/* $NetBSD: keysock.c,v 1.61 2017/09/25 01:56:22 ozaki-r Exp $ */ /* $FreeBSD: src/sys/netipsec/keysock.c,v 1.3.2.1 2003/01/24 05:11:36 sam Exp $ */ /* $KAME: keysock.c,v 1.25 2001/08/13 20:07:41 itojun Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: keysock.c,v 1.61 2017/09/25 01:56:22 ozaki-r Exp $"); /* This code has derived from sys/net/rtsock.c on FreeBSD2.2.5 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct key_cb { int key_count; int any_count; }; static struct key_cb key_cb; static struct sockaddr key_dst = { .sa_len = 2, .sa_family = PF_KEY, }; static struct sockaddr key_src = { .sa_len = 2, .sa_family = PF_KEY, }; static const struct protosw keysw[]; static int key_sendup0(struct rawcb *, struct mbuf *, int, int); int key_registered_sb_max = (2048 * MHLEN); /* XXX arbitrary */ static kmutex_t *key_so_mtx; static struct rawcbhead key_rawcb; void key_init_so(void) { key_so_mtx = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); } static void key_pr_init(void) { LIST_INIT(&key_rawcb); } /* * key_output() */ static int key_output(struct mbuf *m, struct socket *so) { struct sadb_msg *msg; int len, error = 0; int s; KASSERT(m != NULL); { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_OUT_TOTAL]++; ps[PFKEY_STAT_OUT_BYTES] += m->m_pkthdr.len; PFKEY_STAT_PUTREF(); } len = m->m_pkthdr.len; if (len < sizeof(struct sadb_msg)) { PFKEY_STATINC(PFKEY_STAT_OUT_TOOSHORT); error = EINVAL; goto end; } if (m->m_len < sizeof(struct sadb_msg)) { if ((m = m_pullup(m, sizeof(struct sadb_msg))) == 0) { PFKEY_STATINC(PFKEY_STAT_OUT_NOMEM); error = ENOBUFS; goto end; } } KASSERT((m->m_flags & M_PKTHDR) != 0); if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) kdebug_mbuf(m); msg = mtod(m, struct sadb_msg *); PFKEY_STATINC(PFKEY_STAT_OUT_MSGTYPE + msg->sadb_msg_type); if (len != PFKEY_UNUNIT64(msg->sadb_msg_len)) { PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN); error = EINVAL; goto end; } /*XXX giant lock*/ s = splsoftnet(); error = key_parse(m, so); m = NULL; splx(s); end: if (m) m_freem(m); return error; } /* * send message to the socket. */ static int key_sendup0( struct rawcb *rp, struct mbuf *m, int promisc, int sbprio ) { int error; int ok; if (promisc) { struct sadb_msg *pmsg; M_PREPEND(m, sizeof(struct sadb_msg), M_DONTWAIT); if (m && m->m_len < sizeof(struct sadb_msg)) m = m_pullup(m, sizeof(struct sadb_msg)); if (!m) { PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); return ENOBUFS; } m->m_pkthdr.len += sizeof(*pmsg); pmsg = mtod(m, struct sadb_msg *); memset(pmsg, 0, sizeof(*pmsg)); pmsg->sadb_msg_version = PF_KEY_V2; pmsg->sadb_msg_type = SADB_X_PROMISC; pmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); /* pid and seq? */ PFKEY_STATINC(PFKEY_STAT_IN_MSGTYPE + pmsg->sadb_msg_type); } if (sbprio == 0) ok = sbappendaddr(&rp->rcb_socket->so_rcv, (struct sockaddr *)&key_src, m, NULL); else ok = sbappendaddrchain(&rp->rcb_socket->so_rcv, (struct sockaddr *)&key_src, m, sbprio); if (!ok) { log(LOG_WARNING, "%s: couldn't send PF_KEY message to the socket\n", __func__); PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); m_freem(m); error = ENOBUFS; rp->rcb_socket->so_rcv.sb_overflowed++; } else error = 0; sorwakeup(rp->rcb_socket); return error; } /* XXX this interface should be obsoleted. */ int key_sendup(struct socket *so, struct sadb_msg *msg, u_int len, int target) /*target of the resulting message*/ { struct mbuf *m, *n, *mprev; int tlen; KASSERT(so != NULL); KASSERT(msg != NULL); if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) { printf("key_sendup: \n"); kdebug_sadb(msg); } /* * we increment statistics here, just in case we have ENOBUFS * in this function. */ { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_IN_TOTAL]++; ps[PFKEY_STAT_IN_BYTES] += len; ps[PFKEY_STAT_IN_MSGTYPE + msg->sadb_msg_type]++; PFKEY_STAT_PUTREF(); } /* * Get mbuf chain whenever possible (not clusters), * to save socket buffer. We'll be generating many SADB_ACQUIRE * messages to listening key sockets. If we simply allocate clusters, * sbappendaddr() will raise ENOBUFS due to too little sbspace(). * sbspace() computes # of actual data bytes AND mbuf region. * * TODO: SADB_ACQUIRE filters should be implemented. */ tlen = len; m = mprev = NULL; while (tlen > 0) { int mlen; if (tlen == len) { MGETHDR(n, M_DONTWAIT, MT_DATA); mlen = MHLEN; } else { MGET(n, M_DONTWAIT, MT_DATA); mlen = MLEN; } if (!n) { PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); return ENOBUFS; } n->m_len = mlen; if (tlen >= MCLBYTES) { /*XXX better threshold? */ MCLGET(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_free(n); m_freem(m); PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); return ENOBUFS; } n->m_len = MCLBYTES; } if (tlen < n->m_len) n->m_len = tlen; n->m_next = NULL; if (m == NULL) m = mprev = n; else { mprev->m_next = n; mprev = n; } tlen -= n->m_len; n = NULL; } m->m_pkthdr.len = len; m_reset_rcvif(m); m_copyback(m, 0, len, msg); /* avoid duplicated statistics */ { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_IN_TOTAL]--; ps[PFKEY_STAT_IN_BYTES] -= len; ps[PFKEY_STAT_IN_MSGTYPE + msg->sadb_msg_type]--; PFKEY_STAT_PUTREF(); } return key_sendup_mbuf(so, m, target); } /* so can be NULL if target != KEY_SENDUP_ONE */ static int _key_sendup_mbuf(struct socket *so, struct mbuf *m, int target/*, sbprio */) { struct mbuf *n; struct keycb *kp; int sendup; struct rawcb *rp; int error = 0; int sbprio = 0; /* XXX should be a parameter */ KASSERT(m != NULL); KASSERT(so != NULL || target != KEY_SENDUP_ONE); /* * RFC 2367 says ACQUIRE and other kernel-generated messages * are special. We treat all KEY_SENDUP_REGISTERED messages * as special, delivering them to all registered sockets * even if the socket is at or above its so->so_rcv.sb_max limits. * The only constraint is that the so_rcv data fall below * key_registered_sb_max. * Doing that check here avoids reworking every key_sendup_mbuf() * in the short term. . The rework will be done after a technical * conensus that this approach is appropriate. */ if (target == KEY_SENDUP_REGISTERED) { sbprio = SB_PRIO_BESTEFFORT; } { uint64_t *ps = PFKEY_STAT_GETREF(); ps[PFKEY_STAT_IN_TOTAL]++; ps[PFKEY_STAT_IN_BYTES] += m->m_pkthdr.len; PFKEY_STAT_PUTREF(); } if (m->m_len < sizeof(struct sadb_msg)) { #if 1 m = m_pullup(m, sizeof(struct sadb_msg)); if (m == NULL) { PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); return ENOBUFS; } #else /* don't bother pulling it up just for stats */ #endif } if (m->m_len >= sizeof(struct sadb_msg)) { struct sadb_msg *msg; msg = mtod(m, struct sadb_msg *); PFKEY_STATINC(PFKEY_STAT_IN_MSGTYPE + msg->sadb_msg_type); } LIST_FOREACH(rp, &key_rawcb, rcb_list) { struct socket * kso = rp->rcb_socket; if (rp->rcb_proto.sp_family != PF_KEY) continue; if (rp->rcb_proto.sp_protocol && rp->rcb_proto.sp_protocol != PF_KEY_V2) { continue; } kp = (struct keycb *)rp; /* * If you are in promiscuous mode, and when you get broadcasted * reply, you'll get two PF_KEY messages. * (based on pf_key@inner.net message on 14 Oct 1998) */ if (((struct keycb *)rp)->kp_promisc) { if ((n = m_copy(m, 0, (int)M_COPYALL)) != NULL) { (void)key_sendup0(rp, n, 1, 0); n = NULL; } } /* the exact target will be processed later */ if (so && sotorawcb(so) == rp) continue; sendup = 0; switch (target) { case KEY_SENDUP_ONE: /* the statement has no effect */ if (so && sotorawcb(so) == rp) sendup++; break; case KEY_SENDUP_ALL: sendup++; break; case KEY_SENDUP_REGISTERED: if (kp->kp_registered) { if (kso->so_rcv.sb_cc <= key_registered_sb_max) sendup++; else printf("keysock: " "registered sendup dropped, " "sb_cc %ld max %d\n", kso->so_rcv.sb_cc, key_registered_sb_max); } break; } PFKEY_STATINC(PFKEY_STAT_IN_MSGTARGET + target); if (!sendup) continue; if ((n = m_copy(m, 0, (int)M_COPYALL)) == NULL) { m_freem(m); PFKEY_STATINC(PFKEY_STAT_IN_NOMEM); return ENOBUFS; } if ((error = key_sendup0(rp, n, 0, 0)) != 0) { m_freem(m); return error; } n = NULL; } /* The 'later' time for processing the exact target has arrived */ if (so) { error = key_sendup0(sotorawcb(so), m, 0, sbprio); m = NULL; } else { error = 0; m_freem(m); } return error; } int key_sendup_mbuf(struct socket *so, struct mbuf *m, int target/*, sbprio */) { int error; if (so == NULL) mutex_enter(key_so_mtx); else KASSERT(solocked(so)); error = _key_sendup_mbuf(so, m, target); if (so == NULL) mutex_exit(key_so_mtx); return error; } static int key_attach(struct socket *so, int proto) { struct keycb *kp; int s, error; KASSERT(sotorawcb(so) == NULL); kp = kmem_zalloc(sizeof(*kp), KM_SLEEP); kp->kp_raw.rcb_len = sizeof(*kp); so->so_pcb = kp; s = splsoftnet(); KASSERT(so->so_lock == NULL); mutex_obj_hold(key_so_mtx); so->so_lock = key_so_mtx; solock(so); error = raw_attach(so, proto, &key_rawcb); if (error) { PFKEY_STATINC(PFKEY_STAT_SOCKERR); kmem_free(kp, sizeof(*kp)); so->so_pcb = NULL; goto out; } kp->kp_promisc = kp->kp_registered = 0; if (kp->kp_raw.rcb_proto.sp_protocol == PF_KEY) /* XXX: AF_KEY */ key_cb.key_count++; key_cb.any_count++; kp->kp_raw.rcb_laddr = &key_src; kp->kp_raw.rcb_faddr = &key_dst; soisconnected(so); so->so_options |= SO_USELOOPBACK; out: KASSERT(solocked(so)); splx(s); return error; } static void key_detach(struct socket *so) { struct keycb *kp = (struct keycb *)sotorawcb(so); int s; KASSERT(!cpu_softintr_p()); KASSERT(solocked(so)); KASSERT(kp != NULL); s = splsoftnet(); if (kp->kp_raw.rcb_proto.sp_protocol == PF_KEY) /* XXX: AF_KEY */ key_cb.key_count--; key_cb.any_count--; key_freereg(so); raw_detach(so); splx(s); } static int key_accept(struct socket *so, struct sockaddr *nam) { KASSERT(solocked(so)); panic("key_accept"); return EOPNOTSUPP; } static int key_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_listen(struct socket *so, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_connect2(struct socket *so, struct socket *so2) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_disconnect(struct socket *so) { struct rawcb *rp = sotorawcb(so); int s; KASSERT(solocked(so)); KASSERT(rp != NULL); s = splsoftnet(); soisdisconnected(so); raw_disconnect(rp); splx(s); return 0; } static int key_shutdown(struct socket *so) { int s; KASSERT(solocked(so)); /* * Mark the connection as being incapable of further input. */ s = splsoftnet(); socantsendmore(so); splx(s); return 0; } static int key_abort(struct socket *so) { KASSERT(solocked(so)); panic("key_abort"); return EOPNOTSUPP; } static int key_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp) { return EOPNOTSUPP; } static int key_stat(struct socket *so, struct stat *ub) { KASSERT(solocked(so)); return 0; } static int key_peeraddr(struct socket *so, struct sockaddr *nam) { struct rawcb *rp = sotorawcb(so); KASSERT(solocked(so)); KASSERT(rp != NULL); KASSERT(nam != NULL); if (rp->rcb_faddr == NULL) return ENOTCONN; raw_setpeeraddr(rp, nam); return 0; } static int key_sockaddr(struct socket *so, struct sockaddr *nam) { struct rawcb *rp = sotorawcb(so); KASSERT(solocked(so)); KASSERT(rp != NULL); KASSERT(nam != NULL); if (rp->rcb_faddr == NULL) return ENOTCONN; raw_setsockaddr(rp, nam); return 0; } static int key_rcvd(struct socket *so, int flags, struct lwp *l) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_recvoob(struct socket *so, struct mbuf *m, int flags) { KASSERT(solocked(so)); return EOPNOTSUPP; } static int key_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct lwp *l) { int error = 0; int s; KASSERT(solocked(so)); KASSERT(so->so_proto == &keysw[0]); s = splsoftnet(); error = raw_send(so, m, nam, control, l, &key_output); splx(s); return error; } static int key_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control) { KASSERT(solocked(so)); m_freem(m); m_freem(control); return EOPNOTSUPP; } static int key_purgeif(struct socket *so, struct ifnet *ifa) { panic("key_purgeif"); return EOPNOTSUPP; } /* * Definitions of protocols supported in the KEY domain. */ DOMAIN_DEFINE(keydomain); PR_WRAP_USRREQS(key) #define key_attach key_attach_wrapper #define key_detach key_detach_wrapper #define key_accept key_accept_wrapper #define key_bind key_bind_wrapper #define key_listen key_listen_wrapper #define key_connect key_connect_wrapper #define key_connect2 key_connect2_wrapper #define key_disconnect key_disconnect_wrapper #define key_shutdown key_shutdown_wrapper #define key_abort key_abort_wrapper #define key_ioctl key_ioctl_wrapper #define key_stat key_stat_wrapper #define key_peeraddr key_peeraddr_wrapper #define key_sockaddr key_sockaddr_wrapper #define key_rcvd key_rcvd_wrapper #define key_recvoob key_recvoob_wrapper #define key_send key_send_wrapper #define key_sendoob key_sendoob_wrapper #define key_purgeif key_purgeif_wrapper static const struct pr_usrreqs key_usrreqs = { .pr_attach = key_attach, .pr_detach = key_detach, .pr_accept = key_accept, .pr_bind = key_bind, .pr_listen = key_listen, .pr_connect = key_connect, .pr_connect2 = key_connect2, .pr_disconnect = key_disconnect, .pr_shutdown = key_shutdown, .pr_abort = key_abort, .pr_ioctl = key_ioctl, .pr_stat = key_stat, .pr_peeraddr = key_peeraddr, .pr_sockaddr = key_sockaddr, .pr_rcvd = key_rcvd, .pr_recvoob = key_recvoob, .pr_send = key_send, .pr_sendoob = key_sendoob, .pr_purgeif = key_purgeif, }; static const struct protosw keysw[] = { { .pr_type = SOCK_RAW, .pr_domain = &keydomain, .pr_protocol = PF_KEY_V2, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_ctlinput = raw_ctlinput, .pr_usrreqs = &key_usrreqs, .pr_init = key_pr_init, } }; struct domain keydomain = { .dom_family = PF_KEY, .dom_name = "key", .dom_init = key_init, .dom_protosw = keysw, .dom_protoswNPROTOSW = &keysw[__arraycount(keysw)], };