/* $NetBSD: lfs_vnops.c,v 1.220 2009/02/22 20:28:07 ad Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1986, 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95 */ #include __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.220 2009/02/22 20:28:07 ad Exp $"); #ifdef _KERNEL_OPT #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern pid_t lfs_writer_daemon; int lfs_ignore_lazy_sync = 1; /* Global vfs data structures for lfs. */ int (**lfs_vnodeop_p)(void *); const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, ufs_lookup }, /* lookup */ { &vop_create_desc, lfs_create }, /* create */ { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */ { &vop_mknod_desc, lfs_mknod }, /* mknod */ { &vop_open_desc, ufs_open }, /* open */ { &vop_close_desc, lfs_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, lfs_read }, /* read */ { &vop_write_desc, lfs_write }, /* write */ { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */ { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */ { &vop_poll_desc, ufs_poll }, /* poll */ { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */ { &vop_revoke_desc, ufs_revoke }, /* revoke */ { &vop_mmap_desc, lfs_mmap }, /* mmap */ { &vop_fsync_desc, lfs_fsync }, /* fsync */ { &vop_seek_desc, ufs_seek }, /* seek */ { &vop_remove_desc, lfs_remove }, /* remove */ { &vop_link_desc, lfs_link }, /* link */ { &vop_rename_desc, lfs_rename }, /* rename */ { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */ { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */ { &vop_symlink_desc, lfs_symlink }, /* symlink */ { &vop_readdir_desc, ufs_readdir }, /* readdir */ { &vop_readlink_desc, ufs_readlink }, /* readlink */ { &vop_abortop_desc, ufs_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, ufs_bmap }, /* bmap */ { &vop_strategy_desc, lfs_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */ { &vop_advlock_desc, ufs_advlock }, /* advlock */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_getpages_desc, lfs_getpages }, /* getpages */ { &vop_putpages_desc, lfs_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_vnodeop_opv_desc = { &lfs_vnodeop_p, lfs_vnodeop_entries }; int (**lfs_specop_p)(void *); const struct vnodeopv_entry_desc lfs_specop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, spec_lookup }, /* lookup */ { &vop_create_desc, spec_create }, /* create */ { &vop_mknod_desc, spec_mknod }, /* mknod */ { &vop_open_desc, spec_open }, /* open */ { &vop_close_desc, lfsspec_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ufsspec_read }, /* read */ { &vop_write_desc, ufsspec_write }, /* write */ { &vop_ioctl_desc, spec_ioctl }, /* ioctl */ { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */ { &vop_poll_desc, spec_poll }, /* poll */ { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */ { &vop_revoke_desc, spec_revoke }, /* revoke */ { &vop_mmap_desc, spec_mmap }, /* mmap */ { &vop_fsync_desc, spec_fsync }, /* fsync */ { &vop_seek_desc, spec_seek }, /* seek */ { &vop_remove_desc, spec_remove }, /* remove */ { &vop_link_desc, spec_link }, /* link */ { &vop_rename_desc, spec_rename }, /* rename */ { &vop_mkdir_desc, spec_mkdir }, /* mkdir */ { &vop_rmdir_desc, spec_rmdir }, /* rmdir */ { &vop_symlink_desc, spec_symlink }, /* symlink */ { &vop_readdir_desc, spec_readdir }, /* readdir */ { &vop_readlink_desc, spec_readlink }, /* readlink */ { &vop_abortop_desc, spec_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, spec_bmap }, /* bmap */ { &vop_strategy_desc, spec_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, spec_pathconf }, /* pathconf */ { &vop_advlock_desc, spec_advlock }, /* advlock */ { &vop_bwrite_desc, vn_bwrite }, /* bwrite */ { &vop_getpages_desc, spec_getpages }, /* getpages */ { &vop_putpages_desc, spec_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_specop_opv_desc = { &lfs_specop_p, lfs_specop_entries }; int (**lfs_fifoop_p)(void *); const struct vnodeopv_entry_desc lfs_fifoop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, fifo_lookup }, /* lookup */ { &vop_create_desc, fifo_create }, /* create */ { &vop_mknod_desc, fifo_mknod }, /* mknod */ { &vop_open_desc, fifo_open }, /* open */ { &vop_close_desc, lfsfifo_close }, /* close */ { &vop_access_desc, ufs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ufsfifo_read }, /* read */ { &vop_write_desc, ufsfifo_write }, /* write */ { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */ { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */ { &vop_poll_desc, fifo_poll }, /* poll */ { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */ { &vop_revoke_desc, fifo_revoke }, /* revoke */ { &vop_mmap_desc, fifo_mmap }, /* mmap */ { &vop_fsync_desc, fifo_fsync }, /* fsync */ { &vop_seek_desc, fifo_seek }, /* seek */ { &vop_remove_desc, fifo_remove }, /* remove */ { &vop_link_desc, fifo_link }, /* link */ { &vop_rename_desc, fifo_rename }, /* rename */ { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */ { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */ { &vop_symlink_desc, fifo_symlink }, /* symlink */ { &vop_readdir_desc, fifo_readdir }, /* readdir */ { &vop_readlink_desc, fifo_readlink }, /* readlink */ { &vop_abortop_desc, fifo_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ufs_lock }, /* lock */ { &vop_unlock_desc, ufs_unlock }, /* unlock */ { &vop_bmap_desc, fifo_bmap }, /* bmap */ { &vop_strategy_desc, fifo_strategy }, /* strategy */ { &vop_print_desc, ufs_print }, /* print */ { &vop_islocked_desc, ufs_islocked }, /* islocked */ { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */ { &vop_advlock_desc, fifo_advlock }, /* advlock */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_putpages_desc, fifo_putpages }, /* putpages */ { NULL, NULL } }; const struct vnodeopv_desc lfs_fifoop_opv_desc = { &lfs_fifoop_p, lfs_fifoop_entries }; static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **); #define LFS_READWRITE #include #undef LFS_READWRITE /* * Synch an open file. */ /* ARGSUSED */ int lfs_fsync(void *v) { struct vop_fsync_args /* { struct vnode *a_vp; kauth_cred_t a_cred; int a_flags; off_t offlo; off_t offhi; } */ *ap = v; struct vnode *vp = ap->a_vp; int error, wait; struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; /* If we're mounted read-only, don't try to sync. */ if (fs->lfs_ronly) return 0; /* * Trickle sync simply adds this vnode to the pager list, as if * the pagedaemon had requested a pageout. */ if (ap->a_flags & FSYNC_LAZY) { if (lfs_ignore_lazy_sync == 0) { mutex_enter(&lfs_lock); if (!(ip->i_flags & IN_PAGING)) { ip->i_flags |= IN_PAGING; TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain); } wakeup(&lfs_writer_daemon); mutex_exit(&lfs_lock); } return 0; } /* * If a vnode is bring cleaned, flush it out before we try to * reuse it. This prevents the cleaner from writing files twice * in the same partial segment, causing an accounting underflow. */ if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) { lfs_vflush(vp); } wait = (ap->a_flags & FSYNC_WAIT); do { mutex_enter(&vp->v_interlock); error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo), round_page(ap->a_offhi), PGO_CLEANIT | (wait ? PGO_SYNCIO : 0)); if (error == EAGAIN) { mutex_enter(&lfs_lock); mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync", hz / 100 + 1, &lfs_lock); mutex_exit(&lfs_lock); } } while (error == EAGAIN); if (error) return error; if ((ap->a_flags & FSYNC_DATAONLY) == 0) error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0); if (error == 0 && ap->a_flags & FSYNC_CACHE) { int l = 0; error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE, curlwp->l_cred); } if (wait && !VPISEMPTY(vp)) LFS_SET_UINO(ip, IN_MODIFIED); return error; } /* * Take IN_ADIROP off, then call ufs_inactive. */ int lfs_inactive(void *v) { struct vop_inactive_args /* { struct vnode *a_vp; } */ *ap = v; lfs_unmark_vnode(ap->a_vp); /* * The Ifile is only ever inactivated on unmount. * Streamline this process by not giving it more dirty blocks. */ if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) { mutex_enter(&lfs_lock); LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD); mutex_exit(&lfs_lock); VOP_UNLOCK(ap->a_vp, 0); return 0; } return ufs_inactive(v); } /* * These macros are used to bracket UFS directory ops, so that we can * identify all the pages touched during directory ops which need to * be ordered and flushed atomically, so that they may be recovered. * * Because we have to mark nodes VU_DIROP in order to prevent * the cache from reclaiming them while a dirop is in progress, we must * also manage the number of nodes so marked (otherwise we can run out). * We do this by setting lfs_dirvcount to the number of marked vnodes; it * is decremented during segment write, when VU_DIROP is taken off. */ #define MARK_VNODE(vp) lfs_mark_vnode(vp) #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp) #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp)) #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp)) static int lfs_set_dirop_create(struct vnode *, struct vnode **); static int lfs_set_dirop(struct vnode *, struct vnode *); static int lfs_set_dirop(struct vnode *dvp, struct vnode *vp) { struct lfs *fs; int error; KASSERT(VOP_ISLOCKED(dvp)); KASSERT(vp == NULL || VOP_ISLOCKED(vp)); fs = VTOI(dvp)->i_lfs; ASSERT_NO_SEGLOCK(fs); /* * LFS_NRESERVE calculates direct and indirect blocks as well * as an inode block; an overestimate in most cases. */ if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0) return (error); restart: mutex_enter(&lfs_lock); if (fs->lfs_dirops == 0) { mutex_exit(&lfs_lock); lfs_check(dvp, LFS_UNUSED_LBN, 0); mutex_enter(&lfs_lock); } while (fs->lfs_writer) { error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH, "lfs_sdirop", 0, &lfs_lock); if (error == EINTR) { mutex_exit(&lfs_lock); goto unreserve; } } if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) { wakeup(&lfs_writer_daemon); mutex_exit(&lfs_lock); preempt(); goto restart; } if (lfs_dirvcount > LFS_MAX_DIROP) { mutex_exit(&lfs_lock); DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, " "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount)); if ((error = mtsleep(&lfs_dirvcount, PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0, &lfs_lock)) != 0) { goto unreserve; } goto restart; } ++fs->lfs_dirops; fs->lfs_doifile = 1; mutex_exit(&lfs_lock); /* Hold a reference so SET_ENDOP will be happy */ vref(dvp); if (vp) { vref(vp); MARK_VNODE(vp); } MARK_VNODE(dvp); return 0; unreserve: lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs)); return error; } /* * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock * in getnewvnode(), if we have a stacked filesystem mounted on top * of us. * * NB: this means we have to clear the new vnodes on error. Fortunately * SET_ENDOP is there to do that for us. */ static int lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp) { int error; struct lfs *fs; fs = VFSTOUFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) return EROFS; if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) { DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n", dvp, error)); return error; } if ((error = lfs_set_dirop(dvp, NULL)) != 0) { if (vpp) { ungetnewvnode(*vpp); *vpp = NULL; } return error; } return 0; } #define SET_ENDOP_BASE(fs, dvp, str) \ do { \ mutex_enter(&lfs_lock); \ --(fs)->lfs_dirops; \ if (!(fs)->lfs_dirops) { \ if ((fs)->lfs_nadirop) { \ panic("SET_ENDOP: %s: no dirops but " \ " nadirop=%d", (str), \ (fs)->lfs_nadirop); \ } \ wakeup(&(fs)->lfs_writer); \ mutex_exit(&lfs_lock); \ lfs_check((dvp), LFS_UNUSED_LBN, 0); \ } else \ mutex_exit(&lfs_lock); \ } while(0) #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \ do { \ UNMARK_VNODE(dvp); \ if (nvpp && *nvpp) \ UNMARK_VNODE(*nvpp); \ /* Check for error return to stem vnode leakage */ \ if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \ ungetnewvnode(*(nvpp)); \ SET_ENDOP_BASE((fs), (dvp), (str)); \ lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \ vrele(dvp); \ } while(0) #define SET_ENDOP_CREATE_AP(ap, str) \ SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \ (ap)->a_vpp, (str)) #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \ do { \ UNMARK_VNODE(dvp); \ if (ovp) \ UNMARK_VNODE(ovp); \ SET_ENDOP_BASE((fs), (dvp), (str)); \ lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \ vrele(dvp); \ if (ovp) \ vrele(ovp); \ } while(0) void lfs_mark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; mutex_enter(&lfs_lock); if (!(ip->i_flag & IN_ADIROP)) { if (!(vp->v_uflag & VU_DIROP)) { mutex_enter(&vp->v_interlock); (void)lfs_vref(vp); ++lfs_dirvcount; ++fs->lfs_dirvcount; TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain); vp->v_uflag |= VU_DIROP; } ++fs->lfs_nadirop; ip->i_flag |= IN_ADIROP; } else KASSERT(vp->v_uflag & VU_DIROP); mutex_exit(&lfs_lock); } void lfs_unmark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); if (ip && (ip->i_flag & IN_ADIROP)) { KASSERT(vp->v_uflag & VU_DIROP); mutex_enter(&lfs_lock); --ip->i_lfs->lfs_nadirop; mutex_exit(&lfs_lock); ip->i_flag &= ~IN_ADIROP; } } int lfs_symlink(void *v) { struct vop_symlink_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_symlink(ap); SET_ENDOP_CREATE_AP(ap, "symlink"); return (error); } int lfs_mknod(void *v) { struct vop_mknod_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct vattr *vap = ap->a_vap; struct vnode **vpp = ap->a_vpp; struct inode *ip; int error; struct mount *mp; ino_t ino; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode), ap->a_dvp, vpp, ap->a_cnp); /* Either way we're done with the dirop at this point */ SET_ENDOP_CREATE_AP(ap, "mknod"); if (error) return (error); ip = VTOI(*vpp); mp = (*vpp)->v_mount; ino = ip->i_number; ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE; if (vap->va_rdev != VNOVAL) { /* * Want to be able to use this to make badblock * inodes, so don't truncate the dev number. */ #if 0 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev, UFS_MPNEEDSWAP((*vpp)->v_mount)); #else ip->i_ffs1_rdev = vap->va_rdev; #endif } /* * Call fsync to write the vnode so that we don't have to deal with * flushing it when it's marked VU_DIROP|VI_XLOCK. * * XXX KS - If we can't flush we also can't call vgone(), so must * return. But, that leaves this vnode in limbo, also not good. * Can this ever happen (barring hardware failure)? */ if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) { panic("lfs_mknod: couldn't fsync (ino %llu)", (unsigned long long)ino); /* return (error); */ } /* * Remove vnode so that it will be reloaded by VFS_VGET and * checked to see if it is an alias of an existing entry in * the inode cache. */ /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */ VOP_UNLOCK(*vpp, 0); (*vpp)->v_type = VNON; vgone(*vpp); error = VFS_VGET(mp, ino, vpp); if (error != 0) { *vpp = NULL; return (error); } return (0); } int lfs_create(void *v) { struct vop_create_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_create(ap); SET_ENDOP_CREATE_AP(ap, "create"); return (error); } int lfs_mkdir(void *v) { struct vop_mkdir_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; int error; if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_mkdir(ap); SET_ENDOP_CREATE_AP(ap, "mkdir"); return (error); } int lfs_remove(void *v) { struct vop_remove_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *dvp, *vp; struct inode *ip; int error; dvp = ap->a_dvp; vp = ap->a_vp; ip = VTOI(vp); if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) { if (dvp == vp) vrele(vp); else vput(vp); vput(dvp); return error; } error = ufs_remove(ap); if (ip->i_nlink == 0) lfs_orphan(ip->i_lfs, ip->i_number); SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove"); return (error); } int lfs_rmdir(void *v) { struct vop_rmdir_args /* { struct vnodeop_desc *a_desc; struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *vp; struct inode *ip; int error; vp = ap->a_vp; ip = VTOI(vp); if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) { if (ap->a_dvp == vp) vrele(ap->a_dvp); else vput(ap->a_dvp); vput(vp); return error; } error = ufs_rmdir(ap); if (ip->i_nlink == 0) lfs_orphan(ip->i_lfs, ip->i_number); SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir"); return (error); } int lfs_link(void *v) { struct vop_link_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; int error; struct vnode **vpp = NULL; if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) { vput(ap->a_dvp); return error; } error = ufs_link(ap); SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link"); return (error); } int lfs_rename(void *v) { struct vop_rename_args /* { struct vnode *a_fdvp; struct vnode *a_fvp; struct componentname *a_fcnp; struct vnode *a_tdvp; struct vnode *a_tvp; struct componentname *a_tcnp; } */ *ap = v; struct vnode *tvp, *fvp, *tdvp, *fdvp; struct componentname *tcnp, *fcnp; int error; struct lfs *fs; fs = VTOI(ap->a_fdvp)->i_lfs; tvp = ap->a_tvp; tdvp = ap->a_tdvp; tcnp = ap->a_tcnp; fvp = ap->a_fvp; fdvp = ap->a_fdvp; fcnp = ap->a_fcnp; /* * Check for cross-device rename. * If it is, we don't want to set dirops, just error out. * (In particular note that MARK_VNODE(tdvp) will DTWT on * a cross-device rename.) * * Copied from ufs_rename. */ if ((fvp->v_mount != tdvp->v_mount) || (tvp && (fvp->v_mount != tvp->v_mount))) { error = EXDEV; goto errout; } /* * Check to make sure we're not renaming a vnode onto itself * (deleting a hard link by renaming one name onto another); * if we are we can't recursively call VOP_REMOVE since that * would leave us with an unaccounted-for number of live dirops. * * Inline the relevant section of ufs_rename here, *before* * calling SET_DIROP_REMOVE. */ if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) || (VTOI(tdvp)->i_flags & APPEND))) { error = EPERM; goto errout; } if (fvp == tvp) { if (fvp->v_type == VDIR) { error = EINVAL; goto errout; } /* Release destination completely. */ VOP_ABORTOP(tdvp, tcnp); vput(tdvp); vput(tvp); /* Delete source. */ vrele(fvp); fcnp->cn_flags &= ~(MODMASK | SAVESTART); fcnp->cn_flags |= LOCKPARENT | LOCKLEAF; fcnp->cn_nameiop = DELETE; vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY); if ((error = relookup(fdvp, &fvp, fcnp))) { vput(fdvp); return (error); } return (VOP_REMOVE(fdvp, fvp, fcnp)); } if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0) goto errout; MARK_VNODE(fdvp); MARK_VNODE(fvp); error = ufs_rename(ap); UNMARK_VNODE(fdvp); UNMARK_VNODE(fvp); SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename"); return (error); errout: VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */ if (tdvp == tvp) vrele(tdvp); else vput(tdvp); if (tvp) vput(tvp); VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */ vrele(fdvp); vrele(fvp); return (error); } /* XXX hack to avoid calling ITIMES in getattr */ int lfs_getattr(void *v) { struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct vattr *vap = ap->a_vap; struct lfs *fs = ip->i_lfs; /* * Copy from inode table */ vap->va_fsid = ip->i_dev; vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~IFMT; vap->va_nlink = ip->i_nlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; vap->va_rdev = (dev_t)ip->i_ffs1_rdev; vap->va_size = vp->v_size; vap->va_atime.tv_sec = ip->i_ffs1_atime; vap->va_atime.tv_nsec = ip->i_ffs1_atimensec; vap->va_mtime.tv_sec = ip->i_ffs1_mtime; vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec; vap->va_ctime.tv_sec = ip->i_ffs1_ctime; vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec; vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; /* this doesn't belong here */ if (vp->v_type == VBLK) vap->va_blocksize = BLKDEV_IOSIZE; else if (vp->v_type == VCHR) vap->va_blocksize = MAXBSIZE; else vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks); vap->va_type = vp->v_type; vap->va_filerev = ip->i_modrev; return (0); } /* * Check to make sure the inode blocks won't choke the buffer * cache, then call ufs_setattr as usual. */ int lfs_setattr(void *v) { struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; lfs_check(vp, LFS_UNUSED_LBN, 0); return ufs_setattr(v); } /* * Release the block we hold on lfs_newseg wrapping. Called on file close, * or explicitly from LFCNWRAPGO. Called with the interlock held. */ static int lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor) { if (fs->lfs_stoplwp != curlwp) return EBUSY; fs->lfs_stoplwp = NULL; cv_signal(&fs->lfs_stopcv); KASSERT(fs->lfs_nowrap > 0); if (fs->lfs_nowrap <= 0) { return 0; } if (--fs->lfs_nowrap == 0) { log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt); wakeup(&fs->lfs_wrappass); lfs_wakeup_cleaner(fs); } if (waitfor) { mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment", 0, &lfs_lock); } return 0; } /* * Close called */ /* ARGSUSED */ int lfs_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) && fs->lfs_stoplwp == curlwp) { mutex_enter(&lfs_lock); log(LOG_NOTICE, "lfs_close: releasing log wrap control\n"); lfs_wrapgo(fs, ip, 0); mutex_exit(&lfs_lock); } if (vp == ip->i_lfs->lfs_ivnode && vp->v_mount->mnt_iflag & IMNT_UNMOUNT) return 0; if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (0); } /* * Close wrapper for special devices. * * Update the times on the inode then do device close. */ int lfsspec_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; struct inode *ip; vp = ap->a_vp; ip = VTOI(vp); if (vp->v_usecount > 1) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Close wrapper for fifo's. * * Update the times on the inode then do device close. */ int lfsfifo_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_ a_cred; } */ *ap = v; struct vnode *vp; struct inode *ip; vp = ap->a_vp; ip = VTOI(vp); if (ap->a_vp->v_usecount > 1) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Reclaim an inode so that it can be used for other purposes. */ int lfs_reclaim(void *v) { struct vop_reclaim_args /* { struct vnode *a_vp; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; int error; mutex_enter(&lfs_lock); LFS_CLR_UINO(ip, IN_ALLMOD); mutex_exit(&lfs_lock); if ((error = ufs_reclaim(vp))) return (error); /* * Take us off the paging and/or dirop queues if we were on them. * We shouldn't be on them. */ mutex_enter(&lfs_lock); if (ip->i_flags & IN_PAGING) { log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n", fs->lfs_fsmnt); ip->i_flags &= ~IN_PAGING; TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain); } if (vp->v_uflag & VU_DIROP) { panic("reclaimed vnode is VU_DIROP"); vp->v_uflag &= ~VU_DIROP; TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain); } mutex_exit(&lfs_lock); pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din); lfs_deregister_all(vp); pool_put(&lfs_inoext_pool, ip->inode_ext.lfs); ip->inode_ext.lfs = NULL; genfs_node_destroy(vp); pool_put(&lfs_inode_pool, vp->v_data); vp->v_data = NULL; return (0); } /* * Read a block from a storage device. * In order to avoid reading blocks that are in the process of being * written by the cleaner---and hence are not mutexed by the normal * buffer cache / page cache mechanisms---check for collisions before * reading. * * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before* * the active cleaner test. * * XXX This code assumes that lfs_markv makes synchronous checkpoints. */ int lfs_strategy(void *v) { struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap = v; struct buf *bp; struct lfs *fs; struct vnode *vp; struct inode *ip; daddr_t tbn; int i, sn, error, slept; bp = ap->a_bp; vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_lfs; /* lfs uses its strategy routine only for read */ KASSERT(bp->b_flags & B_READ); if (vp->v_type == VBLK || vp->v_type == VCHR) panic("lfs_strategy: spec"); KASSERT(bp->b_bcount != 0); if (bp->b_blkno == bp->b_lblkno) { error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL); if (error) { bp->b_error = error; bp->b_resid = bp->b_bcount; biodone(bp); return (error); } if ((long)bp->b_blkno == -1) /* no valid data */ clrbuf(bp); } if ((long)bp->b_blkno < 0) { /* block is not on disk */ bp->b_resid = bp->b_bcount; biodone(bp); return (0); } slept = 1; mutex_enter(&lfs_lock); while (slept && fs->lfs_seglock) { mutex_exit(&lfs_lock); /* * Look through list of intervals. * There will only be intervals to look through * if the cleaner holds the seglock. * Since the cleaner is synchronous, we can trust * the list of intervals to be current. */ tbn = dbtofsb(fs, bp->b_blkno); sn = dtosn(fs, tbn); slept = 0; for (i = 0; i < fs->lfs_cleanind; i++) { if (sn == dtosn(fs, fs->lfs_cleanint[i]) && tbn >= fs->lfs_cleanint[i]) { DLOG((DLOG_CLEAN, "lfs_strategy: ino %d lbn %" PRId64 " ind %d sn %d fsb %" PRIx32 " given sn %d fsb %" PRIx64 "\n", ip->i_number, bp->b_lblkno, i, dtosn(fs, fs->lfs_cleanint[i]), fs->lfs_cleanint[i], sn, tbn)); DLOG((DLOG_CLEAN, "lfs_strategy: sleeping on ino %d lbn %" PRId64 "\n", ip->i_number, bp->b_lblkno)); mutex_enter(&lfs_lock); if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) { /* Cleaner can't wait for itself */ mtsleep(&fs->lfs_iocount, (PRIBIO + 1) | PNORELOCK, "clean2", 0, &lfs_lock); slept = 1; break; } else if (fs->lfs_seglock) { mtsleep(&fs->lfs_seglock, (PRIBIO + 1) | PNORELOCK, "clean1", 0, &lfs_lock); slept = 1; break; } mutex_exit(&lfs_lock); } } mutex_enter(&lfs_lock); } mutex_exit(&lfs_lock); vp = ip->i_devvp; VOP_STRATEGY(vp, bp); return (0); } void lfs_flush_dirops(struct lfs *fs) { struct inode *ip, *nip; struct vnode *vp; extern int lfs_dostats; struct segment *sp; int waslocked; ASSERT_MAYBE_SEGLOCK(fs); KASSERT(fs->lfs_nadirop == 0); if (fs->lfs_ronly) return; mutex_enter(&lfs_lock); if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) { mutex_exit(&lfs_lock); return; } else mutex_exit(&lfs_lock); if (lfs_dostats) ++lfs_stats.flush_invoked; /* * Inline lfs_segwrite/lfs_writevnodes, but just for dirops. * Technically this is a checkpoint (the on-disk state is valid) * even though we are leaving out all the file data. */ lfs_imtime(fs); lfs_seglock(fs, SEGM_CKP); sp = fs->lfs_sp; /* * lfs_writevnodes, optimized to get dirops out of the way. * Only write dirops, and don't flush files' pages, only * blocks from the directories. * * We don't need to vref these files because they are * dirops and so hold an extra reference until the * segunlock clears them of that status. * * We don't need to check for IN_ADIROP because we know that * no dirops are active. * */ mutex_enter(&lfs_lock); for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) { nip = TAILQ_NEXT(ip, i_lfs_dchain); mutex_exit(&lfs_lock); vp = ITOV(ip); KASSERT((ip->i_flag & IN_ADIROP) == 0); /* * All writes to directories come from dirops; all * writes to files' direct blocks go through the page * cache, which we're not touching. Reads to files * and/or directories will not be affected by writing * directory blocks inodes and file inodes. So we don't * really need to lock. If we don't lock, though, * make sure that we don't clear IN_MODIFIED * unnecessarily. */ if (vp->v_iflag & VI_XLOCK) { mutex_enter(&lfs_lock); continue; } waslocked = VOP_ISLOCKED(vp); if (vp->v_type != VREG && ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) { lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp) && !WRITEINPROG(vp) && !(ip->i_flag & IN_ALLMOD)) { mutex_enter(&lfs_lock); LFS_SET_UINO(ip, IN_MODIFIED); mutex_exit(&lfs_lock); } } KDASSERT(ip->i_number != LFS_IFILE_INUM); (void) lfs_writeinode(fs, sp, ip); mutex_enter(&lfs_lock); if (waslocked == LK_EXCLOTHER) LFS_SET_UINO(ip, IN_MODIFIED); } mutex_exit(&lfs_lock); /* We've written all the dirops there are */ ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT); lfs_finalize_fs_seguse(fs); (void) lfs_writeseg(fs, sp); lfs_segunlock(fs); } /* * Flush all vnodes for which the pagedaemon has requested pageouts. * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop() * has just run, this would be an error). If we have to skip a vnode * for any reason, just skip it; if we have to wait for the cleaner, * abort. The writer daemon will call us again later. */ void lfs_flush_pchain(struct lfs *fs) { struct inode *ip, *nip; struct vnode *vp; extern int lfs_dostats; struct segment *sp; int error; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) return; mutex_enter(&lfs_lock); if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) { mutex_exit(&lfs_lock); return; } else mutex_exit(&lfs_lock); /* Get dirops out of the way */ lfs_flush_dirops(fs); if (lfs_dostats) ++lfs_stats.flush_invoked; /* * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts. */ lfs_imtime(fs); lfs_seglock(fs, 0); sp = fs->lfs_sp; /* * lfs_writevnodes, optimized to clear pageout requests. * Only write non-dirop files that are in the pageout queue. * We're very conservative about what we write; we want to be * fast and async. */ mutex_enter(&lfs_lock); top: for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) { nip = TAILQ_NEXT(ip, i_lfs_pchain); vp = ITOV(ip); if (!(ip->i_flags & IN_PAGING)) goto top; mutex_enter(&vp->v_interlock); if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) { mutex_exit(&vp->v_interlock); continue; } if (vp->v_type != VREG) { mutex_exit(&vp->v_interlock); continue; } if (lfs_vref(vp)) continue; mutex_exit(&lfs_lock); if (VOP_ISLOCKED(vp)) { lfs_vunref(vp); mutex_enter(&lfs_lock); continue; } error = lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp) && !WRITEINPROG(vp) && !(ip->i_flag & IN_ALLMOD)) { mutex_enter(&lfs_lock); LFS_SET_UINO(ip, IN_MODIFIED); mutex_exit(&lfs_lock); } KDASSERT(ip->i_number != LFS_IFILE_INUM); (void) lfs_writeinode(fs, sp, ip); lfs_vunref(vp); if (error == EAGAIN) { lfs_writeseg(fs, sp); mutex_enter(&lfs_lock); break; } mutex_enter(&lfs_lock); } mutex_exit(&lfs_lock); (void) lfs_writeseg(fs, sp); lfs_segunlock(fs); } /* * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}. */ int lfs_fcntl(void *v) { struct vop_fcntl_args /* { struct vnode *a_vp; u_int a_command; void * a_data; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct timeval *tvp; BLOCK_INFO *blkiov; CLEANERINFO *cip; SEGUSE *sup; int blkcnt, error, oclean; size_t fh_size; struct lfs_fcntl_markv blkvp; struct lwp *l; fsid_t *fsidp; struct lfs *fs; struct buf *bp; fhandle_t *fhp; daddr_t off; /* Only respect LFS fcntls on fs root or Ifile */ if (VTOI(ap->a_vp)->i_number != ROOTINO && VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) { return ufs_fcntl(v); } /* Avoid locking a draining lock */ if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) { return ESHUTDOWN; } /* LFS control and monitoring fcntls are available only to root */ l = curlwp; if (((ap->a_command & 0xff00) >> 8) == 'L' && (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER, NULL)) != 0) return (error); fs = VTOI(ap->a_vp)->i_lfs; fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx; error = 0; switch ((int)ap->a_command) { case LFCNSEGWAITALL: case LFCNSEGWAITALL_COMPAT: fsidp = NULL; /* FALLSTHROUGH */ case LFCNSEGWAIT: case LFCNSEGWAIT_COMPAT: tvp = (struct timeval *)ap->a_data; mutex_enter(&lfs_lock); ++fs->lfs_sleepers; mutex_exit(&lfs_lock); error = lfs_segwait(fsidp, tvp); mutex_enter(&lfs_lock); if (--fs->lfs_sleepers == 0) wakeup(&fs->lfs_sleepers); mutex_exit(&lfs_lock); return error; case LFCNBMAPV: case LFCNMARKV: blkvp = *(struct lfs_fcntl_markv *)ap->a_data; blkcnt = blkvp.blkcnt; if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) return (EINVAL); blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); if ((error = copyin(blkvp.blkiov, blkiov, blkcnt * sizeof(BLOCK_INFO))) != 0) { lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; } mutex_enter(&lfs_lock); ++fs->lfs_sleepers; mutex_exit(&lfs_lock); if (ap->a_command == LFCNBMAPV) error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt); else /* LFCNMARKV */ error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt); if (error == 0) error = copyout(blkiov, blkvp.blkiov, blkcnt * sizeof(BLOCK_INFO)); mutex_enter(&lfs_lock); if (--fs->lfs_sleepers == 0) wakeup(&fs->lfs_sleepers); mutex_exit(&lfs_lock); lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; case LFCNRECLAIM: /* * Flush dirops and write Ifile, allowing empty segments * to be immediately reclaimed. */ lfs_writer_enter(fs, "pndirop"); off = fs->lfs_offset; lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP); lfs_flush_dirops(fs); LFS_CLEANERINFO(cip, fs, bp); oclean = cip->clean; LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP); fs->lfs_sp->seg_flags |= SEGM_PROT; lfs_segunlock(fs); lfs_writer_leave(fs); #ifdef DEBUG LFS_CLEANERINFO(cip, fs, bp); DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned %" PRId32 " segments (activesb %d)\n", fs->lfs_offset - off, cip->clean - oclean, fs->lfs_activesb)); LFS_SYNC_CLEANERINFO(cip, fs, bp, 0); #endif return 0; #ifdef COMPAT_30 case LFCNIFILEFH_COMPAT: /* Return the filehandle of the Ifile */ if ((error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER, NULL)) != 0) return (error); fhp = (struct fhandle *)ap->a_data; fhp->fh_fsid = *fsidp; fh_size = 16; /* former VFS_MAXFIDSIZ */ return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size); #endif case LFCNIFILEFH_COMPAT2: case LFCNIFILEFH: /* Return the filehandle of the Ifile */ fhp = (struct fhandle *)ap->a_data; fhp->fh_fsid = *fsidp; fh_size = sizeof(struct lfs_fhandle) - offsetof(fhandle_t, fh_fid); return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size); case LFCNREWIND: /* Move lfs_offset to the lowest-numbered segment */ return lfs_rewind(fs, *(int *)ap->a_data); case LFCNINVAL: /* Mark a segment SEGUSE_INVAL */ LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp); if (sup->su_nbytes > 0) { brelse(bp, 0); lfs_unset_inval_all(fs); return EBUSY; } sup->su_flags |= SEGUSE_INVAL; VOP_BWRITE(bp); return 0; case LFCNRESIZE: /* Resize the filesystem */ return lfs_resize_fs(fs, *(int *)ap->a_data); case LFCNWRAPSTOP: case LFCNWRAPSTOP_COMPAT: /* * Hold lfs_newseg at segment 0; if requested, sleep until * the filesystem wraps around. To support external agents * (dump, fsck-based regression test) that need to look at * a snapshot of the filesystem, without necessarily * requiring that all fs activity stops. */ if (fs->lfs_stoplwp == curlwp) return EALREADY; mutex_enter(&lfs_lock); while (fs->lfs_stoplwp != NULL) cv_wait(&fs->lfs_stopcv, &lfs_lock); fs->lfs_stoplwp = curlwp; if (fs->lfs_nowrap == 0) log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt); ++fs->lfs_nowrap; if (*(int *)ap->a_data == 1 || ap->a_command == LFCNWRAPSTOP_COMPAT) { log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n"); error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER, "segwrap", 0, &lfs_lock); log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n"); if (error) { lfs_wrapgo(fs, VTOI(ap->a_vp), 0); } } mutex_exit(&lfs_lock); return 0; case LFCNWRAPGO: case LFCNWRAPGO_COMPAT: /* * Having done its work, the agent wakes up the writer. * If the argument is 1, it sleeps until a new segment * is selected. */ mutex_enter(&lfs_lock); error = lfs_wrapgo(fs, VTOI(ap->a_vp), (ap->a_command == LFCNWRAPGO_COMPAT ? 1 : *((int *)ap->a_data))); mutex_exit(&lfs_lock); return error; case LFCNWRAPPASS: if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT)) return EALREADY; mutex_enter(&lfs_lock); if (fs->lfs_stoplwp != curlwp) { mutex_exit(&lfs_lock); return EALREADY; } if (fs->lfs_nowrap == 0) { mutex_exit(&lfs_lock); return EBUSY; } fs->lfs_wrappass = 1; wakeup(&fs->lfs_wrappass); /* Wait for the log to wrap, if asked */ if (*(int *)ap->a_data) { mutex_enter(&ap->a_vp->v_interlock); lfs_vref(ap->a_vp); VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT; log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n"); error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER, "segwrap", 0, &lfs_lock); log(LOG_NOTICE, "LFCNPASS done waiting\n"); VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT; lfs_vunref(ap->a_vp); } mutex_exit(&lfs_lock); return error; case LFCNWRAPSTATUS: mutex_enter(&lfs_lock); *(int *)ap->a_data = fs->lfs_wrapstatus; mutex_exit(&lfs_lock); return 0; default: return ufs_fcntl(v); } return 0; } int lfs_getpages(void *v) { struct vop_getpages_args /* { struct vnode *a_vp; voff_t a_offset; struct vm_page **a_m; int *a_count; int a_centeridx; vm_prot_t a_access_type; int a_advice; int a_flags; } */ *ap = v; if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM && (ap->a_access_type & VM_PROT_WRITE) != 0) { return EPERM; } if ((ap->a_access_type & VM_PROT_WRITE) != 0) { mutex_enter(&lfs_lock); LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED); mutex_exit(&lfs_lock); } /* * we're relying on the fact that genfs_getpages() always read in * entire filesystem blocks. */ return genfs_getpages(v); } /* * Wait for a page to become unbusy, possibly printing diagnostic messages * as well. * * Called with vp->v_interlock held; return with it held. */ static void wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label) { if ((pg->flags & PG_BUSY) == 0) return; /* Nothing to wait for! */ #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN) static struct vm_page *lastpg; if (label != NULL && pg != lastpg) { if (pg->owner_tag) { printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n", curproc->p_pid, curlwp->l_lid, label, pg, pg->owner, pg->lowner, pg->owner_tag); } else { printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n", curproc->p_pid, curlwp->l_lid, label, pg); } } lastpg = pg; #endif pg->flags |= PG_WANTED; UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0); mutex_enter(&vp->v_interlock); } /* * This routine is called by lfs_putpages() when it can't complete the * write because a page is busy. This means that either (1) someone, * possibly the pagedaemon, is looking at this page, and will give it up * presently; or (2) we ourselves are holding the page busy in the * process of being written (either gathered or actually on its way to * disk). We don't need to give up the segment lock, but we might need * to call lfs_writeseg() to expedite the page's journey to disk. * * Called with vp->v_interlock held; return with it held. */ /* #define BUSYWAIT */ static void write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg, int seglocked, const char *label) { #ifndef BUSYWAIT struct inode *ip = VTOI(vp); struct segment *sp = fs->lfs_sp; int count = 0; if (pg == NULL) return; while (pg->flags & PG_BUSY) { mutex_exit(&vp->v_interlock); if (sp->cbpp - sp->bpp > 1) { /* Write gathered pages */ lfs_updatemeta(sp); lfs_release_finfo(fs); (void) lfs_writeseg(fs, sp); /* * Reinitialize FIP */ KASSERT(sp->vp == vp); lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); } ++count; mutex_enter(&vp->v_interlock); wait_for_page(vp, pg, label); } if (label != NULL && count > 1) printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid, label, (count > 0 ? "looping, " : ""), count); #else preempt(1); #endif } /* * Make sure that for all pages in every block in the given range, * either all are dirty or all are clean. If any of the pages * we've seen so far are dirty, put the vnode on the paging chain, * and mark it IN_PAGING. * * If checkfirst != 0, don't check all the pages but return at the * first dirty page. */ static int check_dirty(struct lfs *fs, struct vnode *vp, off_t startoffset, off_t endoffset, off_t blkeof, int flags, int checkfirst, struct vm_page **pgp) { int by_list; struct vm_page *curpg = NULL; /* XXX: gcc */ struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg; off_t soff = 0; /* XXX: gcc */ voff_t off; int i; int nonexistent; int any_dirty; /* number of dirty pages */ int dirty; /* number of dirty pages in a block */ int tdirty; int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT; int pagedaemon = (curlwp == uvm.pagedaemon_lwp); ASSERT_MAYBE_SEGLOCK(fs); top: by_list = (vp->v_uobj.uo_npages <= ((endoffset - startoffset) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY); any_dirty = 0; if (by_list) { curpg = TAILQ_FIRST(&vp->v_uobj.memq); } else { soff = startoffset; } while (by_list || soff < MIN(blkeof, endoffset)) { if (by_list) { /* * Find the first page in a block. Skip * blocks outside our area of interest or beyond * the end of file. */ if (pages_per_block > 1) { while (curpg && ((curpg->offset & fs->lfs_bmask) || curpg->offset >= vp->v_size || curpg->offset >= endoffset)) curpg = TAILQ_NEXT(curpg, listq.queue); } if (curpg == NULL) break; soff = curpg->offset; } /* * Mark all pages in extended range busy; find out if any * of them are dirty. */ nonexistent = dirty = 0; for (i = 0; i == 0 || i < pages_per_block; i++) { if (by_list && pages_per_block <= 1) { pgs[i] = pg = curpg; } else { off = soff + (i << PAGE_SHIFT); pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off); if (pg == NULL) { ++nonexistent; continue; } } KASSERT(pg != NULL); /* * If we're holding the segment lock, we can deadlock * against a process that has our page and is waiting * for the cleaner, while the cleaner waits for the * segment lock. Just bail in that case. */ if ((pg->flags & PG_BUSY) && (pagedaemon || LFS_SEGLOCK_HELD(fs))) { if (i > 0) uvm_page_unbusy(pgs, i); DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n")); if (pgp) *pgp = pg; return -1; } while (pg->flags & PG_BUSY) { wait_for_page(vp, pg, NULL); if (i > 0) uvm_page_unbusy(pgs, i); goto top; } pg->flags |= PG_BUSY; UVM_PAGE_OWN(pg, "lfs_putpages"); pmap_page_protect(pg, VM_PROT_NONE); tdirty = (pmap_clear_modify(pg) || (pg->flags & PG_CLEAN) == 0); dirty += tdirty; } if (pages_per_block > 0 && nonexistent >= pages_per_block) { if (by_list) { curpg = TAILQ_NEXT(curpg, listq.queue); } else { soff += fs->lfs_bsize; } continue; } any_dirty += dirty; KASSERT(nonexistent == 0); /* * If any are dirty make all dirty; unbusy them, * but if we were asked to clean, wire them so that * the pagedaemon doesn't bother us about them while * they're on their way to disk. */ for (i = 0; i == 0 || i < pages_per_block; i++) { pg = pgs[i]; KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI))); if (dirty) { pg->flags &= ~PG_CLEAN; if (flags & PGO_FREE) { /* * Wire the page so that * pdaemon doesn't see it again. */ mutex_enter(&uvm_pageqlock); uvm_pagewire(pg); mutex_exit(&uvm_pageqlock); /* Suspended write flag */ pg->flags |= PG_DELWRI; } } if (pg->flags & PG_WANTED) wakeup(pg); pg->flags &= ~(PG_WANTED|PG_BUSY); UVM_PAGE_OWN(pg, NULL); } if (checkfirst && any_dirty) break; if (by_list) { curpg = TAILQ_NEXT(curpg, listq.queue); } else { soff += MAX(PAGE_SIZE, fs->lfs_bsize); } } return any_dirty; } /* * lfs_putpages functions like genfs_putpages except that * * (1) It needs to bounds-check the incoming requests to ensure that * they are block-aligned; if they are not, expand the range and * do the right thing in case, e.g., the requested range is clean * but the expanded range is dirty. * * (2) It needs to explicitly send blocks to be written when it is done. * If VOP_PUTPAGES is called without the seglock held, we simply take * the seglock and let lfs_segunlock wait for us. * XXX There might be a bad situation if we have to flush a vnode while * XXX lfs_markv is in operation. As of this writing we panic in this * XXX case. * * Assumptions: * * (1) The caller does not hold any pages in this vnode busy. If it does, * there is a danger that when we expand the page range and busy the * pages we will deadlock. * * (2) We are called with vp->v_interlock held; we must return with it * released. * * (3) We don't absolutely have to free pages right away, provided that * the request does not have PGO_SYNCIO. When the pagedaemon gives * us a request with PGO_FREE, we take the pages out of the paging * queue and wake up the writer, which will handle freeing them for us. * * We ensure that for any filesystem block, all pages for that * block are either resident or not, even if those pages are higher * than EOF; that means that we will be getting requests to free * "unused" pages above EOF all the time, and should ignore them. * * (4) If we are called with PGO_LOCKED, the finfo array we are to write * into has been set up for us by lfs_writefile. If not, we will * have to handle allocating and/or freeing an finfo entry. * * XXX note that we're (ab)using PGO_LOCKED as "seglock held". */ /* How many times to loop before we should start to worry */ #define TOOMANY 4 int lfs_putpages(void *v) { int error; struct vop_putpages_args /* { struct vnode *a_vp; voff_t a_offlo; voff_t a_offhi; int a_flags; } */ *ap = v; struct vnode *vp; struct inode *ip; struct lfs *fs; struct segment *sp; off_t origoffset, startoffset, endoffset, origendoffset, blkeof; off_t off, max_endoffset; bool seglocked, sync, pagedaemon; struct vm_page *pg, *busypg; UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist); #ifdef DEBUG int debug_n_again, debug_n_dirtyclean; #endif vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_lfs; sync = (ap->a_flags & PGO_SYNCIO) != 0; pagedaemon = (curlwp == uvm.pagedaemon_lwp); /* Putpages does nothing for metadata. */ if (vp == fs->lfs_ivnode || vp->v_type != VREG) { mutex_exit(&vp->v_interlock); return 0; } /* * If there are no pages, don't do anything. */ if (vp->v_uobj.uo_npages == 0) { if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } mutex_exit(&vp->v_interlock); /* Remove us from paging queue, if we were on it */ mutex_enter(&lfs_lock); if (ip->i_flags & IN_PAGING) { ip->i_flags &= ~IN_PAGING; TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain); } mutex_exit(&lfs_lock); return 0; } blkeof = blkroundup(fs, ip->i_size); /* * Ignore requests to free pages past EOF but in the same block * as EOF, unless the request is synchronous. (If the request is * sync, it comes from lfs_truncate.) * XXXUBC Make these pages look "active" so the pagedaemon won't * XXXUBC bother us with them again. */ if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) { origoffset = ap->a_offlo; for (off = origoffset; off < blkeof; off += fs->lfs_bsize) { pg = uvm_pagelookup(&vp->v_uobj, off); KASSERT(pg != NULL); while (pg->flags & PG_BUSY) { pg->flags |= PG_WANTED; UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput2", 0); mutex_enter(&vp->v_interlock); } mutex_enter(&uvm_pageqlock); uvm_pageactivate(pg); mutex_exit(&uvm_pageqlock); } ap->a_offlo = blkeof; if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) { mutex_exit(&vp->v_interlock); return 0; } } /* * Extend page range to start and end at block boundaries. * (For the purposes of VOP_PUTPAGES, fragments don't exist.) */ origoffset = ap->a_offlo; origendoffset = ap->a_offhi; startoffset = origoffset & ~(fs->lfs_bmask); max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift) << fs->lfs_bshift; if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) { endoffset = max_endoffset; origendoffset = endoffset; } else { origendoffset = round_page(ap->a_offhi); endoffset = round_page(blkroundup(fs, origendoffset)); } KASSERT(startoffset > 0 || endoffset >= startoffset); if (startoffset == endoffset) { /* Nothing to do, why were we called? */ mutex_exit(&vp->v_interlock); DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %" PRId64 "\n", startoffset)); return 0; } ap->a_offlo = startoffset; ap->a_offhi = endoffset; /* * If not cleaning, just send the pages through genfs_putpages * to be returned to the pool. */ if (!(ap->a_flags & PGO_CLEANIT)) return genfs_putpages(v); /* Set PGO_BUSYFAIL to avoid deadlocks */ ap->a_flags |= PGO_BUSYFAIL; /* * Likewise, if we are asked to clean but the pages are not * dirty, we can just free them using genfs_putpages. */ #ifdef DEBUG debug_n_dirtyclean = 0; #endif do { int r; /* Count the number of dirty pages */ r = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 1, NULL); if (r < 0) { /* Pages are busy with another process */ mutex_exit(&vp->v_interlock); return EDEADLK; } if (r > 0) /* Some pages are dirty */ break; /* * Sometimes pages are dirtied between the time that * we check and the time we try to clean them. * Instruct lfs_gop_write to return EDEADLK in this case * so we can write them properly. */ ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE; r = genfs_do_putpages(vp, startoffset, endoffset, ap->a_flags, &busypg); ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE; if (r != EDEADLK) return r; /* One of the pages was busy. Start over. */ mutex_enter(&vp->v_interlock); wait_for_page(vp, busypg, "dirtyclean"); #ifdef DEBUG ++debug_n_dirtyclean; #endif } while(1); #ifdef DEBUG if (debug_n_dirtyclean > TOOMANY) printf("lfs_putpages: dirtyclean: looping, n = %d\n", debug_n_dirtyclean); #endif /* * Dirty and asked to clean. * * Pagedaemon can't actually write LFS pages; wake up * the writer to take care of that. The writer will * notice the pager inode queue and act on that. */ if (pagedaemon) { mutex_enter(&lfs_lock); if (!(ip->i_flags & IN_PAGING)) { ip->i_flags |= IN_PAGING; TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain); } wakeup(&lfs_writer_daemon); mutex_exit(&lfs_lock); mutex_exit(&vp->v_interlock); preempt(); return EWOULDBLOCK; } /* * If this is a file created in a recent dirop, we can't flush its * inode until the dirop is complete. Drain dirops, then flush the * filesystem (taking care of any other pending dirops while we're * at it). */ if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT && (vp->v_uflag & VU_DIROP)) { int locked; DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n")); locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE); mutex_exit(&vp->v_interlock); lfs_writer_enter(fs, "ppdirop"); if (locked) VOP_UNLOCK(vp, 0); /* XXX why? */ mutex_enter(&lfs_lock); lfs_flush_fs(fs, sync ? SEGM_SYNC : 0); mutex_exit(&lfs_lock); mutex_enter(&vp->v_interlock); if (locked) { VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK); mutex_enter(&vp->v_interlock); } lfs_writer_leave(fs); /* XXX the flush should have taken care of this one too! */ } /* * This is it. We are going to write some pages. From here on * down it's all just mechanics. * * Don't let genfs_putpages wait; lfs_segunlock will wait for us. */ ap->a_flags &= ~PGO_SYNCIO; /* * If we've already got the seglock, flush the node and return. * The FIP has already been set up for us by lfs_writefile, * and FIP cleanup and lfs_updatemeta will also be done there, * unless genfs_putpages returns EDEADLK; then we must flush * what we have, and correct FIP and segment header accounting. */ get_seglock: /* * If we are not called with the segment locked, lock it. * Account for a new FIP in the segment header, and set sp->vp. * (This should duplicate the setup at the top of lfs_writefile().) */ seglocked = (ap->a_flags & PGO_LOCKED) != 0; if (!seglocked) { mutex_exit(&vp->v_interlock); error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0)); if (error != 0) return error; mutex_enter(&vp->v_interlock); lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); } sp = fs->lfs_sp; KASSERT(sp->vp == NULL); sp->vp = vp; /* * Ensure that the partial segment is marked SS_DIROP if this * vnode is a DIROP. */ if (!seglocked && vp->v_uflag & VU_DIROP) ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT); /* * Loop over genfs_putpages until all pages are gathered. * genfs_putpages() drops the interlock, so reacquire it if necessary. * Whenever we lose the interlock we have to rerun check_dirty, as * well, since more pages might have been dirtied in our absence. */ #ifdef DEBUG debug_n_again = 0; #endif do { busypg = NULL; if (check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags, 0, &busypg) < 0) { mutex_exit(&vp->v_interlock); mutex_enter(&vp->v_interlock); write_and_wait(fs, vp, busypg, seglocked, NULL); if (!seglocked) { lfs_release_finfo(fs); lfs_segunlock(fs); } sp->vp = NULL; goto get_seglock; } busypg = NULL; error = genfs_do_putpages(vp, startoffset, endoffset, ap->a_flags, &busypg); if (error == EDEADLK || error == EAGAIN) { DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned" " %d ino %d off %x (seg %d)\n", error, ip->i_number, fs->lfs_offset, dtosn(fs, fs->lfs_offset))); mutex_enter(&vp->v_interlock); write_and_wait(fs, vp, busypg, seglocked, "again"); } #ifdef DEBUG ++debug_n_again; #endif } while (error == EDEADLK); #ifdef DEBUG if (debug_n_again > TOOMANY) printf("lfs_putpages: again: looping, n = %d\n", debug_n_again); #endif KASSERT(sp != NULL && sp->vp == vp); if (!seglocked) { sp->vp = NULL; /* Write indirect blocks as well */ lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir); lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir); lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir); KASSERT(sp->vp == NULL); sp->vp = vp; } /* * Blocks are now gathered into a segment waiting to be written. * All that's left to do is update metadata, and write them. */ lfs_updatemeta(sp); KASSERT(sp->vp == vp); sp->vp = NULL; /* * If we were called from lfs_writefile, we don't need to clean up * the FIP or unlock the segment lock. We're done. */ if (seglocked) return error; /* Clean up FIP and send it to disk. */ lfs_release_finfo(fs); lfs_writeseg(fs, fs->lfs_sp); /* * Remove us from paging queue if we wrote all our pages. */ if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) { mutex_enter(&lfs_lock); if (ip->i_flags & IN_PAGING) { ip->i_flags &= ~IN_PAGING; TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain); } mutex_exit(&lfs_lock); } /* * XXX - with the malloc/copy writeseg, the pages are freed by now * even if we don't wait (e.g. if we hold a nested lock). This * will not be true if we stop using malloc/copy. */ KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT); lfs_segunlock(fs); /* * Wait for v_numoutput to drop to zero. The seglock should * take care of this, but there is a slight possibility that * aiodoned might not have got around to our buffers yet. */ if (sync) { mutex_enter(&vp->v_interlock); while (vp->v_numoutput > 0) { DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on" " num %d\n", ip->i_number, vp->v_numoutput)); cv_wait(&vp->v_cv, &vp->v_interlock); } mutex_exit(&vp->v_interlock); } return error; } /* * Return the last logical file offset that should be written for this file * if we're doing a write that ends at "size". If writing, we need to know * about sizes on disk, i.e. fragments if there are any; if reading, we need * to know about entire blocks. */ void lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; daddr_t olbn, nlbn; olbn = lblkno(fs, ip->i_size); nlbn = lblkno(fs, size); if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) { *eobp = fragroundup(fs, size); } else { *eobp = blkroundup(fs, size); } } #ifdef DEBUG void lfs_dump_vop(void *); void lfs_dump_vop(void *v) { struct vop_putpages_args /* { struct vnode *a_vp; voff_t a_offlo; voff_t a_offhi; int a_flags; } */ *ap = v; #ifdef DDB vfs_vnode_print(ap->a_vp, 0, printf); #endif lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din); } #endif int lfs_mmap(void *v) { struct vop_mmap_args /* { const struct vnodeop_desc *a_desc; struct vnode *a_vp; vm_prot_t a_prot; kauth_cred_t a_cred; } */ *ap = v; if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) return EOPNOTSUPP; return ufs_mmap(v); }