/* $NetBSD: if_ieee1394subr.c,v 1.58 2016/10/03 11:06:06 ozaki-r Exp $ */ /* * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Atsushi Onoe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: if_ieee1394subr.c,v 1.58 2016/10/03 11:06:06 ozaki-r Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #endif /* INET */ #ifdef INET6 #include #include #include #endif /* INET6 */ #include #include #include #include #define IEEE1394_REASS_TIMEOUT 3 /* 3 sec */ #define senderr(e) do { error = (e); goto bad; } while(0/*CONSTCOND*/) static int ieee1394_output(struct ifnet *, struct mbuf *, const struct sockaddr *, const struct rtentry *); static struct mbuf *ieee1394_reass(struct ifnet *, struct mbuf *, uint16_t); static int ieee1394_output(struct ifnet *ifp, struct mbuf *m0, const struct sockaddr *dst, const struct rtentry *rt) { uint16_t etype = 0; struct mbuf *m; int hdrlen, error = 0; struct mbuf *mcopy = NULL; struct ieee1394_hwaddr *hwdst, baddr; const struct ieee1394_hwaddr *myaddr; #ifdef INET struct arphdr *ah; #endif /* INET */ struct m_tag *mtag; int unicast; if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) senderr(ENETDOWN); /* * If the queueing discipline needs packet classification, * do it before prepending link headers. */ IFQ_CLASSIFY(&ifp->if_snd, m0, dst->sa_family); /* * For unicast, we make a tag to store the lladdr of the * destination. This might not be the first time we have seen * the packet (for instance, the arp code might be trying to * re-send it after receiving an arp reply) so we only * allocate a tag if there isn't one there already. For * multicast, we will eventually use a different tag to store * the channel number. */ unicast = !(m0->m_flags & (M_BCAST | M_MCAST)); if (unicast) { mtag = m_tag_find(m0, MTAG_FIREWIRE_HWADDR, NULL); if (!mtag) { mtag = m_tag_get(MTAG_FIREWIRE_HWADDR, sizeof (struct ieee1394_hwaddr), M_NOWAIT); if (!mtag) { error = ENOMEM; goto bad; } m_tag_prepend(m0, mtag); } hwdst = (struct ieee1394_hwaddr *)(mtag + 1); } else { hwdst = &baddr; } switch (dst->sa_family) { #ifdef INET case AF_INET: if (unicast && (error = arpresolve(ifp, rt, m0, dst, hwdst, sizeof(*hwdst))) != 0) return error == EWOULDBLOCK ? 0 : error; /* if broadcasting on a simplex interface, loopback a copy */ if ((m0->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX)) mcopy = m_copy(m0, 0, M_COPYALL); etype = htons(ETHERTYPE_IP); break; case AF_ARP: ah = mtod(m0, struct arphdr *); ah->ar_hrd = htons(ARPHRD_IEEE1394); etype = htons(ETHERTYPE_ARP); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (unicast && (!nd6_storelladdr(ifp, rt, m0, dst, hwdst->iha_uid, IEEE1394_ADDR_LEN))) { /* something bad happened */ return 0; } etype = htons(ETHERTYPE_IPV6); break; #endif /* INET6 */ case pseudo_AF_HDRCMPLT: case AF_UNSPEC: /* TODO? */ default: printf("%s: can't handle af%d\n", ifp->if_xname, dst->sa_family); senderr(EAFNOSUPPORT); break; } if (mcopy) looutput(ifp, mcopy, dst, rt); myaddr = (const struct ieee1394_hwaddr *)CLLADDR(ifp->if_sadl); if (ifp->if_bpf) { struct ieee1394_bpfhdr h; if (unicast) memcpy(h.ibh_dhost, hwdst->iha_uid, 8); else memcpy(h.ibh_dhost, ((const struct ieee1394_hwaddr *) ifp->if_broadcastaddr)->iha_uid, 8); memcpy(h.ibh_shost, myaddr->iha_uid, 8); h.ibh_type = etype; bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m0); } if ((ifp->if_flags & IFF_SIMPLEX) && unicast && memcmp(hwdst, myaddr, IEEE1394_ADDR_LEN) == 0) return looutput(ifp, m0, dst, rt); /* * XXX: * The maximum possible rate depends on the topology. * So the determination of maxrec and fragmentation should be * called from the driver after probing the topology map. */ if (unicast) { hdrlen = IEEE1394_GASP_LEN; hwdst->iha_speed = 0; /* XXX */ } else hdrlen = 0; if (hwdst->iha_speed > myaddr->iha_speed) hwdst->iha_speed = myaddr->iha_speed; if (hwdst->iha_maxrec > myaddr->iha_maxrec) hwdst->iha_maxrec = myaddr->iha_maxrec; if (hwdst->iha_maxrec > (8 + hwdst->iha_speed)) hwdst->iha_maxrec = 8 + hwdst->iha_speed; if (hwdst->iha_maxrec < 8) hwdst->iha_maxrec = 8; m0 = ieee1394_fragment(ifp, m0, (2<iha_maxrec) - hdrlen, etype); if (m0 == NULL) senderr(ENOBUFS); while ((m = m0) != NULL) { m0 = m->m_nextpkt; error = if_transmit_lock(ifp, m); if (error) { /* mbuf is already freed */ goto bad; } } return 0; bad: while (m0 != NULL) { m = m0->m_nextpkt; m_freem(m0); m0 = m; } return error; } struct mbuf * ieee1394_fragment(struct ifnet *ifp, struct mbuf *m0, int maxsize, uint16_t etype) { struct ieee1394com *ic = (struct ieee1394com *)ifp; int totlen, fraglen, off; struct mbuf *m, **mp; struct ieee1394_fraghdr *ifh; struct ieee1394_unfraghdr *iuh; totlen = m0->m_pkthdr.len; if (totlen + sizeof(struct ieee1394_unfraghdr) <= maxsize) { M_PREPEND(m0, sizeof(struct ieee1394_unfraghdr), M_DONTWAIT); if (m0 == NULL) goto bad; iuh = mtod(m0, struct ieee1394_unfraghdr *); iuh->iuh_ft = 0; iuh->iuh_etype = etype; return m0; } fraglen = maxsize - sizeof(struct ieee1394_fraghdr); M_PREPEND(m0, sizeof(struct ieee1394_fraghdr), M_DONTWAIT); if (m0 == NULL) goto bad; ifh = mtod(m0, struct ieee1394_fraghdr *); ifh->ifh_ft_size = htons(IEEE1394_FT_MORE | (totlen - 1)); ifh->ifh_etype_off = etype; ifh->ifh_dgl = htons(ic->ic_dgl); ifh->ifh_reserved = 0; off = fraglen; mp = &m0->m_nextpkt; while (off < totlen) { if (off + fraglen > totlen) fraglen = totlen - off; MGETHDR(m, M_DONTWAIT, MT_HEADER); if (m == NULL) goto bad; m->m_flags |= m0->m_flags & (M_BCAST|M_MCAST); /* copy bcast */ MH_ALIGN(m, sizeof(struct ieee1394_fraghdr)); m->m_len = sizeof(struct ieee1394_fraghdr); ifh = mtod(m, struct ieee1394_fraghdr *); ifh->ifh_ft_size = htons(IEEE1394_FT_SUBSEQ | IEEE1394_FT_MORE | (totlen - 1)); ifh->ifh_etype_off = htons(off); ifh->ifh_dgl = htons(ic->ic_dgl); ifh->ifh_reserved = 0; m->m_next = m_copy(m0, sizeof(*ifh) + off, fraglen); if (m->m_next == NULL) { m_freem(m); goto bad; } m->m_pkthdr.len = sizeof(*ifh) + fraglen; off += fraglen; *mp = m; mp = &m->m_nextpkt; } ifh->ifh_ft_size &= ~htons(IEEE1394_FT_MORE); /* last fragment */ m_adj(m0, -(m0->m_pkthdr.len - maxsize)); ic->ic_dgl++; return m0; bad: while ((m = m0) != NULL) { m0 = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } return NULL; } void ieee1394_input(struct ifnet *ifp, struct mbuf *m, uint16_t src) { pktqueue_t *pktq = NULL; struct ifqueue *inq; uint16_t etype; struct ieee1394_unfraghdr *iuh; int isr = 0; if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } if (m->m_len < sizeof(*iuh)) { if ((m = m_pullup(m, sizeof(*iuh))) == NULL) return; } iuh = mtod(m, struct ieee1394_unfraghdr *); if (ntohs(iuh->iuh_ft) & (IEEE1394_FT_SUBSEQ | IEEE1394_FT_MORE)) { if ((m = ieee1394_reass(ifp, m, src)) == NULL) return; iuh = mtod(m, struct ieee1394_unfraghdr *); } etype = ntohs(iuh->iuh_etype); /* strip off the ieee1394 header */ m_adj(m, sizeof(*iuh)); if (ifp->if_bpf) { struct ieee1394_bpfhdr h; struct m_tag *mtag; const struct ieee1394_hwaddr *myaddr; mtag = m_tag_find(m, MTAG_FIREWIRE_SENDER_EUID, 0); if (mtag) memcpy(h.ibh_shost, mtag + 1, 8); else memset(h.ibh_shost, 0, 8); if (m->m_flags & M_BCAST) memcpy(h.ibh_dhost, ((const struct ieee1394_hwaddr *) ifp->if_broadcastaddr)->iha_uid, 8); else { myaddr = (const struct ieee1394_hwaddr *)CLLADDR(ifp->if_sadl); memcpy(h.ibh_dhost, myaddr->iha_uid, 8); } h.ibh_type = htons(etype); bpf_mtap2(ifp->if_bpf, &h, sizeof(h), m); } switch (etype) { #ifdef INET case ETHERTYPE_IP: pktq = ip_pktq; break; case ETHERTYPE_ARP: isr = NETISR_ARP; inq = &arpintrq; break; #endif /* INET */ #ifdef INET6 case ETHERTYPE_IPV6: pktq = ip6_pktq; break; #endif /* INET6 */ default: m_freem(m); return; } if (__predict_true(pktq)) { if (__predict_false(!pktq_enqueue(pktq, m, 0))) { m_freem(m); } return; } IFQ_LOCK(inq); if (IF_QFULL(inq)) { IF_DROP(inq); IFQ_UNLOCK(inq); m_freem(m); } else { IF_ENQUEUE(inq, m); IFQ_UNLOCK(inq); schednetisr(isr); } } static struct mbuf * ieee1394_reass(struct ifnet *ifp, struct mbuf *m0, uint16_t src) { struct ieee1394com *ic = (struct ieee1394com *)ifp; struct ieee1394_fraghdr *ifh; struct ieee1394_unfraghdr *iuh; struct ieee1394_reassq *rq; struct ieee1394_reass_pkt *rp, *trp, *nrp = NULL; int len; uint16_t etype, off, ftype, size, dgl; uint32_t id; if (m0->m_len < sizeof(*ifh)) { if ((m0 = m_pullup(m0, sizeof(*ifh))) == NULL) return NULL; } ifh = mtod(m0, struct ieee1394_fraghdr *); m_adj(m0, sizeof(*ifh)); size = ntohs(ifh->ifh_ft_size); ftype = size & (IEEE1394_FT_SUBSEQ | IEEE1394_FT_MORE); size = (size & ~ftype) + 1; dgl = ntohs(ifh->ifh_dgl); len = m0->m_pkthdr.len; id = dgl | (src << 16); if (ftype & IEEE1394_FT_SUBSEQ) { m_tag_delete_chain(m0, NULL); m0->m_flags &= ~M_PKTHDR; etype = 0; off = ntohs(ifh->ifh_etype_off); } else { etype = ifh->ifh_etype_off; off = 0; } for (rq = LIST_FIRST(&ic->ic_reassq); ; rq = LIST_NEXT(rq, rq_node)) { if (rq == NULL) { /* * Create a new reassemble queue head for the node. */ rq = malloc(sizeof(*rq), M_FTABLE, M_NOWAIT); if (rq == NULL) { m_freem(m0); return NULL; } rq->fr_id = id; LIST_INIT(&rq->rq_pkt); LIST_INSERT_HEAD(&ic->ic_reassq, rq, rq_node); break; } if (rq->fr_id == id) break; } for (rp = LIST_FIRST(&rq->rq_pkt); rp != NULL; rp = nrp) { nrp = LIST_NEXT(rp, rp_next); if (rp->rp_dgl != dgl) continue; /* * sanity check: * datagram size must be same for all fragments, and * no overlap is allowed. */ if (rp->rp_size != size || (off < rp->rp_off + rp->rp_len && off + len > rp->rp_off)) { /* * This happens probably due to wrapping dgl value. * Destroy all previously received fragment and * enqueue current fragment. */ for (rp = LIST_FIRST(&rq->rq_pkt); rp != NULL; rp = nrp) { nrp = LIST_NEXT(rp, rp_next); if (rp->rp_dgl == dgl) { LIST_REMOVE(rp, rp_next); m_freem(rp->rp_m); free(rp, M_FTABLE); } } break; } if (rp->rp_off + rp->rp_len == off) { /* * All the subsequent fragments received in sequence * come here. * Concatinate mbuf to previous one instead of * allocating new reassemble queue structure, * and try to merge more with the subsequent fragment * in the queue. */ m_cat(rp->rp_m, m0); rp->rp_len += len; while (rp->rp_off + rp->rp_len < size && nrp != NULL && nrp->rp_dgl == dgl && nrp->rp_off == rp->rp_off + rp->rp_len) { LIST_REMOVE(nrp, rp_next); m_cat(rp->rp_m, nrp->rp_m); rp->rp_len += nrp->rp_len; free(nrp, M_FTABLE); nrp = LIST_NEXT(rp, rp_next); } m0 = NULL; /* mark merged */ break; } if (off + m0->m_pkthdr.len == rp->rp_off) { m_cat(m0, rp->rp_m); rp->rp_m = m0; rp->rp_off = off; rp->rp_etype = etype; /* over writing trust etype */ rp->rp_len += len; m0 = NULL; /* mark merged */ break; } if (rp->rp_off > off) { /* insert before rp */ nrp = rp; break; } if (nrp == NULL || nrp->rp_dgl != dgl) { /* insert after rp */ nrp = NULL; break; } } if (m0 == NULL) { if (rp->rp_off != 0 || rp->rp_len != size) return NULL; /* fragment done */ LIST_REMOVE(rp, rp_next); m0 = rp->rp_m; m0->m_pkthdr.len = rp->rp_len; M_PREPEND(m0, sizeof(*iuh), M_DONTWAIT); if (m0 != NULL) { iuh = mtod(m0, struct ieee1394_unfraghdr *); iuh->iuh_ft = 0; iuh->iuh_etype = rp->rp_etype; } free(rp, M_FTABLE); return m0; } /* * New fragment received. Allocate reassemble queue structure. */ trp = malloc(sizeof(*trp), M_FTABLE, M_NOWAIT); if (trp == NULL) { m_freem(m0); return NULL; } trp->rp_m = m0; trp->rp_size = size; trp->rp_etype = etype; /* valid only if off==0 */ trp->rp_off = off; trp->rp_dgl = dgl; trp->rp_len = len; trp->rp_ttl = IEEE1394_REASS_TIMEOUT; if (trp->rp_ttl <= ifp->if_timer) trp->rp_ttl = ifp->if_timer + 1; if (rp == NULL) { /* first fragment for the dgl */ LIST_INSERT_HEAD(&rq->rq_pkt, trp, rp_next); } else if (nrp == NULL) { /* no next fragment for the dgl */ LIST_INSERT_AFTER(rp, trp, rp_next); } else { /* there is a hole */ LIST_INSERT_BEFORE(nrp, trp, rp_next); } return NULL; } void ieee1394_drain(struct ifnet *ifp) { struct ieee1394com *ic = (struct ieee1394com *)ifp; struct ieee1394_reassq *rq; struct ieee1394_reass_pkt *rp; while ((rq = LIST_FIRST(&ic->ic_reassq)) != NULL) { LIST_REMOVE(rq, rq_node); while ((rp = LIST_FIRST(&rq->rq_pkt)) != NULL) { LIST_REMOVE(rp, rp_next); m_freem(rp->rp_m); free(rp, M_FTABLE); } free(rq, M_FTABLE); } } void ieee1394_watchdog(struct ifnet *ifp) { struct ieee1394com *ic = (struct ieee1394com *)ifp; struct ieee1394_reassq *rq; struct ieee1394_reass_pkt *rp, *nrp; int dec; dec = (ifp->if_timer > 0) ? ifp->if_timer : 1; for (rq = LIST_FIRST(&ic->ic_reassq); rq != NULL; rq = LIST_NEXT(rq, rq_node)) { for (rp = LIST_FIRST(&rq->rq_pkt); rp != NULL; rp = nrp) { nrp = LIST_NEXT(rp, rp_next); if (rp->rp_ttl >= dec) rp->rp_ttl -= dec; else { LIST_REMOVE(rp, rp_next); m_freem(rp->rp_m); free(rp, M_FTABLE); } } } } const char * ieee1394_sprintf(const uint8_t *laddr) { static char buf[3*8]; snprintf(buf, sizeof(buf), "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x", laddr[0], laddr[1], laddr[2], laddr[3], laddr[4], laddr[5], laddr[6], laddr[7]); return buf; } void ieee1394_ifattach(struct ifnet *ifp, const struct ieee1394_hwaddr *hwaddr) { struct ieee1394_hwaddr *baddr; struct ieee1394com *ic = (struct ieee1394com *)ifp; ifp->if_type = IFT_IEEE1394; ifp->if_hdrlen = sizeof(struct ieee1394_header); ifp->if_dlt = DLT_EN10MB; /* XXX */ ifp->if_mtu = IEEE1394MTU; ifp->if_output = ieee1394_output; ifp->if_drain = ieee1394_drain; ifp->if_watchdog = ieee1394_watchdog; ifp->if_timer = 1; if (ifp->if_baudrate == 0) ifp->if_baudrate = IF_Mbps(100); if_set_sadl(ifp, hwaddr, sizeof(struct ieee1394_hwaddr), true); baddr = malloc(ifp->if_addrlen, M_DEVBUF, M_WAITOK); memset(baddr->iha_uid, 0xff, IEEE1394_ADDR_LEN); baddr->iha_speed = 0; /*XXX: how to determine the speed for bcast? */ baddr->iha_maxrec = 512 << baddr->iha_speed; memset(baddr->iha_offset, 0, sizeof(baddr->iha_offset)); ifp->if_broadcastaddr = (uint8_t *)baddr; LIST_INIT(&ic->ic_reassq); bpf_attach(ifp, DLT_APPLE_IP_OVER_IEEE1394, sizeof(struct ieee1394_hwaddr)); } void ieee1394_ifdetach(struct ifnet *ifp) { ieee1394_drain(ifp); bpf_detach(ifp); free(__UNCONST(ifp->if_broadcastaddr), M_DEVBUF); ifp->if_broadcastaddr = NULL; } int ieee1394_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int error = 0; switch (cmd) { case SIOCINITIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if ((error = (*ifp->if_init)(ifp)) != 0) break; arp_ifinit(ifp, ifa); break; #endif /* INET */ default: error = (*ifp->if_init)(ifp); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > IEEE1394MTU) error = EINVAL; else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) error = 0; break; default: error = ifioctl_common(ifp, cmd, data); break; } return error; }