/* $NetBSD: ip_input.c,v 1.275 2008/10/04 00:09:34 pooka Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __KERNEL_RCSID(0, "$NetBSD: ip_input.c,v 1.275 2008/10/04 00:09:34 pooka Exp $"); #include "opt_inet.h" #include "opt_gateway.h" #include "opt_pfil_hooks.h" #include "opt_ipsec.h" #include "opt_mrouting.h" #include "opt_mbuftrace.h" #include "opt_inet_csum.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* just for gif_ttl */ #include #include "gif.h" #include #include "gre.h" #ifdef MROUTING #include #endif #ifdef IPSEC #include #include #include #endif #ifdef FAST_IPSEC #include #include #endif /* FAST_IPSEC*/ #ifndef IPFORWARDING #ifdef GATEWAY #define IPFORWARDING 1 /* forward IP packets not for us */ #else /* GATEWAY */ #define IPFORWARDING 0 /* don't forward IP packets not for us */ #endif /* GATEWAY */ #endif /* IPFORWARDING */ #ifndef IPSENDREDIRECTS #define IPSENDREDIRECTS 1 #endif #ifndef IPFORWSRCRT #define IPFORWSRCRT 1 /* forward source-routed packets */ #endif #ifndef IPALLOWSRCRT #define IPALLOWSRCRT 1 /* allow source-routed packets */ #endif #ifndef IPMTUDISC #define IPMTUDISC 1 #endif #ifndef IPMTUDISCTIMEOUT #define IPMTUDISCTIMEOUT (10 * 60) /* as per RFC 1191 */ #endif /* * Note: DIRECTED_BROADCAST is handled this way so that previous * configuration using this option will Just Work. */ #ifndef IPDIRECTEDBCAST #ifdef DIRECTED_BROADCAST #define IPDIRECTEDBCAST 1 #else #define IPDIRECTEDBCAST 0 #endif /* DIRECTED_BROADCAST */ #endif /* IPDIRECTEDBCAST */ int ipforwarding = IPFORWARDING; int ipsendredirects = IPSENDREDIRECTS; int ip_defttl = IPDEFTTL; int ip_forwsrcrt = IPFORWSRCRT; int ip_directedbcast = IPDIRECTEDBCAST; int ip_allowsrcrt = IPALLOWSRCRT; int ip_mtudisc = IPMTUDISC; int ip_mtudisc_timeout = IPMTUDISCTIMEOUT; #ifdef DIAGNOSTIC int ipprintfs = 0; #endif int ip_do_randomid = 0; /* * XXX - Setting ip_checkinterface mostly implements the receive side of * the Strong ES model described in RFC 1122, but since the routing table * and transmit implementation do not implement the Strong ES model, * setting this to 1 results in an odd hybrid. * * XXX - ip_checkinterface currently must be disabled if you use ipnat * to translate the destination address to another local interface. * * XXX - ip_checkinterface must be disabled if you add IP aliases * to the loopback interface instead of the interface where the * packets for those addresses are received. */ int ip_checkinterface = 0; struct rttimer_queue *ip_mtudisc_timeout_q = NULL; int ipqmaxlen = IFQ_MAXLEN; u_long in_ifaddrhash; /* size of hash table - 1 */ int in_ifaddrentries; /* total number of addrs */ struct in_ifaddrhead in_ifaddrhead; struct in_ifaddrhashhead *in_ifaddrhashtbl; u_long in_multihash; /* size of hash table - 1 */ int in_multientries; /* total number of addrs */ struct in_multihashhead *in_multihashtbl; struct ifqueue ipintrq; uint16_t ip_id; percpu_t *ipstat_percpu; #ifdef PFIL_HOOKS struct pfil_head inet_pfil_hook; #endif /* * Cached copy of nmbclusters. If nbclusters is different, * recalculate IP parameters derived from nmbclusters. */ static int ip_nmbclusters; /* copy of nmbclusters */ static void ip_nmbclusters_changed(void); /* recalc limits */ #define CHECK_NMBCLUSTER_PARAMS() \ do { \ if (__predict_false(ip_nmbclusters != nmbclusters)) \ ip_nmbclusters_changed(); \ } while (/*CONSTCOND*/0) /* IP datagram reassembly queues (hashed) */ #define IPREASS_NHASH_LOG2 6 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2) #define IPREASS_HMASK (IPREASS_NHASH - 1) #define IPREASS_HASH(x,y) \ (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK) struct ipqhead ipq[IPREASS_NHASH]; int ipq_locked; static int ip_nfragpackets; /* packets in reass queue */ static int ip_nfrags; /* total fragments in reass queues */ int ip_maxfragpackets = 200; /* limit on packets. XXX sysctl */ int ip_maxfrags; /* limit on fragments. XXX sysctl */ /* * Additive-Increase/Multiplicative-Decrease (AIMD) strategy for * IP reassembly queue buffer managment. * * We keep a count of total IP fragments (NB: not fragmented packets!) * awaiting reassembly (ip_nfrags) and a limit (ip_maxfrags) on fragments. * If ip_nfrags exceeds ip_maxfrags the limit, we drop half the * total fragments in reassembly queues.This AIMD policy avoids * repeatedly deleting single packets under heavy fragmentation load * (e.g., from lossy NFS peers). */ static u_int ip_reass_ttl_decr(u_int ticks); static void ip_reass_drophalf(void); static inline int ipq_lock_try(void); static inline void ipq_unlock(void); static inline int ipq_lock_try(void) { int s; /* * Use splvm() -- we're blocking things that would cause * mbuf allocation. */ s = splvm(); if (ipq_locked) { splx(s); return (0); } ipq_locked = 1; splx(s); return (1); } static inline void ipq_unlock(void) { int s; s = splvm(); ipq_locked = 0; splx(s); } #ifdef DIAGNOSTIC #define IPQ_LOCK() \ do { \ if (ipq_lock_try() == 0) { \ printf("%s:%d: ipq already locked\n", __FILE__, __LINE__); \ panic("ipq_lock"); \ } \ } while (/*CONSTCOND*/ 0) #define IPQ_LOCK_CHECK() \ do { \ if (ipq_locked == 0) { \ printf("%s:%d: ipq lock not held\n", __FILE__, __LINE__); \ panic("ipq lock check"); \ } \ } while (/*CONSTCOND*/ 0) #else #define IPQ_LOCK() (void) ipq_lock_try() #define IPQ_LOCK_CHECK() /* nothing */ #endif #define IPQ_UNLOCK() ipq_unlock() struct pool inmulti_pool; struct pool ipqent_pool; #ifdef INET_CSUM_COUNTERS #include struct evcnt ip_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "hwcsum bad"); struct evcnt ip_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "hwcsum ok"); struct evcnt ip_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "inet", "swcsum"); #define INET_CSUM_COUNTER_INCR(ev) (ev)->ev_count++ EVCNT_ATTACH_STATIC(ip_hwcsum_bad); EVCNT_ATTACH_STATIC(ip_hwcsum_ok); EVCNT_ATTACH_STATIC(ip_swcsum); #else #define INET_CSUM_COUNTER_INCR(ev) /* nothing */ #endif /* INET_CSUM_COUNTERS */ /* * We need to save the IP options in case a protocol wants to respond * to an incoming packet over the same route if the packet got here * using IP source routing. This allows connection establishment and * maintenance when the remote end is on a network that is not known * to us. */ int ip_nhops = 0; static struct ip_srcrt { struct in_addr dst; /* final destination */ char nop; /* one NOP to align */ char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */ struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)]; } ip_srcrt; static void save_rte(u_char *, struct in_addr); #ifdef MBUFTRACE struct mowner ip_rx_mowner = MOWNER_INIT("internet", "rx"); struct mowner ip_tx_mowner = MOWNER_INIT("internet", "tx"); #endif /* * Compute IP limits derived from the value of nmbclusters. */ static void ip_nmbclusters_changed(void) { ip_maxfrags = nmbclusters / 4; ip_nmbclusters = nmbclusters; } /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init(void) { const struct protosw *pr; int i; pool_init(&inmulti_pool, sizeof(struct in_multi), 0, 0, 0, "inmltpl", NULL, IPL_SOFTNET); pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqepl", NULL, IPL_VM); pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == 0) panic("ip_init"); for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) ip_protox[pr->pr_protocol] = pr - inetsw; for (i = 0; i < IPREASS_NHASH; i++) LIST_INIT(&ipq[i]); ip_initid(); ip_id = time_second & 0xfffff; ipintrq.ifq_maxlen = ipqmaxlen; ip_nmbclusters_changed(); TAILQ_INIT(&in_ifaddrhead); in_ifaddrhashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, &in_ifaddrhash); in_multihashtbl = hashinit(IN_IFADDR_HASH_SIZE, HASH_LIST, true, &in_multihash); ip_mtudisc_timeout_q = rt_timer_queue_create(ip_mtudisc_timeout); #ifdef GATEWAY ipflow_init(ip_hashsize); #endif #ifdef PFIL_HOOKS /* Register our Packet Filter hook. */ inet_pfil_hook.ph_type = PFIL_TYPE_AF; inet_pfil_hook.ph_af = AF_INET; i = pfil_head_register(&inet_pfil_hook); if (i != 0) printf("ip_init: WARNING: unable to register pfil hook, " "error %d\n", i); #endif /* PFIL_HOOKS */ #ifdef MBUFTRACE MOWNER_ATTACH(&ip_tx_mowner); MOWNER_ATTACH(&ip_rx_mowner); #endif /* MBUFTRACE */ ipstat_percpu = percpu_alloc(sizeof(uint64_t) * IP_NSTATS); } struct sockaddr_in ipaddr = { .sin_len = sizeof(ipaddr), .sin_family = AF_INET, }; struct route ipforward_rt; /* * IP software interrupt routine */ void ipintr(void) { int s; struct mbuf *m; mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); while (!IF_IS_EMPTY(&ipintrq)) { s = splnet(); IF_DEQUEUE(&ipintrq, m); splx(s); if (m == NULL) break; ip_input(m); } KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } /* * Ip input routine. Checksum and byte swap header. If fragmented * try to reassemble. Process options. Pass to next level. */ void ip_input(struct mbuf *m) { struct ip *ip = NULL; struct ipq *fp; struct in_ifaddr *ia; struct ifaddr *ifa; struct ipqent *ipqe; int hlen = 0, mff, len; int downmatch; int checkif; int srcrt = 0; int s; u_int hash; #ifdef FAST_IPSEC struct m_tag *mtag; struct tdb_ident *tdbi; struct secpolicy *sp; int error; #endif /* FAST_IPSEC */ MCLAIM(m, &ip_rx_mowner); #ifdef DIAGNOSTIC if ((m->m_flags & M_PKTHDR) == 0) panic("ipintr no HDR"); #endif /* * If no IP addresses have been set yet but the interfaces * are receiving, can't do anything with incoming packets yet. */ if (TAILQ_FIRST(&in_ifaddrhead) == 0) goto bad; IP_STATINC(IP_STAT_TOTAL); /* * If the IP header is not aligned, slurp it up into a new * mbuf with space for link headers, in the event we forward * it. Otherwise, if it is aligned, make sure the entire * base IP header is in the first mbuf of the chain. */ if (IP_HDR_ALIGNED_P(mtod(m, void *)) == 0) { if ((m = m_copyup(m, sizeof(struct ip), (max_linkhdr + 3) & ~3)) == NULL) { /* XXXJRT new stat, please */ IP_STATINC(IP_STAT_TOOSMALL); return; } } else if (__predict_false(m->m_len < sizeof (struct ip))) { if ((m = m_pullup(m, sizeof (struct ip))) == NULL) { IP_STATINC(IP_STAT_TOOSMALL); return; } } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { IP_STATINC(IP_STAT_BADVERS); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ IP_STATINC(IP_STAT_BADHLEN); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == 0) { IP_STATINC(IP_STAT_BADHLEN); return; } ip = mtod(m, struct ip *); } /* * RFC1122: packets with a multicast source address are * not allowed. */ if (IN_MULTICAST(ip->ip_src.s_addr)) { IP_STATINC(IP_STAT_BADADDR); goto bad; } /* 127/8 must not appear on wire - RFC1122 */ if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET || (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) { if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) { IP_STATINC(IP_STAT_BADADDR); goto bad; } } switch (m->m_pkthdr.csum_flags & ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_IPv4) | M_CSUM_IPv4_BAD)) { case M_CSUM_IPv4|M_CSUM_IPv4_BAD: INET_CSUM_COUNTER_INCR(&ip_hwcsum_bad); goto badcsum; case M_CSUM_IPv4: /* Checksum was okay. */ INET_CSUM_COUNTER_INCR(&ip_hwcsum_ok); break; default: /* * Must compute it ourselves. Maybe skip checksum on * loopback interfaces. */ if (__predict_true(!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) || ip_do_loopback_cksum)) { INET_CSUM_COUNTER_INCR(&ip_swcsum); if (in_cksum(m, hlen) != 0) goto badcsum; } break; } /* Retrieve the packet length. */ len = ntohs(ip->ip_len); /* * Check for additional length bogosity */ if (len < hlen) { IP_STATINC(IP_STAT_BADLEN); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < len) { IP_STATINC(IP_STAT_TOOSHORT); goto bad; } if (m->m_pkthdr.len > len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = len; m->m_pkthdr.len = len; } else m_adj(m, len - m->m_pkthdr.len); } #if defined(IPSEC) /* ipflow (IP fast forwarding) is not compatible with IPsec. */ m->m_flags &= ~M_CANFASTFWD; #else /* * Assume that we can create a fast-forward IP flow entry * based on this packet. */ m->m_flags |= M_CANFASTFWD; #endif #ifdef PFIL_HOOKS /* * Run through list of hooks for input packets. If there are any * filters which require that additional packets in the flow are * not fast-forwarded, they must clear the M_CANFASTFWD flag. * Note that filters must _never_ set this flag, as another filter * in the list may have previously cleared it. */ /* * let ipfilter look at packet on the wire, * not the decapsulated packet. */ #ifdef IPSEC if (!ipsec_getnhist(m)) #elif defined(FAST_IPSEC) if (!ipsec_indone(m)) #else if (1) #endif { struct in_addr odst; odst = ip->ip_dst; if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif, PFIL_IN) != 0) return; if (m == NULL) return; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; /* * XXX The setting of "srcrt" here is to prevent ip_forward() * from generating ICMP redirects for packets that have * been redirected by a hook back out on to the same LAN that * they came from and is not an indication that the packet * is being inffluenced by source routing options. This * allows things like * "rdr tlp0 0/0 port 80 -> 1.1.1.200 3128 tcp" * where tlp0 is both on the 1.1.1.0/24 network and is the * default route for hosts on 1.1.1.0/24. Of course this * also requires a "map tlp0 ..." to complete the story. * One might argue whether or not this kind of network config. * should be supported in this manner... */ srcrt = (odst.s_addr != ip->ip_dst.s_addr); } #endif /* PFIL_HOOKS */ #ifdef ALTQ /* XXX Temporary until ALTQ is changed to use a pfil hook */ if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) { /* packet dropped by traffic conditioner */ return; } #endif /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ ip_nhops = 0; /* for source routed packets */ if (hlen > sizeof (struct ip) && ip_dooptions(m)) return; /* * Enable a consistency check between the destination address * and the arrival interface for a unicast packet (the RFC 1122 * strong ES model) if IP forwarding is disabled and the packet * is not locally generated. * * XXX - Checking also should be disabled if the destination * address is ipnat'ed to a different interface. * * XXX - Checking is incompatible with IP aliases added * to the loopback interface instead of the interface where * the packets are received. * * XXX - We need to add a per ifaddr flag for this so that * we get finer grain control. */ checkif = ip_checkinterface && (ipforwarding == 0) && (m->m_pkthdr.rcvif != NULL) && ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0); /* * Check our list of addresses, to see if the packet is for us. * * Traditional 4.4BSD did not consult IFF_UP at all. * The behavior here is to treat addresses on !IFF_UP interface * as not mine. */ downmatch = 0; LIST_FOREACH(ia, &IN_IFADDR_HASH(ip->ip_dst.s_addr), ia_hash) { if (in_hosteq(ia->ia_addr.sin_addr, ip->ip_dst)) { if (checkif && ia->ia_ifp != m->m_pkthdr.rcvif) continue; if ((ia->ia_ifp->if_flags & IFF_UP) != 0) break; else downmatch++; } } if (ia != NULL) goto ours; if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) { IFADDR_FOREACH(ifa, m->m_pkthdr.rcvif) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (in_hosteq(ip->ip_dst, ia->ia_broadaddr.sin_addr) || in_hosteq(ip->ip_dst, ia->ia_netbroadcast) || /* * Look for all-0's host part (old broadcast addr), * either for subnet or net. */ ip->ip_dst.s_addr == ia->ia_subnet || ip->ip_dst.s_addr == ia->ia_net) goto ours; /* * An interface with IP address zero accepts * all packets that arrive on that interface. */ if (in_nullhost(ia->ia_addr.sin_addr)) goto ours; } } if (IN_MULTICAST(ip->ip_dst.s_addr)) { struct in_multi *inm; #ifdef MROUTING extern struct socket *ip_mrouter; if (ip_mrouter) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. * * (The IP ident field is put in the same byte order * as expected when ip_mforward() is called from * ip_output().) */ if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) { IP_STATINC(IP_STAT_CANTFORWARD); m_freem(m); return; } /* * The process-level routing demon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) goto ours; IP_STATINC(IP_STAT_CANTFORWARD); } #endif /* * See if we belong to the destination multicast group on the * arrival interface. */ IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm); if (inm == NULL) { IP_STATINC(IP_STAT_CANTFORWARD); m_freem(m); return; } goto ours; } if (ip->ip_dst.s_addr == INADDR_BROADCAST || in_nullhost(ip->ip_dst)) goto ours; /* * Not for us; forward if possible and desirable. */ if (ipforwarding == 0) { IP_STATINC(IP_STAT_CANTFORWARD); m_freem(m); } else { /* * If ip_dst matched any of my address on !IFF_UP interface, * and there's no IFF_UP interface that matches ip_dst, * send icmp unreach. Forwarding it will result in in-kernel * forwarding loop till TTL goes to 0. */ if (downmatch) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0); IP_STATINC(IP_STAT_CANTFORWARD); return; } #ifdef IPSEC if (ipsec4_in_reject(m, NULL)) { IPSEC_STATINC(IPSEC_STAT_IN_POLVIO); goto bad; } #endif #ifdef FAST_IPSEC mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); s = splsoftnet(); if (mtag != NULL) { tdbi = (struct tdb_ident *)(mtag + 1); sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); } else { sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error); } if (sp == NULL) { /* NB: can happen if error */ splx(s); /*XXX error stat???*/ DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/ goto bad; } /* * Check security policy against packet attributes. */ error = ipsec_in_reject(sp, m); KEY_FREESP(&sp); splx(s); if (error) { IP_STATINC(IP_STAT_CANTFORWARD); goto bad; } /* * Peek at the outbound SP for this packet to determine if * it's a Fast Forward candidate. */ mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); if (mtag != NULL) m->m_flags &= ~M_CANFASTFWD; else { s = splsoftnet(); sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), &error, NULL); if (sp != NULL) { m->m_flags &= ~M_CANFASTFWD; KEY_FREESP(&sp); } splx(s); } #endif /* FAST_IPSEC */ ip_forward(m, srcrt); } return; ours: /* * If offset or IP_MF are set, must reassemble. * Otherwise, nothing need be done. * (We could look in the reassembly queue to see * if the packet was previously fragmented, * but it's not worth the time; just let them time out.) */ if (ip->ip_off & ~htons(IP_DF|IP_RF)) { uint16_t off; /* * Prevent TCP blind data attacks by not allowing non-initial * fragments to start at less than 68 bytes (minimal fragment * size) and making sure the first fragment is at least 68 * bytes. */ off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; if ((off > 0 ? off + hlen : len) < IP_MINFRAGSIZE - 1) { IP_STATINC(IP_STAT_BADFRAGS); goto bad; } /* * Look for queue of fragments * of this datagram. */ IPQ_LOCK(); hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id); LIST_FOREACH(fp, &ipq[hash], ipq_q) { if (ip->ip_id == fp->ipq_id && in_hosteq(ip->ip_src, fp->ipq_src) && in_hosteq(ip->ip_dst, fp->ipq_dst) && ip->ip_p == fp->ipq_p) { /* * Make sure the TOS is matches previous * fragments. */ if (ip->ip_tos != fp->ipq_tos) { IP_STATINC(IP_STAT_BADFRAGS); goto bad; } goto found; } } fp = 0; found: /* * Adjust ip_len to not reflect header, * set ipqe_mff if more fragments are expected, * convert offset of this to bytes. */ ip->ip_len = htons(ntohs(ip->ip_len) - hlen); mff = (ip->ip_off & htons(IP_MF)) != 0; if (mff) { /* * Make sure that fragments have a data length * that's a non-zero multiple of 8 bytes. */ if (ntohs(ip->ip_len) == 0 || (ntohs(ip->ip_len) & 0x7) != 0) { IP_STATINC(IP_STAT_BADFRAGS); IPQ_UNLOCK(); goto bad; } } ip->ip_off = htons((ntohs(ip->ip_off) & IP_OFFMASK) << 3); /* * If datagram marked as having more fragments * or if this is not the first fragment, * attempt reassembly; if it succeeds, proceed. */ if (mff || ip->ip_off != htons(0)) { IP_STATINC(IP_STAT_FRAGMENTS); s = splvm(); ipqe = pool_get(&ipqent_pool, PR_NOWAIT); splx(s); if (ipqe == NULL) { IP_STATINC(IP_STAT_RCVMEMDROP); IPQ_UNLOCK(); goto bad; } ipqe->ipqe_mff = mff; ipqe->ipqe_m = m; ipqe->ipqe_ip = ip; m = ip_reass(ipqe, fp, &ipq[hash]); if (m == 0) { IPQ_UNLOCK(); return; } IP_STATINC(IP_STAT_REASSEMBLED); ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip->ip_len = htons(ntohs(ip->ip_len) + hlen); } else if (fp) ip_freef(fp); IPQ_UNLOCK(); } #if defined(IPSEC) /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0 && ipsec4_in_reject(m, NULL)) { IPSEC_STATINC(IPSEC_STAT_IN_POLVIO); goto bad; } #endif #ifdef FAST_IPSEC /* * enforce IPsec policy checking if we are seeing last header. * note that we do not visit this with protocols with pcb layer * code - like udp/tcp/raw ip. */ if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) != 0) { /* * Check if the packet has already had IPsec processing * done. If so, then just pass it along. This tag gets * set during AH, ESP, etc. input handling, before the * packet is returned to the ip input queue for delivery. */ mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL); s = splsoftnet(); if (mtag != NULL) { tdbi = (struct tdb_ident *)(mtag + 1); sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND); } else { sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND, IP_FORWARDING, &error); } if (sp != NULL) { /* * Check security policy against packet attributes. */ error = ipsec_in_reject(sp, m); KEY_FREESP(&sp); } else { /* XXX error stat??? */ error = EINVAL; DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/ } splx(s); if (error) goto bad; } #endif /* FAST_IPSEC */ /* * Switch out to protocol's input routine. */ #if IFA_STATS if (ia && ip) ia->ia_ifa.ifa_data.ifad_inbytes += ntohs(ip->ip_len); #endif IP_STATINC(IP_STAT_DELIVERED); { int off = hlen, nh = ip->ip_p; (*inetsw[ip_protox[nh]].pr_input)(m, off, nh); return; } bad: m_freem(m); return; badcsum: IP_STATINC(IP_STAT_BADSUM); m_freem(m); } /* * Take incoming datagram fragment and try to * reassemble it into whole datagram. If a chain for * reassembly of this datagram already exists, then it * is given as fp; otherwise have to make a chain. */ struct mbuf * ip_reass(struct ipqent *ipqe, struct ipq *fp, struct ipqhead *ipqhead) { struct mbuf *m = ipqe->ipqe_m; struct ipqent *nq, *p, *q; struct ip *ip; struct mbuf *t; int hlen = ipqe->ipqe_ip->ip_hl << 2; int i, next, s; IPQ_LOCK_CHECK(); /* * Presence of header sizes in mbufs * would confuse code below. */ m->m_data += hlen; m->m_len -= hlen; #ifdef notyet /* make sure fragment limit is up-to-date */ CHECK_NMBCLUSTER_PARAMS(); /* If we have too many fragments, drop the older half. */ if (ip_nfrags >= ip_maxfrags) ip_reass_drophalf(void); #endif /* * We are about to add a fragment; increment frag count. */ ip_nfrags++; /* * If first fragment to arrive, create a reassembly queue. */ if (fp == 0) { /* * Enforce upper bound on number of fragmented packets * for which we attempt reassembly; * If maxfrag is 0, never accept fragments. * If maxfrag is -1, accept all fragments without limitation. */ if (ip_maxfragpackets < 0) ; else if (ip_nfragpackets >= ip_maxfragpackets) goto dropfrag; ip_nfragpackets++; MALLOC(fp, struct ipq *, sizeof (struct ipq), M_FTABLE, M_NOWAIT); if (fp == NULL) goto dropfrag; LIST_INSERT_HEAD(ipqhead, fp, ipq_q); fp->ipq_nfrags = 1; fp->ipq_ttl = IPFRAGTTL; fp->ipq_p = ipqe->ipqe_ip->ip_p; fp->ipq_id = ipqe->ipqe_ip->ip_id; fp->ipq_tos = ipqe->ipqe_ip->ip_tos; TAILQ_INIT(&fp->ipq_fragq); fp->ipq_src = ipqe->ipqe_ip->ip_src; fp->ipq_dst = ipqe->ipqe_ip->ip_dst; p = NULL; goto insert; } else { fp->ipq_nfrags++; } /* * Find a segment which begins after this one does. */ for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = TAILQ_NEXT(q, ipqe_q)) if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off)) break; /* * If there is a preceding segment, it may provide some of * our data already. If so, drop the data from the incoming * segment. If it provides all of our data, drop us. */ if (p != NULL) { i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) - ntohs(ipqe->ipqe_ip->ip_off); if (i > 0) { if (i >= ntohs(ipqe->ipqe_ip->ip_len)) goto dropfrag; m_adj(ipqe->ipqe_m, i); ipqe->ipqe_ip->ip_off = htons(ntohs(ipqe->ipqe_ip->ip_off) + i); ipqe->ipqe_ip->ip_len = htons(ntohs(ipqe->ipqe_ip->ip_len) - i); } } /* * While we overlap succeeding segments trim them or, * if they are completely covered, dequeue them. */ for (; q != NULL && ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) > ntohs(q->ipqe_ip->ip_off); q = nq) { i = (ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off); if (i < ntohs(q->ipqe_ip->ip_len)) { q->ipqe_ip->ip_len = htons(ntohs(q->ipqe_ip->ip_len) - i); q->ipqe_ip->ip_off = htons(ntohs(q->ipqe_ip->ip_off) + i); m_adj(q->ipqe_m, i); break; } nq = TAILQ_NEXT(q, ipqe_q); m_freem(q->ipqe_m); TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); s = splvm(); pool_put(&ipqent_pool, q); splx(s); fp->ipq_nfrags--; ip_nfrags--; } insert: /* * Stick new segment in its place; * check for complete reassembly. */ if (p == NULL) { TAILQ_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q); } else { TAILQ_INSERT_AFTER(&fp->ipq_fragq, p, ipqe, ipqe_q); } next = 0; for (p = NULL, q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; p = q, q = TAILQ_NEXT(q, ipqe_q)) { if (ntohs(q->ipqe_ip->ip_off) != next) return (0); next += ntohs(q->ipqe_ip->ip_len); } if (p->ipqe_mff) return (0); /* * Reassembly is complete. Check for a bogus message size and * concatenate fragments. */ q = TAILQ_FIRST(&fp->ipq_fragq); ip = q->ipqe_ip; if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) { IP_STATINC(IP_STAT_TOOLONG); ip_freef(fp); return (0); } m = q->ipqe_m; t = m->m_next; m->m_next = 0; m_cat(m, t); nq = TAILQ_NEXT(q, ipqe_q); s = splvm(); pool_put(&ipqent_pool, q); splx(s); for (q = nq; q != NULL; q = nq) { t = q->ipqe_m; nq = TAILQ_NEXT(q, ipqe_q); s = splvm(); pool_put(&ipqent_pool, q); splx(s); m_cat(m, t); } ip_nfrags -= fp->ipq_nfrags; /* * Create header for new ip packet by * modifying header of first packet; * dequeue and discard fragment reassembly header. * Make header visible. */ ip->ip_len = htons(next); ip->ip_src = fp->ipq_src; ip->ip_dst = fp->ipq_dst; LIST_REMOVE(fp, ipq_q); FREE(fp, M_FTABLE); ip_nfragpackets--; m->m_len += (ip->ip_hl << 2); m->m_data -= (ip->ip_hl << 2); /* some debugging cruft by sklower, below, will go away soon */ if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */ int plen = 0; for (t = m; t; t = t->m_next) plen += t->m_len; m->m_pkthdr.len = plen; m->m_pkthdr.csum_flags = 0; } return (m); dropfrag: if (fp != 0) fp->ipq_nfrags--; ip_nfrags--; IP_STATINC(IP_STAT_FRAGDROPPED); m_freem(m); s = splvm(); pool_put(&ipqent_pool, ipqe); splx(s); return (0); } /* * Free a fragment reassembly header and all * associated datagrams. */ void ip_freef(struct ipq *fp) { struct ipqent *q, *p; u_int nfrags = 0; int s; IPQ_LOCK_CHECK(); for (q = TAILQ_FIRST(&fp->ipq_fragq); q != NULL; q = p) { p = TAILQ_NEXT(q, ipqe_q); m_freem(q->ipqe_m); nfrags++; TAILQ_REMOVE(&fp->ipq_fragq, q, ipqe_q); s = splvm(); pool_put(&ipqent_pool, q); splx(s); } if (nfrags != fp->ipq_nfrags) printf("ip_freef: nfrags %d != %d\n", fp->ipq_nfrags, nfrags); ip_nfrags -= nfrags; LIST_REMOVE(fp, ipq_q); FREE(fp, M_FTABLE); ip_nfragpackets--; } /* * IP reassembly TTL machinery for multiplicative drop. */ static u_int fragttl_histo[(IPFRAGTTL+1)]; /* * Decrement TTL of all reasembly queue entries by `ticks'. * Count number of distinct fragments (as opposed to partial, fragmented * datagrams) in the reassembly queue. While we traverse the entire * reassembly queue, compute and return the median TTL over all fragments. */ static u_int ip_reass_ttl_decr(u_int ticks) { u_int nfrags, median, dropfraction, keepfraction; struct ipq *fp, *nfp; int i; nfrags = 0; memset(fragttl_histo, 0, sizeof fragttl_histo); for (i = 0; i < IPREASS_NHASH; i++) { for (fp = LIST_FIRST(&ipq[i]); fp != NULL; fp = nfp) { fp->ipq_ttl = ((fp->ipq_ttl <= ticks) ? 0 : fp->ipq_ttl - ticks); nfp = LIST_NEXT(fp, ipq_q); if (fp->ipq_ttl == 0) { IP_STATINC(IP_STAT_FRAGTIMEOUT); ip_freef(fp); } else { nfrags += fp->ipq_nfrags; fragttl_histo[fp->ipq_ttl] += fp->ipq_nfrags; } } } KASSERT(ip_nfrags == nfrags); /* Find median (or other drop fraction) in histogram. */ dropfraction = (ip_nfrags / 2); keepfraction = ip_nfrags - dropfraction; for (i = IPFRAGTTL, median = 0; i >= 0; i--) { median += fragttl_histo[i]; if (median >= keepfraction) break; } /* Return TTL of median (or other fraction). */ return (u_int)i; } void ip_reass_drophalf(void) { u_int median_ticks; /* * Compute median TTL of all fragments, and count frags * with that TTL or lower (roughly half of all fragments). */ median_ticks = ip_reass_ttl_decr(0); /* Drop half. */ median_ticks = ip_reass_ttl_decr(median_ticks); } /* * IP timer processing; * if a timer expires on a reassembly * queue, discard it. */ void ip_slowtimo(void) { static u_int dropscanidx = 0; u_int i; u_int median_ttl; mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); IPQ_LOCK(); /* Age TTL of all fragments by 1 tick .*/ median_ttl = ip_reass_ttl_decr(1); /* make sure fragment limit is up-to-date */ CHECK_NMBCLUSTER_PARAMS(); /* If we have too many fragments, drop the older half. */ if (ip_nfrags > ip_maxfrags) ip_reass_ttl_decr(median_ttl); /* * If we are over the maximum number of fragmented packets * (due to the limit being lowered), drain off * enough to get down to the new limit. Start draining * from the reassembly hashqueue most recently drained. */ if (ip_maxfragpackets < 0) ; else { int wrapped = 0; i = dropscanidx; while (ip_nfragpackets > ip_maxfragpackets && wrapped == 0) { while (LIST_FIRST(&ipq[i]) != NULL) ip_freef(LIST_FIRST(&ipq[i])); if (++i >= IPREASS_NHASH) { i = 0; } /* * Dont scan forever even if fragment counters are * wrong: stop after scanning entire reassembly queue. */ if (i == dropscanidx) wrapped = 1; } dropscanidx = i; } IPQ_UNLOCK(); KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } /* * Drain off all datagram fragments. Don't acquire softnet_lock as * can be called from hardware interrupt context. */ void ip_drain(void) { KERNEL_LOCK(1, NULL); /* * We may be called from a device's interrupt context. If * the ipq is already busy, just bail out now. */ if (ipq_lock_try() != 0) { /* * Drop half the total fragments now. If more mbufs are * needed, we will be called again soon. */ ip_reass_drophalf(); IPQ_UNLOCK(); } KERNEL_UNLOCK_ONE(NULL); } /* * Do option processing on a datagram, * possibly discarding it if bad options are encountered, * or forwarding it if source-routed. * Returns 1 if packet has been forwarded/freed, * 0 if the packet should be processed further. */ int ip_dooptions(struct mbuf *m) { struct ip *ip = mtod(m, struct ip *); u_char *cp, *cp0; struct ip_timestamp *ipt; struct in_ifaddr *ia; int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0; struct in_addr dst; n_time ntime; dst = ip->ip_dst; cp = (u_char *)(ip + 1); cnt = (ip->ip_hl << 2) - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) optlen = 1; else { if (cnt < IPOPT_OLEN + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } } switch (opt) { default: break; /* * Source routing with record. * Find interface with current destination address. * If none on this machine then drop if strictly routed, * or do nothing if loosely routed. * Record interface address and bring up next address * component. If strictly routed make sure next * address is on directly accessible net. */ case IPOPT_LSRR: case IPOPT_SSRR: if (ip_allowsrcrt == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_NET_PROHIB; goto bad; } if (optlen < IPOPT_OFFSET + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } ipaddr.sin_addr = ip->ip_dst; ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))); if (ia == 0) { if (opt == IPOPT_SSRR) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } /* * Loose routing, and not at next destination * yet; nothing to do except forward. */ break; } off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) { /* * End of source route. Should be for us. */ save_rte(cp, ip->ip_src); break; } /* * locate outgoing interface */ bcopy((void *)(cp + off), (void *)&ipaddr.sin_addr, sizeof(ipaddr.sin_addr)); if (opt == IPOPT_SSRR) ia = ifatoia(ifa_ifwithladdr(sintosa(&ipaddr))); else ia = ip_rtaddr(ipaddr.sin_addr); if (ia == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } ip->ip_dst = ipaddr.sin_addr; bcopy((void *)&ia->ia_addr.sin_addr, (void *)(cp + off), sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); /* * Let ip_intr's mcast routing check handle mcast pkts */ forward = !IN_MULTICAST(ip->ip_dst.s_addr); break; case IPOPT_RR: if (optlen < IPOPT_OFFSET + sizeof(*cp)) { code = &cp[IPOPT_OLEN] - (u_char *)ip; goto bad; } if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) { code = &cp[IPOPT_OFFSET] - (u_char *)ip; goto bad; } /* * If no space remains, ignore. */ off--; /* 0 origin */ if ((off + sizeof(struct in_addr)) > optlen) break; bcopy((void *)(&ip->ip_dst), (void *)&ipaddr.sin_addr, sizeof(ipaddr.sin_addr)); /* * locate outgoing interface; if we're the destination, * use the incoming interface (should be same). */ if ((ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)))) == NULL && (ia = ip_rtaddr(ipaddr.sin_addr)) == NULL) { type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; goto bad; } bcopy((void *)&ia->ia_addr.sin_addr, (void *)(cp + off), sizeof(struct in_addr)); cp[IPOPT_OFFSET] += sizeof(struct in_addr); break; case IPOPT_TS: code = cp - (u_char *)ip; ipt = (struct ip_timestamp *)cp; if (ipt->ipt_len < 4 || ipt->ipt_len > 40) { code = (u_char *)&ipt->ipt_len - (u_char *)ip; goto bad; } if (ipt->ipt_ptr < 5) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) { if (++ipt->ipt_oflw == 0) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } break; } cp0 = (cp + ipt->ipt_ptr - 1); switch (ipt->ipt_flg) { case IPOPT_TS_TSONLY: break; case IPOPT_TS_TSANDADDR: if (ipt->ipt_ptr - 1 + sizeof(n_time) + sizeof(struct in_addr) > ipt->ipt_len) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } ipaddr.sin_addr = dst; ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr), m->m_pkthdr.rcvif)); if (ia == 0) continue; bcopy(&ia->ia_addr.sin_addr, cp0, sizeof(struct in_addr)); ipt->ipt_ptr += sizeof(struct in_addr); break; case IPOPT_TS_PRESPEC: if (ipt->ipt_ptr - 1 + sizeof(n_time) + sizeof(struct in_addr) > ipt->ipt_len) { code = (u_char *)&ipt->ipt_ptr - (u_char *)ip; goto bad; } bcopy(cp0, &ipaddr.sin_addr, sizeof(struct in_addr)); if (ifatoia(ifa_ifwithaddr(sintosa(&ipaddr))) == NULL) continue; ipt->ipt_ptr += sizeof(struct in_addr); break; default: /* XXX can't take &ipt->ipt_flg */ code = (u_char *)&ipt->ipt_ptr - (u_char *)ip + 1; goto bad; } ntime = iptime(); cp0 = (u_char *) &ntime; /* XXX grumble, GCC... */ memmove((char *)cp + ipt->ipt_ptr - 1, cp0, sizeof(n_time)); ipt->ipt_ptr += sizeof(n_time); } } if (forward) { if (ip_forwsrcrt == 0) { type = ICMP_UNREACH; code = ICMP_UNREACH_SRCFAIL; goto bad; } ip_forward(m, 1); return (1); } return (0); bad: icmp_error(m, type, code, 0, 0); IP_STATINC(IP_STAT_BADOPTIONS); return (1); } /* * Given address of next destination (final or next hop), * return internet address info of interface to be used to get there. */ struct in_ifaddr * ip_rtaddr(struct in_addr dst) { struct rtentry *rt; union { struct sockaddr dst; struct sockaddr_in dst4; } u; sockaddr_in_init(&u.dst4, &dst, 0); if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) return NULL; return ifatoia(rt->rt_ifa); } /* * Save incoming source route for use in replies, * to be picked up later by ip_srcroute if the receiver is interested. */ void save_rte(u_char *option, struct in_addr dst) { unsigned olen; olen = option[IPOPT_OLEN]; #ifdef DIAGNOSTIC if (ipprintfs) printf("save_rte: olen %d\n", olen); #endif /* 0 */ if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst))) return; bcopy((void *)option, (void *)ip_srcrt.srcopt, olen); ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr); ip_srcrt.dst = dst; } /* * Retrieve incoming source route for use in replies, * in the same form used by setsockopt. * The first hop is placed before the options, will be removed later. */ struct mbuf * ip_srcroute(void) { struct in_addr *p, *q; struct mbuf *m; if (ip_nhops == 0) return NULL; m = m_get(M_DONTWAIT, MT_SOOPTS); if (m == 0) return NULL; MCLAIM(m, &inetdomain.dom_mowner); #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt)) /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */ m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) + OPTSIZ; #ifdef DIAGNOSTIC if (ipprintfs) printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len); #endif /* * First save first hop for return route */ p = &ip_srcrt.route[ip_nhops - 1]; *(mtod(m, struct in_addr *)) = *p--; #ifdef DIAGNOSTIC if (ipprintfs) printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr)); #endif /* * Copy option fields and padding (nop) to mbuf. */ ip_srcrt.nop = IPOPT_NOP; ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF; memmove(mtod(m, char *) + sizeof(struct in_addr), &ip_srcrt.nop, OPTSIZ); q = (struct in_addr *)(mtod(m, char *) + sizeof(struct in_addr) + OPTSIZ); #undef OPTSIZ /* * Record return path as an IP source route, * reversing the path (pointers are now aligned). */ while (p >= ip_srcrt.route) { #ifdef DIAGNOSTIC if (ipprintfs) printf(" %x", ntohl(q->s_addr)); #endif *q++ = *p--; } /* * Last hop goes to final destination. */ *q = ip_srcrt.dst; #ifdef DIAGNOSTIC if (ipprintfs) printf(" %x\n", ntohl(q->s_addr)); #endif return (m); } const int inetctlerrmap[PRC_NCMDS] = { [PRC_MSGSIZE] = EMSGSIZE, [PRC_HOSTDEAD] = EHOSTDOWN, [PRC_HOSTUNREACH] = EHOSTUNREACH, [PRC_UNREACH_NET] = EHOSTUNREACH, [PRC_UNREACH_HOST] = EHOSTUNREACH, [PRC_UNREACH_PROTOCOL] = ECONNREFUSED, [PRC_UNREACH_PORT] = ECONNREFUSED, [PRC_UNREACH_SRCFAIL] = EHOSTUNREACH, [PRC_PARAMPROB] = ENOPROTOOPT, }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(struct mbuf *m, int srcrt) { struct ip *ip = mtod(m, struct ip *); struct rtentry *rt; int error, type = 0, code = 0, destmtu = 0; struct mbuf *mcopy; n_long dest; union { struct sockaddr dst; struct sockaddr_in dst4; } u; /* * We are now in the output path. */ MCLAIM(m, &ip_tx_mowner); /* * Clear any in-bound checksum flags for this packet. */ m->m_pkthdr.csum_flags = 0; dest = 0; #ifdef DIAGNOSTIC if (ipprintfs) { printf("forward: src %s ", inet_ntoa(ip->ip_src)); printf("dst %s ttl %x\n", inet_ntoa(ip->ip_dst), ip->ip_ttl); } #endif if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { IP_STATINC(IP_STAT_CANTFORWARD); m_freem(m); return; } if (ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0); return; } sockaddr_in_init(&u.dst4, &ip->ip_dst, 0); if ((rt = rtcache_lookup(&ipforward_rt, &u.dst)) == NULL) { icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_NET, dest, 0); return; } /* * Save at most 68 bytes of the packet in case * we need to generate an ICMP message to the src. * Pullup to avoid sharing mbuf cluster between m and mcopy. */ mcopy = m_copym(m, 0, imin(ntohs(ip->ip_len), 68), M_DONTWAIT); if (mcopy) mcopy = m_pullup(mcopy, ip->ip_hl << 2); ip->ip_ttl -= IPTTLDEC; /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. */ if (rt->rt_ifp == m->m_pkthdr.rcvif && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 && !in_nullhost(satocsin(rt_getkey(rt))->sin_addr) && ipsendredirects && !srcrt) { if (rt->rt_ifa && (ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) == ifatoia(rt->rt_ifa)->ia_subnet) { if (rt->rt_flags & RTF_GATEWAY) dest = satosin(rt->rt_gateway)->sin_addr.s_addr; else dest = ip->ip_dst.s_addr; /* * Router requirements says to only send host * redirects. */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; #ifdef DIAGNOSTIC if (ipprintfs) printf("redirect (%d) to %x\n", code, (u_int32_t)dest); #endif } } error = ip_output(m, NULL, &ipforward_rt, (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), (struct ip_moptions *)NULL, (struct socket *)NULL); if (error) IP_STATINC(IP_STAT_CANTFORWARD); else { uint64_t *ips = IP_STAT_GETREF(); ips[IP_STAT_FORWARD]++; if (type) { ips[IP_STAT_REDIRECTSENT]++; IP_STAT_PUTREF(); } else { IP_STAT_PUTREF(); if (mcopy) { #ifdef GATEWAY if (mcopy->m_flags & M_CANFASTFWD) ipflow_create(&ipforward_rt, mcopy); #endif m_freem(mcopy); } return; } } if (mcopy == NULL) return; switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: /* shouldn't happen, checked above */ case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; if ((rt = rtcache_validate(&ipforward_rt)) != NULL) destmtu = rt->rt_ifp->if_mtu; #if defined(IPSEC) || defined(FAST_IPSEC) { /* * If the packet is routed over IPsec tunnel, tell the * originator the tunnel MTU. * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz * XXX quickhack!!! */ struct secpolicy *sp; int ipsecerror; size_t ipsechdr; struct route *ro; sp = ipsec4_getpolicybyaddr(mcopy, IPSEC_DIR_OUTBOUND, IP_FORWARDING, &ipsecerror); if (sp != NULL) { /* count IPsec header size */ ipsechdr = ipsec4_hdrsiz(mcopy, IPSEC_DIR_OUTBOUND, NULL); /* * find the correct route for outer IPv4 * header, compute tunnel MTU. */ if (sp->req != NULL && sp->req->sav != NULL && sp->req->sav->sah != NULL) { ro = &sp->req->sav->sah->sa_route; rt = rtcache_validate(ro); if (rt && rt->rt_ifp) { destmtu = rt->rt_rmx.rmx_mtu ? rt->rt_rmx.rmx_mtu : rt->rt_ifp->if_mtu; destmtu -= ipsechdr; } } #ifdef IPSEC key_freesp(sp); #else KEY_FREESP(&sp); #endif } } #endif /*defined(IPSEC) || defined(FAST_IPSEC)*/ IP_STATINC(IP_STAT_CANTFRAG); break; case ENOBUFS: #if 1 /* * a router should not generate ICMP_SOURCEQUENCH as * required in RFC1812 Requirements for IP Version 4 Routers. * source quench could be a big problem under DoS attacks, * or if the underlying interface is rate-limited. */ if (mcopy) m_freem(mcopy); return; #else type = ICMP_SOURCEQUENCH; code = 0; break; #endif } icmp_error(mcopy, type, code, dest, destmtu); } void ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, struct mbuf *m) { if (inp->inp_socket->so_options & SO_TIMESTAMP) { struct timeval tv; microtime(&tv); *mp = sbcreatecontrol((void *) &tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((void *) &ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* * XXX * Moving these out of udp_input() made them even more broken * than they already were. * - fenner@parc.xerox.com */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((void *) opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((void *) ip_srcroute(), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct sockaddr_dl sdl; sockaddr_dl_init(&sdl, sizeof(sdl), (m->m_pkthdr.rcvif != NULL) ? m->m_pkthdr.rcvif->if_index : 0, 0, NULL, 0, NULL, 0); *mp = sbcreatecontrol(&sdl, sdl.sdl_len, IP_RECVIF, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } } /* * sysctl helper routine for net.inet.ip.forwsrcrt. */ static int sysctl_net_inet_ip_forwsrcrt(SYSCTLFN_ARGS) { int error, tmp; struct sysctlnode node; node = *rnode; tmp = ip_forwsrcrt; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_FORWSRCRT, 0, NULL, NULL, NULL)) return (EPERM); ip_forwsrcrt = tmp; return (0); } /* * sysctl helper routine for net.inet.ip.mtudisctimeout. checks the * range of the new value and tweaks timers if it changes. */ static int sysctl_net_inet_ip_pmtudto(SYSCTLFN_ARGS) { int error, tmp; struct sysctlnode node; node = *rnode; tmp = ip_mtudisc_timeout; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (tmp < 0) return (EINVAL); mutex_enter(softnet_lock); ip_mtudisc_timeout = tmp; rt_timer_queue_change(ip_mtudisc_timeout_q, ip_mtudisc_timeout); mutex_exit(softnet_lock); return (0); } #ifdef GATEWAY /* * sysctl helper routine for net.inet.ip.maxflows. */ static int sysctl_net_inet_ip_maxflows(SYSCTLFN_ARGS) { int error; error = sysctl_lookup(SYSCTLFN_CALL(rnode)); if (error || newp == NULL) return (error); mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); ipflow_prune(); KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); return (0); } static int sysctl_net_inet_ip_hashsize(SYSCTLFN_ARGS) { int error, tmp; struct sysctlnode node; node = *rnode; tmp = ip_hashsize; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if ((tmp & (tmp - 1)) == 0 && tmp != 0) { /* * Can only fail due to malloc() */ mutex_enter(softnet_lock); KERNEL_LOCK(1, NULL); error = ipflow_invalidate_all(tmp); KERNEL_UNLOCK_ONE(NULL); mutex_exit(softnet_lock); } else { /* * EINVAL if not a power of 2 */ error = EINVAL; } return error; } #endif /* GATEWAY */ static int sysctl_net_inet_ip_stats(SYSCTLFN_ARGS) { return (NETSTAT_SYSCTL(ipstat_percpu, IP_NSTATS)); } SYSCTL_SETUP(sysctl_net_inet_ip_setup, "sysctl net.inet.ip subtree setup") { extern int subnetsarelocal, hostzeroisbroadcast; sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet", SYSCTL_DESCR("PF_INET related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "ip", SYSCTL_DESCR("IPv4 related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_IP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "forwarding", SYSCTL_DESCR("Enable forwarding of INET datagrams"), NULL, 0, &ipforwarding, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_FORWARDING, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "redirect", SYSCTL_DESCR("Enable sending of ICMP redirect messages"), NULL, 0, &ipsendredirects, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_SENDREDIRECTS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ttl", SYSCTL_DESCR("Default TTL for an INET datagram"), NULL, 0, &ip_defttl, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_DEFTTL, CTL_EOL); #ifdef IPCTL_DEFMTU sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT /* |CTLFLAG_READWRITE? */, CTLTYPE_INT, "mtu", SYSCTL_DESCR("Default MTA for an INET route"), NULL, 0, &ip_mtu, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_DEFMTU, CTL_EOL); #endif /* IPCTL_DEFMTU */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "forwsrcrt", SYSCTL_DESCR("Enable forwarding of source-routed " "datagrams"), sysctl_net_inet_ip_forwsrcrt, 0, &ip_forwsrcrt, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_FORWSRCRT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "directed-broadcast", SYSCTL_DESCR("Enable forwarding of broadcast datagrams"), NULL, 0, &ip_directedbcast, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_DIRECTEDBCAST, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "allowsrcrt", SYSCTL_DESCR("Accept source-routed datagrams"), NULL, 0, &ip_allowsrcrt, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_ALLOWSRCRT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "subnetsarelocal", SYSCTL_DESCR("Whether logical subnets are considered " "local"), NULL, 0, &subnetsarelocal, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_SUBNETSARELOCAL, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mtudisc", SYSCTL_DESCR("Use RFC1191 Path MTU Discovery"), NULL, 0, &ip_mtudisc, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MTUDISC, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "anonportmin", SYSCTL_DESCR("Lowest ephemeral port number to assign"), sysctl_net_inet_ip_ports, 0, &anonportmin, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_ANONPORTMIN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "anonportmax", SYSCTL_DESCR("Highest ephemeral port number to assign"), sysctl_net_inet_ip_ports, 0, &anonportmax, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_ANONPORTMAX, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "mtudisctimeout", SYSCTL_DESCR("Lifetime of a Path MTU Discovered route"), sysctl_net_inet_ip_pmtudto, 0, &ip_mtudisc_timeout, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MTUDISCTIMEOUT, CTL_EOL); #ifdef GATEWAY sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxflows", SYSCTL_DESCR("Number of flows for fast forwarding"), sysctl_net_inet_ip_maxflows, 0, &ip_maxflows, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFLOWS, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "hashsize", SYSCTL_DESCR("Size of hash table for fast forwarding (IPv4)"), sysctl_net_inet_ip_hashsize, 0, &ip_hashsize, 0, CTL_NET, PF_INET, IPPROTO_IP, CTL_CREATE, CTL_EOL); #endif /* GATEWAY */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "hostzerobroadcast", SYSCTL_DESCR("All zeroes address is broadcast address"), NULL, 0, &hostzeroisbroadcast, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_HOSTZEROBROADCAST, CTL_EOL); #if NGIF > 0 sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gifttl", SYSCTL_DESCR("Default TTL for a gif tunnel datagram"), NULL, 0, &ip_gif_ttl, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_GIF_TTL, CTL_EOL); #endif /* NGIF */ #ifndef IPNOPRIVPORTS sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "lowportmin", SYSCTL_DESCR("Lowest privileged ephemeral port number " "to assign"), sysctl_net_inet_ip_ports, 0, &lowportmin, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_LOWPORTMIN, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "lowportmax", SYSCTL_DESCR("Highest privileged ephemeral port number " "to assign"), sysctl_net_inet_ip_ports, 0, &lowportmax, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_LOWPORTMAX, CTL_EOL); #endif /* IPNOPRIVPORTS */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxfragpackets", SYSCTL_DESCR("Maximum number of fragments to retain for " "possible reassembly"), NULL, 0, &ip_maxfragpackets, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_MAXFRAGPACKETS, CTL_EOL); #if NGRE > 0 sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "grettl", SYSCTL_DESCR("Default TTL for a gre tunnel datagram"), NULL, 0, &ip_gre_ttl, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_GRE_TTL, CTL_EOL); #endif /* NGRE */ sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "checkinterface", SYSCTL_DESCR("Enable receive side of Strong ES model " "from RFC1122"), NULL, 0, &ip_checkinterface, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_CHECKINTERFACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "random_id", SYSCTL_DESCR("Assign random ip_id values"), NULL, 0, &ip_do_randomid, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_RANDOMID, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "do_loopback_cksum", SYSCTL_DESCR("Perform IP checksum on loopback"), NULL, 0, &ip_do_loopback_cksum, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_LOOPBACKCKSUM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_STRUCT, "stats", SYSCTL_DESCR("IP statistics"), sysctl_net_inet_ip_stats, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_IP, IPCTL_STATS, CTL_EOL); } void ip_statinc(u_int stat) { KASSERT(stat < IP_NSTATS); IP_STATINC(stat); }