for programming into DMA registers. */ struct sparc_bus_dma_segment { bus_addr_t ds_addr; /* DVMA address */ bus_size_t ds_len; /* length of transfer */ bus_size_t _ds_sgsize; /* size of allocated DVMA segment */ void *_ds_mlist; /* page list when dmamem_alloc'ed */ vaddr_t _ds_va; /* VA when dmamem_map'ed */ }; typedef struct sparc_bus_dma_segment bus_dma_segment_t; /* * bus_dma_tag_t * * A machine-dependent opaque type describing the implementation of * DMA for a given bus. */ struct sparc_bus_dma_tag { void *_cookie; /* cookie used in the guts */ /* * DMA mapping methods. */ int (*_dmamap_create) __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void (*_dmamap_destroy) __P((bus_dma_tag_t, bus_dmamap_t)); int (*_dmamap_load) __P((bus_dma_tag_t, bus_dmamap_t, void *, bus_size_t, struct proc *, int)); int (*_dmamap_load_mbuf) __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int (*_dmamap_load_uio) __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int (*_dmamap_load_raw) __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void (*_dmamap_unload) __P((bus_dma_tag_t, bus_dmamap_t)); void (*_dmamap_sync) __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); /* * DMA memory utility functions. */ int (*_dmamem_alloc) __P((bus_dma_tag_t, bus_size_t, bus_size_t, bus_size_t, bus_dma_segment_t *, int, int *, int)); void (*_dmamem_free) __P((bus_dma_tag_t, bus_dma_segment_t *, int)); int (*_dmamem_map) __P((bus_dma_tag_t, bus_dma_segment_t *, int, size_t, caddr_t *, int)); void (*_dmamem_unmap) __P((bus_dma_tag_t, caddr_t, size_t)); paddr_t (*_dmamem_mmap) __P((bus_dma_tag_t, bus_dma_segment_t *, int, off_t, int, int)); }; #define bus_dmamap_create(t, s, n, m, b, f, p) \ (*(t)->_dmamap_create)((t), (s), (n), (m), (b), (f), (p)) #define bus_dmamap_destroy(t, p) \ (*(t)->_dmamap_destroy)((t), (p)) #define bus_dmamap_load(t, m, b, s, p, f) \ (*(t)->_dmamap_load)((t), (m), (b), (s), (p), (f)) #define bus_dmamap_load_mbuf(t, m, b, f) \ (*(t)->_dmamap_load_mbuf)((t), (m), (b), (f)) #define bus_dmamap_load_uio(t, m, u, f) \ (*(t)->_dmamap_load_uio)((t), (m), (u), (f)) #define bus_dmamap_load_raw(t, m, sg, n, s, f) \ (*(t)->_dmamap_load_raw)((t), (m), (sg), (n), (s), (f)) #define bus_dmamap_unload(t, p) \ (*(t)->_dmamap_unload)((t), (p)) #define bus_dmamap_sync(t, p, o, l, ops) \ (void)((t)->_dmamap_sync ? \ (*(t)->_dmamap_sync)((t), (p), (o), (l), (ops)) : (void)0) #define bus_dmamem_alloc(t, s, a, b, sg, n, r, f) \ (*(t)->_dmamem_alloc)((t), (s), (a), (b), (sg), (n), (r), (f)) #define bus_dmamem_free(t, sg, n) \ (*(t)->_dmamem_free)((t), (sg), (n)) #define bus_dmamem_map(t, sg, n, s, k, f) \ (*(t)->_dmamem_map)((t), (sg), (n), (s), (k), (f)) #define bus_dmamem_unmap(t, k, s) \ (*(t)->_dmamem_unmap)((t), (k), (s)) #define bus_dmamem_mmap(t, sg, n, o, p, f) \ (*(t)->_dmamem_mmap)((t), (sg), (n), (o), (p), (f)) /* * bus_dmamap_t * * Describes a DMA mapping. */ struct sparc_bus_dmamap { /* * PRIVATE MEMBERS: not for use by machine-independent code. */ bus_size_t _dm_size; /* largest DMA transfer mappable */ int _dm_segcnt; /* number of segs this map can map */ bus_size_t _dm_maxsegsz; /* largest possible segment */ bus_size_t _dm_boundary; /* don't cross this */ int _dm_flags; /* misc. flags */ void *_dm_cookie; /* cookie for bus-specific functions */ u_long _dm_align; /* DVMA alignment; must be a multiple of the page size */ u_long _dm_ex_start; /* constraints on DVMA map */ u_long _dm_ex_end; /* allocations; used by the VME bus driver and by the IOMMU driver when mapping 24-bit devices */ /* * PUBLIC MEMBERS: these are used by machine-independent code. */ bus_size_t dm_mapsize; /* size of the mapping */ int dm_nsegs; /* # valid segments in mapping */ bus_dma_segment_t dm_segs[1]; /* segments; variable length */ }; #ifdef _SPARC_BUS_DMA_PRIVATE int _bus_dmamap_create __P((bus_dma_tag_t, bus_size_t, int, bus_size_t, bus_size_t, int, bus_dmamap_t *)); void _bus_dmamap_destroy __P((bus_dma_tag_t, bus_dmamap_t)); int _bus_dmamap_load_mbuf __P((bus_dma_tag_t, bus_dmamap_t, struct mbuf *, int)); int _bus_dmamap_load_uio __P((bus_dma_tag_t, bus_dmamap_t, struct uio *, int)); int _bus_dmamap_load_raw __P((bus_dma_tag_t, bus_dmamap_t, bus_dma_segment_t *, int, bus_size_t, int)); void _bus_dmamap_unload __P((bus_dma_tag_t, bus_dmamap_t)); void _bus_dmamap_sync __P((bus_dma_tag_t, bus_dmamap_t, bus_addr_t, bus_size_t, int)); int _bus_dmamem_alloc __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)); void _bus_dmamem_free __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs)); void _bus_dmamem_unmap __P((bus_dma_tag_t tag, caddr_t kva, size_t size)); paddr_t _bus_dmamem_mmap __P((bus_dma_tag_t tag, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags)); int _bus_dmamem_alloc_range __P((bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, vaddr_t low, vaddr_t high)); vaddr_t _bus_dma_valloc_skewed(size_t, u_long, u_long, u_long); #endif /* _SPARC_BUS_DMA_PRIVATE */ #endif /* _SPARC_BUS_H_ */