/* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994 Charles Hannum. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. * * Currently supports the Western Digital/SMC 8003 and 8013 series, the 3Com * 3c503, the NE1000 and NE2000, and a variety of similar clones. * * $Id: if_ed.c,v 1.38 1994/03/08 12:21:19 mycroft Exp $ */ #include "ed.h" #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include #include #include /* * ed_softc: per line info and status */ struct ed_softc { struct device sc_dev; struct arpcom sc_arpcom; /* ethernet common */ char *type_str; /* pointer to type string */ u_char vendor; /* interface vendor */ u_char type; /* interface type code */ u_short asic_addr; /* ASIC I/O bus address */ u_short nic_addr; /* NIC (DS8390) I/O bus address */ /* * The following 'proto' variable is part of a work-around for 8013EBT asics * being write-only. It's sort of a prototype/shadow of the real thing. */ u_char wd_laar_proto; u_char ed_cr_rd2; /* ED_CR_RD2 if not 790; 0 if 790 */ u_char isa16bit; /* width of access to card 0=8 or 1=16 */ u_char is790; /* set by probe if NIC is a 790 */ caddr_t bpf; /* BPF "magic cookie" */ caddr_t mem_start; /* NIC memory start address */ caddr_t mem_end; /* NIC memory end address */ u_long mem_size; /* total NIC memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */ u_char mem_shared; /* NIC memory is shared with host */ u_char xmit_busy; /* transmitter is busy */ u_char txb_cnt; /* number of transmit buffers */ u_char txb_inuse; /* number of TX buffers currently in-use*/ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ } ed_softc[NED]; int ed_probe __P((struct isa_device *)); int ed_attach __P((struct isa_device *)); int edintr __P((int)); int ed_ioctl __P((struct ifnet *, int, caddr_t)); int ed_start __P((struct ifnet *)); int ed_watchdog __P((/* short */)); void ed_reset __P((struct ed_softc *)); void ed_init __P((struct ed_softc *)); void ed_stop __P((struct ed_softc *)); void ed_getmcaf __P((struct arpcom *, u_long *)); #define inline /* XXX for debugging porpoises */ void ed_get_packet __P((/* struct ed_softc *, caddr_t, u_short */)); static inline void ed_rint __P((struct ed_softc *)); static inline void ed_xmit __P((struct ed_softc *)); static inline caddr_t ed_ring_copy __P((/* struct ed_Softc *, caddr_t, caddr_t, u_short */)); void ed_pio_readmem __P((/* struct ed_softc *, u_short, caddr_t, u_short */)); void ed_pio_writemem __P((/* struct ed_softc *, caddr_t, u_short, u_short */)); u_short ed_pio_write_mbufs __P((/* struct ed_softc *, struct mbuf *, u_short */)); struct trailer_header { u_short ether_type; u_short ether_residual; }; struct isa_driver eddriver = { ed_probe, ed_attach, "ed" }; /* * Interrupt conversion table for WD/SMC ASIC. * (IRQ* are defined in icu.h.) */ static u_short ed_intr_mask[] = { IRQ9, IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ15, IRQ4 }; static u_short ed_790_intr_mask[] = { 0, IRQ9, IRQ3, IRQ5, IRQ7, IRQ10, IRQ11, IRQ15 }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 /* * Determine if the device is present. */ int ed_probe(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int nports; /* XXX HACK */ sprintf(sc->sc_dev.dv_xname, "%s%d", eddriver.name, isa_dev->id_unit); sc->sc_dev.dv_unit = isa_dev->id_unit; if (nports = ed_probe_WD80x3(isa_dev)) return nports; if (nports = ed_probe_3Com(isa_dev)) return nports; if (nports = ed_probe_Novell(isa_dev)) return nports; return 0; } /* * Generic probe routine for testing for the existance of a DS8390. Must be * called after the NIC has just been reset. This routine works by looking at * certain register values that are gauranteed to be initialized a certain way * after power-up or reset. Seems not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at the * others would require changing register pages (which would be intrusive if * this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(sc) struct ed_softc *sc; { if ((inb(sc->nic_addr + ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return 0; if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return 0; return 1; } /* * Probe and vendor-specific initialization routine for SMC/WD80x3 boards. */ int ed_probe_WD80x3(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int i; u_int memsize; u_char iptr, isa16bit, sum; sc->asic_addr = isa_dev->id_iobase; sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET; sc->is790 = 0; #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW); delay(10000); #endif /* * Attempt to do a checksum over the station address PROM. If it * fails, it's probably not a SMC/WD board. There is a problem with * this, though: some clone WD boards don't pass the checksum test. * Danpex boards for one. */ for (sum = 0, i = 0; i < 8; ++i) sum += inb(sc->asic_addr + ED_WD_PROM + i); if (sum != ED_WD_ROM_CHECKSUM_TOTAL) { /* * Checksum is invalid. This often happens with cheap WD8003E * clones. In this case, the checksum byte (the eighth byte) * seems to always be zero. */ if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E || inb(sc->asic_addr + ED_WD_PROM + 7) != 0) return 0; } /* Reset card to force it into a known state. */ #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW); #else outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST); #endif delay(100); outb(sc->asic_addr + ED_WD_MSR, inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST); /* Wait in the case this card is reading it's EEROM. */ delay(5000); sc->vendor = ED_VENDOR_WD_SMC; sc->type = inb(sc->asic_addr + ED_WD_CARD_ID); /* Set initial values for width/size. */ memsize = 8192; isa16bit = 0; switch (sc->type) { case ED_TYPE_WD8003S: sc->type_str = "WD8003S"; break; case ED_TYPE_WD8003E: sc->type_str = "WD8003E"; break; case ED_TYPE_WD8003EB: sc->type_str = "WD8003EB"; break; case ED_TYPE_WD8003W: sc->type_str = "WD8003W"; break; case ED_TYPE_WD8013EBT: sc->type_str = "WD8013EBT"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013W: sc->type_str = "WD8013W"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EP: /* also WD8003EP */ if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) { isa16bit = 1; memsize = 16384; sc->type_str = "WD8013EP"; } else sc->type_str = "WD8003EP"; break; case ED_TYPE_WD8013WC: sc->type_str = "WD8013WC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EBP: sc->type_str = "WD8013EBP"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_WD8013EPC: sc->type_str = "WD8013EPC"; memsize = 16384; isa16bit = 1; break; case ED_TYPE_SMC8216C: sc->type_str = "SMC8216/SMC8216C"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; case ED_TYPE_SMC8216T: sc->type_str = "SMC8216T"; memsize = 16384; isa16bit = 1; sc->is790 = 1; break; #ifdef TOSH_ETHER case ED_TYPE_TOSHIBA1: sc->type_str = "Toshiba1"; memsize = 32768; isa16bit = 1; break; case ED_TYPE_TOSHIBA4: sc->type_str = "Toshiba4"; memsize = 32768; isa16bit = 1; break; #endif default: sc->type_str = NULL; break; } /* * Make some adjustments to initial values depending on what is found * in the ICR. */ if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) && #ifdef TOSH_ETHER (sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) && #endif ((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) { isa16bit = 0; memsize = 8192; } #ifdef ED_DEBUG printf("type=%x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n", sc->type, sc->type_str ?: "unknown", isa16bit, memsize, isa_dev->id_msize); for (i = 0; i < 8; i++) printf("%x -> %x\n", i, inb(sc->asic_addr + i)); #endif /* Allow the user to override the autoconfiguration. */ if (isa_dev->id_msize) memsize = isa_dev->id_msize; /* * (Note that if the user specifies both of the following flags that * '8-bit' mode intentionally has precedence.) */ if (isa_dev->id_flags & ED_FLAGS_FORCE_16BIT_MODE) isa16bit = 1; if (isa_dev->id_flags & ED_FLAGS_FORCE_8BIT_MODE) isa16bit = 0; /* * Check 83C584 interrupt configuration register if this board has one * XXX - We could also check the IO address register. But why * bother... if we get past this, it *has* to be correct. */ sc->ed_cr_rd2 = ED_CR_RD2; if (sc->is790) { sc->ed_cr_rd2 = 0; /* Assemble together the encoded interrupt number. */ outb(isa_dev->id_iobase + 0x04, inb(isa_dev->id_iobase + 0x04) | 0x80); iptr = ((inb(isa_dev->id_iobase + 0x0d) & 0x0c) >> 2) | ((inb(isa_dev->id_iobase + 0x0d) & 0x40) >> 4); outb(isa_dev->id_iobase + 0x04, inb(isa_dev->id_iobase + 0x04) & ~0x80); /* * Translate it using translation table, and check for * correctness. */ if (ed_790_intr_mask[iptr] != isa_dev->id_irq) { printf("%s: kernel configured irq %d doesn't match board configured irq %d\n", sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1, ffs(ed_790_intr_mask[iptr]) - 1); return 0; } /* Enable the interrupt. */ outb(isa_dev->id_iobase + 0x06, inb(isa_dev->id_iobase + 0x06) | 0x01); } else if (sc->type & ED_WD_SOFTCONFIG) { /* Assemble together the encoded interrupt number. */ iptr = (inb(isa_dev->id_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) | ((inb(isa_dev->id_iobase + ED_WD_IRR) & (ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5); /* * Translate it using translation table, and check for * correctness. */ if (ed_intr_mask[iptr] != isa_dev->id_irq) { printf("%s: kernel configured irq %d doesn't match board configured irq %d\n", sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1, ffs(ed_intr_mask[iptr]) - 1); return 0; } /* Enable the interrupt. */ outb(isa_dev->id_iobase + ED_WD_IRR, inb(isa_dev->id_iobase + ED_WD_IRR) | ED_WD_IRR_IEN); } sc->isa16bit = isa16bit; #ifdef notyet /* XXX - I'm not sure if PIO mode is even possible on WD/SMC boards */ /* * The following allows the WD/SMC boards to be used in Programmed I/O * mode - without mapping the NIC memory shared. ...Not the prefered * way, but it might be the only way. */ if (isa_dev->id_flags & ED_FLAGS_FORCE_PIO) { sc->mem_shared = 0; isa_dev->id_maddr = 0; } else sc->mem_shared = 1; #else sc->mem_shared = 1; #endif isa_dev->id_msize = memsize; sc->mem_start = (caddr_t)isa_dev->id_maddr; /* Allocate one xmit buffer if < 16k, two buffers otherwise. */ if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_WD_PAGE_OFFSET; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + sc->rec_page_start * ED_PAGE_SIZE; sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* Get station address from on-board ROM. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = inb(sc->asic_addr + ED_WD_PROM + i); if (sc->mem_shared) { /* Set address and enable interface shared memory. */ if (!sc->is790) { #ifdef TOSH_ETHER outb(sc->asic_addr + ED_WD_MSR + 1, ((kvtop(sc->mem_start) >> 8) & 0xe0) | 4); outb(sc->asic_addr + ED_WD_MSR + 2, ((kvtop(sc->mem_start) >> 16) & 0x0f)); outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB | ED_WD_MSR_POW); #else outb(sc->asic_addr + ED_WD_MSR, ((kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR) | ED_WD_MSR_MENB); #endif } else { outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_MENB); outb(sc->asic_addr + 0x04, inb(sc->asic_addr + 0x04) | 0x80); outb(sc->asic_addr + 0x0b, ((kvtop(sc->mem_start) >> 13) & 0x0f) | ((kvtop(sc->mem_start) >> 11) & 0x40) | (inb(sc->asic_addr + 0x0b) & 0xb0)); outb(sc->asic_addr + 0x04, inb(sc->asic_addr + 0x04) & ~0x80); } /* * Set upper address bits and 8/16 bit access to shared memory. */ if (isa16bit) { if (sc->is790) { sc->wd_laar_proto = inb(sc->asic_addr + ED_WD_LAAR); outb(sc->asic_addr + ED_WD_LAAR, ED_WD_LAAR_M16EN); } else { sc->wd_laar_proto = ED_WD_LAAR_L16EN | ED_WD_LAAR_M16EN | ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI); outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } } else { if ((sc->type & ED_WD_SOFTCONFIG) || #ifdef TOSH_ETHER (sc->type == ED_TYPE_TOSHIBA1) || (sc->type == ED_TYPE_TOSHIBA4) || #endif (sc->type == ED_TYPE_WD8013EBT) && !sc->is790) { sc->wd_laar_proto = ((kvtop(sc->mem_start) >> 19) & ED_WD_LAAR_ADDRHI); outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } } /* Now zero memory and verify that it is clear. */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { printf("%s: failed to clear shared memory at %x - check configuration\n", sc->sc_dev.dv_xname, kvtop(sc->mem_start + i)); /* Disable 16 bit access to shared memory. */ if (isa16bit) { sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN; outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } return 0; } /* * Disable 16bit access to shared memory - we leave it disabled * so that 1) machines reboot properly when the board is set 16 * 16 bit mode and there are conflicting 8bit devices/ROMS in * the same 128k address space as this boards shared memory, * and 2) so that other 8 bit devices with shared memory can be * used in this 128k region, too. */ if (isa16bit) { sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN; outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } } return ED_WD_IO_PORTS; } /* * Probe and vendor-specific initialization routine for 3Com 3c503 boards. */ int ed_probe_3Com(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; int i; u_int memsize; u_char isa16bit, sum; sc->asic_addr = isa_dev->id_iobase + ED_3COM_ASIC_OFFSET; sc->nic_addr = isa_dev->id_iobase + ED_3COM_NIC_OFFSET; sc->ed_cr_rd2 = ED_CR_RD2; /* * Verify that the kernel configured I/O address matches the board * configured address. * * This is really only useful to see if something that looks like the * board is there; after all, we are already talking it at that * address. */ switch (inb(sc->asic_addr + ED_3COM_BCFR)) { case ED_3COM_BCFR_300: if (isa_dev->id_iobase != 0x300) return 0; break; case ED_3COM_BCFR_310: if (isa_dev->id_iobase != 0x310) return 0; break; case ED_3COM_BCFR_330: if (isa_dev->id_iobase != 0x330) return 0; break; case ED_3COM_BCFR_350: if (isa_dev->id_iobase != 0x350) return 0; break; case ED_3COM_BCFR_250: if (isa_dev->id_iobase != 0x250) return 0; break; case ED_3COM_BCFR_280: if (isa_dev->id_iobase != 0x280) return 0; break; case ED_3COM_BCFR_2A0: if (isa_dev->id_iobase != 0x2a0) return 0; break; case ED_3COM_BCFR_2E0: if (isa_dev->id_iobase != 0x2e0) return 0; break; default: return 0; } /* * Verify that the kernel shared memory address matches the board * configured address. */ switch (inb(sc->asic_addr + ED_3COM_PCFR)) { case ED_3COM_PCFR_DC000: if (kvtop(isa_dev->id_maddr) != 0xdc000) return 0; break; case ED_3COM_PCFR_D8000: if (kvtop(isa_dev->id_maddr) != 0xd8000) return 0; break; case ED_3COM_PCFR_CC000: if (kvtop(isa_dev->id_maddr) != 0xcc000) return 0; break; case ED_3COM_PCFR_C8000: if (kvtop(isa_dev->id_maddr) != 0xc8000) return 0; break; default: return 0; } /* * Reset NIC and ASIC. Enable on-board transceiver throughout reset * sequence because it'll lock up if the cable isn't connected if we * don't. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL); /* Wait for a while, then un-reset it. */ delay(50); /* * The 3Com ASIC defaults to rather strange settings for the CR after a * reset - it's important to set it again after the following outb * (this is done when we map the PROM below). */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* Wait a bit for the NIC to recover from the reset. */ delay(5000); sc->vendor = ED_VENDOR_3COM; sc->type_str = "3c503"; sc->mem_shared = 1; /* * Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window * to it. */ memsize = 8192; /* * Get station address from on-board ROM. * * First, map ethernet address PROM over the top of where the NIC * registers normally appear. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL); for (i = 0; i < ETHER_ADDR_LEN; ++i) sc->sc_arpcom.ac_enaddr[i] = inb(sc->nic_addr + i); /* * Unmap PROM - select NIC registers. The proper setting of the * tranceiver is set in ed_init so that the attach code is given a * chance to set the default based on a compile-time config option. */ outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); /* Determine if this is an 8bit or 16bit board. */ /* Select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP); /* * Attempt to clear WTS bit. If it doesn't clear, then this is a * 16-bit board. */ outb(sc->nic_addr + ED_P0_DCR, 0); /* Select page 2 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_2 | ED_CR_RD2 | ED_CR_STP); /* The 3c503 forces the WTS bit to a one if this is a 16bit board. */ if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS) isa16bit = 1; else isa16bit = 0; /* Select page 0 registers. */ outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_STP); sc->mem_start = (caddr_t)isa_dev->id_maddr; sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * We have an entire 8k window to put the transmit buffers on the * 16-bit boards. But since the 16bit 3c503's shared memory is only * fast enough to overlap the loading of one full-size packet, trying * to load more than 2 buffers can actually leave the transmitter idle * during the load. So 2 seems the best value. (Although a mix of * variable-sized packets might change this assumption. Nonetheless, * we optimize for linear transfers of same-size packets.) */ if (isa16bit) { if (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT; sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_RX_PAGE_OFFSET_16BIT; sc->mem_ring = sc->mem_start; } else { sc->txb_cnt = 1; sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_start = ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->rec_page_stop = memsize / ED_PAGE_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT; sc->mem_ring = sc->mem_start + (ED_PAGE_SIZE * ED_TXBUF_SIZE); } sc->isa16bit = isa16bit; /* * Initialize GA page start/stop registers. Probably only needed if * doing DMA, but what the Hell. */ outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start); outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop); /* Set IRQ. 3c503 only allows a choice of irq 3-5 or 9. */ switch (isa_dev->id_irq) { case IRQ9: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2); break; case IRQ3: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3); break; case IRQ4: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4); break; case IRQ5: outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5); break; default: printf("%s: invalid irq configuration (%d) must be 3-5 or 9 for 3c503\n", sc->sc_dev.dv_xname, ffs(isa_dev->id_irq) - 1); return 0; } /* * Initialize GA configuration register. Set bank and enable shared * mem. */ outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); /* * Initialize "Vector Pointer" registers. These gawd-awful things are * compared to 20 bits of the address on ISA, and if they match, the * shared memory is disabled. We set them to 0xffff0...allegedly the * reset vector. */ outb(sc->asic_addr + ED_3COM_VPTR2, 0xff); outb(sc->asic_addr + ED_3COM_VPTR1, 0xff); outb(sc->asic_addr + ED_3COM_VPTR0, 0x00); /* Zero memory and verify that it is clear. */ bzero(sc->mem_start, memsize); for (i = 0; i < memsize; ++i) if (sc->mem_start[i]) { printf("%s: failed to clear shared memory at %x - check configuration\n", sc->sc_dev.dv_xname, kvtop(sc->mem_start + i)); return 0; } isa_dev->id_msize = memsize; return ED_3COM_IO_PORTS; } /* * Probe and vendor-specific initialization routine for NE1000/2000 boards. */ int ed_probe_Novell(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; u_int memsize, n; u_char romdata[16], isa16bit = 0, tmp; static u_char test_pattern[32] = "THIS is A memory TEST pattern"; u_char test_buffer[32]; sc->asic_addr = isa_dev->id_iobase + ED_NOVELL_ASIC_OFFSET; sc->nic_addr = isa_dev->id_iobase + ED_NOVELL_NIC_OFFSET; sc->ed_cr_rd2 = ED_CR_RD2; /* XXX - do Novell-specific probe here */ /* Reset the board. */ tmp = inb(sc->asic_addr + ED_NOVELL_RESET); #if 0 /* * This total and completely screwy thing is to work around braindamage * in some NE compatible boards. Why it works, I have *no* idea. It * appears that the boards watch the ISA bus for an outb, and will lock * up the ISA bus if they see an inb first. Weird. */ outb(0x84, 0); #endif /* * I don't know if this is necessary; probably cruft leftover from * Clarkson packet driver code. Doesn't do a thing on the boards I've * tested. -DG [note that a outb(0x84, 0) seems to work here, and is * non-invasive...but some boards don't seem to reset and I don't have * complete documentation on what the 'right' thing to do is...so we do * the invasive thing for now. Yuck.] */ outb(sc->asic_addr + ED_NOVELL_RESET, tmp); delay(5000); /* * This is needed because some NE clones apparently don't reset the NIC * properly (or the NIC chip doesn't reset fully on power-up) * XXX - this makes the probe invasive! ...Done against my better * judgement. -DLG */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STP); delay(5000); /* Make sure that we really have an 8390 based board. */ if (!ed_probe_generic8390(sc)) return 0; sc->vendor = ED_VENDOR_NOVELL; sc->mem_shared = 0; isa_dev->id_maddr = 0; /* * Test the ability to read and write to the NIC memory. This has the * side affect of determining if this is an NE1000 or an NE2000. */ /* * This prevents packets from being stored in the NIC memory when the * readmem routine turns on the start bit in the CR. */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON); /* Temporarily initialize DCR for byte operations. */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); outb(sc->nic_addr + ED_P0_PSTART, 8192 / ED_PAGE_SIZE); outb(sc->nic_addr + ED_P0_PSTOP, 16384 / ED_PAGE_SIZE); sc->isa16bit = 0; /* * Write a test pattern in byte mode. If this fails, then there * probably isn't any memory at 8k - which likely means that the board * is an NE2000. */ ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern)); ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) { /* not an NE1000 - try NE2000 */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS); outb(sc->nic_addr + ED_P0_PSTART, 16384 / ED_PAGE_SIZE); outb(sc->nic_addr + ED_P0_PSTOP, 32768 / ED_PAGE_SIZE); sc->isa16bit = 1; /* * Write a test pattern in word mode. If this also fails, then * we don't know what this board is. */ ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern)); ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) return 0; /* not an NE2000 either */ sc->type = ED_TYPE_NE2000; sc->type_str = "NE2000"; } else { sc->type = ED_TYPE_NE1000; sc->type_str = "NE1000"; } /* 8k of memory plus an additional 8k if 16-bit. */ memsize = 8192 + sc->isa16bit * 8192; #if 0 /* probably not useful - NE boards only come two ways */ /* Allow kernel config file overrides. */ if (isa_dev->id_msize) memsize = isa_dev->id_msize; #endif sc->mem_size = memsize; /* NIC memory doesn't start at zero on an NE board. */ /* The start address is tied to the bus width. */ sc->mem_start = (caddr_t) 8192 + sc->isa16bit * 8192; sc->mem_end = sc->mem_start + memsize; sc->tx_page_start = memsize / ED_PAGE_SIZE; /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((memsize < 16384) || (isa_dev->id_flags & ED_FLAGS_NO_MULTI_BUFFERING)) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + memsize / ED_PAGE_SIZE; sc->mem_ring = sc->mem_start + sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE; ed_pio_readmem(sc, 0, romdata, 16); for (n = 0; n < ETHER_ADDR_LEN; n++) sc->sc_arpcom.ac_enaddr[n] = romdata[n*(sc->isa16bit+1)]; /* Clear any pending interrupts that might have occurred above. */ outb(sc->nic_addr + ED_P0_ISR, 0xff); return ED_NOVELL_IO_PORTS; } /* * Install interface into kernel networking data structures. */ int ed_attach(isa_dev) struct isa_device *isa_dev; { struct ed_softc *sc = &ed_softc[isa_dev->id_unit]; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ifaddr *ifa; struct sockaddr_dl *sdl; /* Set interface to stopped condition (reset). */ ed_stop(sc); /* Initialize ifnet structure. */ ifp->if_unit = sc->sc_dev.dv_unit; ifp->if_name = eddriver.name; ifp->if_mtu = ETHERMTU; ifp->if_output = ether_output; ifp->if_start = ed_start; ifp->if_ioctl = ed_ioctl; ifp->if_watchdog = ed_watchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* * Set default state for LINK0 flag (used to disable the tranceiver * for AUI operation), based on compile-time config option. */ if (isa_dev->id_flags & ED_FLAGS_DISABLE_TRANCEIVER) ifp->if_flags |= IFF_LINK0; /* Attach the interface. */ if_attach(ifp); /* * Search down the ifa address list looking for the AF_LINK type entry * and initialize it. */ ifa = ifp->if_addrlist; while (ifa && ifa->ifa_addr) { if (ifa->ifa_addr->sa_family == AF_LINK) { /* * Fill in the link-level address for this interface. */ sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; sdl->sdl_slen = 0; bcopy(sc->sc_arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN); break; } else ifa = ifa->ifa_next; } /* Print additional info when attached. */ printf("%s: address %s, ", sc->sc_dev.dv_xname, ether_sprintf(sc->sc_arpcom.ac_enaddr)); if (sc->type_str && (*sc->type_str != '\0')) printf("type %s ", sc->type_str); else printf("type unknown (0x%x) ", sc->type); printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)"); printf("%s\n", ((sc->vendor == ED_VENDOR_3COM) && (ifp->if_flags & IFF_LINK0)) ? " tranceiver disabled" : ""); #if NBPFILTER > 0 bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif } /* * Reset interface. */ void ed_reset(sc) struct ed_softc *sc; { int s; s = splimp(); ed_stop(sc); ed_init(sc); splx(s); } /* * Take interface offline. */ void ed_stop(sc) struct ed_softc *sc; { int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STP | sc->ed_cr_rd2); /* * Wait for interface to enter stopped state, but limit # of checks to * to 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, * but just in case it's an old one. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ int ed_watchdog(unit) short unit; { struct ed_softc *sc = &ed_softc[unit]; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_arpcom.ac_if.if_oerrors; ed_reset(sc); } /* * Initialize device. */ void ed_init(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int i, s; u_char command; u_long mcaf[2]; /* Address not known. */ if (ifp->if_addrlist == 0) return; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ s = splimp(); /* Reset transmitter flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* This variable is used below - don't move this assignment. */ sc->next_packet = sc->rec_page_start + 1; /* Set interface for page 0, remote DMA complete, stopped. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STP | sc->ed_cr_rd2); if (sc->isa16bit) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); } else { /* Same as above, but byte-wide DMA xfers. */ outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* Clear remote byte count registers. */ outb(sc->nic_addr + ED_P0_RBCR0, 0); outb(sc->nic_addr + ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0); /* Initialize transmit/receive (ring-buffer) page start. */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start); outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start); /* Set lower bits of byte addressable framing to 0. */ if (sc->is790) outb(sc->nic_addr + 0x09, 0); /* Initialize receiver (ring-buffer) page stop and boundary. */ outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop); outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ outb(sc->nic_addr + ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ outb(sc->nic_addr + ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* Program command register for page 1. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1 | ED_CR_STP | sc->ed_cr_rd2); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) outb(sc->nic_addr + ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]); /* Set multicast filter on chip. */ ed_getmcaf(&sc->sc_arpcom, mcaf); for (i = 0; i < 8; i++) outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *)mcaf)[i]); /* Set current page pointer to next_packet (initialized above). */ outb(sc->nic_addr + ED_P1_CURR, sc->next_packet); /* * Set command register for page 0, remote DMA complete, and interface * start. */ outb(sc->nic_addr + ED_P1_CR, ED_CR_STA | sc->ed_cr_rd2); /* Clear all interrupts. */ outb(sc->nic_addr + ED_P0_ISR, 0xff); /* Take interface out of loopback. */ outb(sc->nic_addr + ED_P0_TCR, 0); /* * If this is a 3Com board, the tranceiver must be software enabled * (there is no settable hardware default). */ if (sc->vendor == ED_VENDOR_3COM) { if (ifp->if_flags & IFF_LINK0) outb(sc->asic_addr + ED_3COM_CR, 0); else outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL); } i = ED_RCR_AB | ED_RCR_AM; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO; } outb(sc->nic_addr + ED_P0_RCR, i); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ ed_start(ifp); (void) splx(s); } /* * This routine actually starts the transmission on the interface. */ static inline void ed_xmit(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_short len; len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2); /* Set TX buffer start page. */ outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ outb(sc->nic_addr + ED_P0_TBCR0, len); outb(sc->nic_addr + ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_TXP | ED_CR_STA | sc->ed_cr_rd2); sc->xmit_busy = 1; /* Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splimp _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ int ed_start(ifp) struct ifnet *ifp; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; struct mbuf *m0, *m; caddr_t buffer; int len; outloop: /* * First, see if there are buffered packets and an idle transmitter - * should never happen at this point. */ if (sc->txb_inuse && (sc->xmit_busy == 0)) { printf("%s: packets buffers, but transmitter idle\n", sc->sc_dev.dv_xname); ed_xmit(sc); } /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m); if (m == 0) { /* * We are using the !OACTIVE flag to indicate to the outside * world that we can accept an additional packet rather than * that the transmitter is _actually_ active. Indeed, the * transmitter may be active, but if we haven't filled all * the buffers with data then we still want to accept more. */ ifp->if_flags &= ~IFF_OACTIVE; return; } /* Copy the mbuf chain into the transmit buffer. */ m0 = m; /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE); if (sc->mem_shared) { /* Special case setup for 16 bit boards... */ if (sc->isa16bit) { switch (sc->vendor) { /* * For 16bit 3Com boards (which have 16k of memory), we * have the xmit buffers in a different page of memory * ('page 0') - so change pages. */ case ED_VENDOR_3COM: outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL); break; /* * Enable 16bit access to shared memory on WD/SMC * boards don't update wd_laar_proto because we want to * restore the previous state (because an arp reply in * the input code may cause a call-back to ed_start). * XXX - the call-back to 'start' is a bug, IMHO. */ case ED_VENDOR_WD_SMC: outb(sc->asic_addr + ED_WD_LAAR, (sc->wd_laar_proto | ED_WD_LAAR_M16EN)); } } for (len = 0; m; m = m->m_next) { bcopy(mtod(m, caddr_t), buffer, m->m_len); buffer += m->m_len; len += m->m_len; } /* Restore previous shared memory access. */ if (sc->isa16bit) { switch (sc->vendor) { case ED_VENDOR_3COM: outb(sc->asic_addr + ED_3COM_GACFR, ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0); break; case ED_VENDOR_WD_SMC: outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); break; } } } else len = ed_pio_write_mbufs(sc, m, (u_short)buffer); sc->txb_len[sc->txb_new] = MAX(len, ETHER_MIN_LEN); sc->txb_inuse++; /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; if (sc->xmit_busy == 0) ed_xmit(sc); #if NBPFILTER > 0 /* * If there is BPF support in the configuration, tap off here. * The following has support for converting trailer packets back to * normal. * XXX - Support for trailer packets in BPF should be moved into the * bpf code proper to avoid code duplication in all of the drivers. */ if (sc->bpf) { u_short etype; int off, datasize, resid; struct ether_header *eh; struct trailer_header trailer_header; u_char ether_packet[ETHER_MAX_LEN], *ep; ep = ether_packet; /* * We handle trailers below: * Copy ether header first, then residual data, then data. Put * all this in a temporary buffer 'ether_packet' and send off * to bpf. Since the system has generated this packet, we * assume that all of the offsets in the packet are correct; if * they're not, the system will almost certainly crash in * m_copydata. We make no assumptions about how the data is * arranged in the mbuf chain (i.e. how much data is in each * mbuf, if mbuf clusters are used, etc.), which is why we use * m_copydata to get the ether header rather than assume that * this is located in the first mbuf. */ /* copy ether header */ m_copydata(m0, 0, sizeof(struct ether_header), ep); eh = (struct ether_header *) ep; ep += sizeof(struct ether_header); etype = ntohs(eh->ether_type); if (etype >= ETHERTYPE_TRAIL && etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { datasize = (etype - ETHERTYPE_TRAIL) << 9; off = datasize + sizeof(struct ether_header); /* copy trailer_header into a data structure */ m_copydata(m0, off, sizeof(struct trailer_header), &trailer_header.ether_type); /* copy residual data */ m_copydata(m0, off+sizeof(struct trailer_header), resid = ntohs(trailer_header.ether_residual) - sizeof(struct trailer_header), ep); ep += resid; /* copy data */ m_copydata(m0, sizeof(struct ether_header), datasize, ep); ep += datasize; /* restore original ether packet type */ eh->ether_type = trailer_header.ether_type; bpf_tap(sc->bpf, ether_packet, ep - ether_packet); } else bpf_mtap(sc->bpf, m0); } #endif m_freem(m0); /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ed_rint(sc) struct ed_softc *sc; { u_char boundary, current; u_short len; struct ed_ring packet_hdr; caddr_t packet_ptr; /* Set NIC to page 1 registers to get 'current' pointer. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1 | ED_CR_STA | sc->ed_cr_rd2); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ while (sc->next_packet != inb(sc->nic_addr + ED_P1_CURR)) { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + (sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE; /* * The byte count includes the FCS - Frame Check Sequence (a * 32 bit CRC). */ if (sc->mem_shared) packet_hdr = *(struct ed_ring *)packet_ptr; else ed_pio_readmem(sc, (u_short)packet_ptr, (caddr_t) &packet_hdr, sizeof(packet_hdr)); len = packet_hdr.count; if ((len >= ETHER_MIN_LEN) && (len <= ETHER_MAX_LEN)) { /* Go get packet. len - 4 removes CRC from length. */ ed_get_packet(sc, packet_ptr + 4, len - 4); ++sc->sc_arpcom.ac_if.if_ipackets; } else { /* * Really BAD...probably indicates that the ring * pointers are corrupted. Also seen on early rev * chips under high load - the byte order of the length * gets switched. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_arpcom.ac_if.if_ierrors; ed_reset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; /* Set NIC to page 0 registers to update boundary register. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2); outb(sc->nic_addr + ED_P0_BNRY, boundary); /* * Set NIC to page 1 registers before looping to top (prepare * to get 'CURR' current pointer). */ outb(sc->nic_addr + ED_P0_CR, ED_CR_PAGE_1 | ED_CR_STA | sc->ed_cr_rd2); } } /* Ethernet interface interrupt processor. */ int edintr(unit) int unit; { struct ed_softc *sc = &ed_softc[unit]; u_char isr; /* Set NIC to page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2); /* Loop until there are no more new interrupts. */ while (isr = inb(sc->nic_addr + ED_P0_ISR)) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ outb(sc->nic_addr + ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = inb(sc->nic_addr + ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ (void) inb(sc->nic_addr + ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++sc->sc_arpcom.ac_if.if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++sc->sc_arpcom.ac_if.if_opackets; } /* Reset TX busy and output active flags. */ sc->xmit_busy = 0; sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE; /* Clear watchdog timer. */ sc->sc_arpcom.ac_if.if_timer = 0; /* * Add in total number of collisions on last * transmission. */ sc->sc_arpcom.ac_if.if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (sc->txb_inuse && --sc->txb_inuse) ed_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ ed_reset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++sc->sc_arpcom.ac_if.if_ierrors; #ifdef ED_DEBUG printf("%s: receive error %x\n", sc->sc_dev.dv_xname, inb(sc->nic_addr + ED_P0_RSR)); #endif } /* * Go get the packet(s). * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ /* * Enable 16bit access to shared memory first * on WD/SMC boards. */ if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) { sc->wd_laar_proto |= ED_WD_LAAR_M16EN; outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } ed_rint(sc); /* Disable 16-bit access. */ if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) { sc->wd_laar_proto &= ~ED_WD_LAAR_M16EN; outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto); } } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0) ed_start(&sc->sc_arpcom.ac_if); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ outb(sc->nic_addr + ED_P0_CR, ED_CR_STA | sc->ed_cr_rd2); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) inb(sc->nic_addr + ED_P0_CNTR0); (void) inb(sc->nic_addr + ED_P0_CNTR1); (void) inb(sc->nic_addr + ED_P0_CNTR2); } } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int ed_ioctl(ifp, command, data) register struct ifnet *ifp; int command; caddr_t data; { struct ed_softc *sc = &ed_softc[ifp->if_unit]; register struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splimp(); switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ed_init(sc); /* before arpwhohas */ /* * See if another station has *our* IP address. * i.e.: There is an address conflict! If a * conflict exists, a message is sent to the * console. */ sc->sc_arpcom.ac_ipaddr = IA_SIN(ifa)->sin_addr; arpwhohas(&sc->sc_arpcom, &IA_SIN(ifa)->sin_addr); break; #endif #ifdef NS /* XXX - This code is probably wrong. */ case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)(sc->sc_arpcom.ac_enaddr); else { /* * */ bcopy(ina->x_host.c_host, sc->sc_arpcom.ac_enaddr, sizeof(sc->sc_arpcom.ac_enaddr)); } /* Set new address. */ ed_init(sc); break; } #endif default: ed_init(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ ed_stop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ ed_init(sc); } else { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ ed_stop(sc); ed_init(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ ed_stop(sc); /* XXX for ds_setmcaf? */ ed_init(sc); error = 0; } break; default: error = EINVAL; } (void) splx(s); return error; } /* * Macro to calculate a new address within shared memory when given an offset * from an address, taking into account ring-wrap. */ #define ringoffset(sc, start, off, type) \ ((type)( ((caddr_t)(start)+(off) >= (sc)->mem_end) ? \ (((caddr_t)(start)+(off))) - (sc)->mem_end \ + (sc)->mem_ring: \ ((caddr_t)(start)+(off)) )) /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void ed_get_packet(sc, buf, len) struct ed_softc *sc; caddr_t buf; u_short len; { struct ether_header *eh; struct mbuf *m, *head = 0, *ed_ring_to_mbuf(); u_short off; int resid; u_short etype; struct trailer_header trailer_header; /* Allocate a header mbuf. */ MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) goto bad; m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if; m->m_pkthdr.len = len; m->m_len = 0; head = m; /* The following sillines is to make NFS happy. */ #define EROUND ((sizeof(struct ether_header) + 3) & ~3) #define EOFF (EROUND - sizeof(struct ether_header)) /* * The following assumes there is room for the ether header in the * header mbuf. */ head->m_data += EOFF; eh = mtod(head, struct ether_header *); if (sc->mem_shared) bcopy(buf, mtod(head, caddr_t), sizeof(struct ether_header)); else ed_pio_readmem(sc, (u_short)buf, mtod(head, caddr_t), sizeof(struct ether_header)); buf += sizeof(struct ether_header); head->m_len += sizeof(struct ether_header); len -= sizeof(struct ether_header); etype = ntohs(eh->ether_type); /* * Deal with trailer protocol: * If trailer protocol, calculate the datasize as 'off', which is also * the offset to the trailer header. Set resid to the amount of packet * data following the trailer header. Finally, copy residual data into * mbuf chain. */ if (etype >= ETHERTYPE_TRAIL && etype < ETHERTYPE_TRAIL+ETHERTYPE_NTRAILER) { off = (etype - ETHERTYPE_TRAIL) << 9; if ((off + sizeof(struct trailer_header)) > len) goto bad; /* insanity */ /* * If we have shared memory, we can get info directly from the * stored packet, otherwise we must get a local copy of the * trailer header using PIO. */ if (sc->mem_shared) { eh->ether_type = *ringoffset(sc, buf, off, u_short *); resid = ntohs(*ringoffset(sc, buf, off+2, u_short *)); } else { struct trailer_header trailer_header; ed_pio_readmem(sc, (u_short)ringoffset(sc, buf, off, caddr_t), (caddr_t) &trailer_header, sizeof(trailer_header)); eh->ether_type = trailer_header.ether_type; resid = trailer_header.ether_residual; } if ((off + resid) > len) goto bad; /* insanity */ resid -= sizeof(struct trailer_header); if (resid < 0) goto bad; /* insanity */ m = ed_ring_to_mbuf(sc, ringoffset(sc, buf, off+4, caddr_t), head, resid); if (m == 0) goto bad; len = off; head->m_pkthdr.len -= 4; /* subtract trailer header */ } /* * Pull packet off interface. Or if this was a trailer packet, the * data portion is appended. */ m = ed_ring_to_mbuf(sc, buf, m, len); if (m == 0) goto bad; #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. If so, hand off * the raw packet to bpf. */ if (sc->bpf) { bpf_mtap(sc->bpf, head); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr, sizeof(eh->ether_dhost)) != 0) { m_freem(head); return; } } #endif /* Fix up data start offset in mbuf to point past ether header. */ m_adj(head, sizeof(struct ether_header)); ether_input(&sc->sc_arpcom.ac_if, eh, head); return; bad: if (head) m_freem(head); return; } /* * Supporting routines. */ /* * Given a NIC memory source address and a host memory destination address, * copy 'amount' from NIC to host using Programmed I/O. The 'amount' is * rounded up to a word - okay as long as mbufs are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(sc, src, dst, amount) struct ed_softc *sc; u_short src; caddr_t dst; u_short amount; { u_short tmp_amount; /* Select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* Round up to a word. */ tmp_amount = amount; if (amount & 1) ++amount; /* Set up DMA byte count. */ outb(sc->nic_addr + ED_P0_RBCR0, amount); outb(sc->nic_addr + ED_P0_RBCR1, amount>>8); /* Set up source address in NIC mem. */ outb(sc->nic_addr + ED_P0_RSAR0, src); outb(sc->nic_addr + ED_P0_RSAR1, src>>8); outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_STA); if (sc->isa16bit) insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount/2); else insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount); } /* * Stripped down routine for writing a linear buffer to NIC memory. Only used * in the probe routine to test the memory. 'len' must be even. */ void ed_pio_writemem(sc, src, dst, len) struct ed_softc *sc; caddr_t src; u_short dst; u_short len; { int maxwait = 100; /* about 120us */ /* Select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* Reset remote DMA complete flag. */ outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ outb(sc->nic_addr + ED_P0_RBCR0, len); outb(sc->nic_addr + ED_P0_RBCR1, len>>8); /* Set up destination address in NIC mem. */ outb(sc->nic_addr + ED_P0_RSAR0, dst); outb(sc->nic_addr + ED_P0_RSAR1, dst>>8); /* Set remote DMA write. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA); if (sc->isa16bit) outsw(sc->asic_addr + ED_NOVELL_DATA, src, len/2); else outsb(sc->asic_addr + ED_NOVELL_DATA, src, len); /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); } /* * Write an mbuf chain to the destination NIC memory address using programmed * I/O. */ u_short ed_pio_write_mbufs(sc, m, dst) struct ed_softc *sc; struct mbuf *m; u_short dst; { u_short len, mb_offset; struct mbuf *mp; u_char residual[2]; int maxwait = 100; /* about 120us */ /* First, count up the total number of bytes to copy. */ for (len = 0, mp = m; mp; mp = mp->m_next) len += mp->m_len; /* Select page 0 registers. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_STA); /* Reset remote DMA complete flag. */ outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ outb(sc->nic_addr + ED_P0_RBCR0, len); outb(sc->nic_addr + ED_P0_RBCR1, len>>8); /* Set up destination address in NIC mem. */ outb(sc->nic_addr + ED_P0_RSAR0, dst); outb(sc->nic_addr + ED_P0_RSAR1, dst>>8); /* Set remote DMA write. */ outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_STA); mb_offset = 0; /* * Transfer the mbuf chain to the NIC memory. * The following code isn't too pretty. The problem is that we can * only transfer words to the board, and if an mbuf has an odd number * of bytes in it, this is a problem. It's not a simple matter of just * removing a byte from the next mbuf (adjusting data++ and len--) * because this will hose-over the mbuf chain which might be needed * later for BPF. Instead, we maintain an offset (mb_offset) which * let's us skip over the first byte in the following mbuf. */ while (m) { if (m->m_len - mb_offset) { if (sc->isa16bit) { if ((m->m_len - mb_offset) > 1) outsw(sc->asic_addr + ED_NOVELL_DATA, mtod(m, caddr_t) + mb_offset, (m->m_len - mb_offset) / 2); /* * if odd number of bytes, get the odd byte from * the next mbuf with data */ if ((m->m_len - mb_offset) & 1) { /* First the last byte in current mbuf */ residual[0] = *(mtod(m, caddr_t) + m->m_len - 1); /* Advance past any empty mbufs. */ while (m->m_next && (m->m_next->m_len == 0)) m = m->m_next; if (m->m_next) { /* Remove first byte in next mbuf. */ residual[1] = *(mtod(m->m_next, caddr_t)); mb_offset = 1; } outw(sc->asic_addr + ED_NOVELL_DATA, *((u_short *) residual)); } else mb_offset = 0; } else outsb(sc->asic_addr + ED_NOVELL_DATA, m->m_data, m->m_len); } m = m->m_next; } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); if (!maxwait) { log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n", sc->sc_dev.dv_xname); ed_reset(sc); } return len; } /* * Given a source and destination address, copy 'amount' of a packet from the * ring buffer into a linear destination buffer. Takes into account ring-wrap. */ static inline char * ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; char *src; char *dst; u_short amount; { u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ if (sc->mem_shared) bcopy(src, dst, tmp_amount); else ed_pio_readmem(sc, (u_short)src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } if (sc->mem_shared) bcopy(src, dst, amount); else ed_pio_readmem(sc, (u_short)src, dst, amount); return src + amount; } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * ed_ring_to_mbuf(sc, src, dst, total_len) struct ed_softc *sc; caddr_t src; struct mbuf *dst; u_short total_len; { register struct mbuf *m = dst; while (total_len) { register u_short amount = min(total_len, M_TRAILINGSPACE(m)); if (amount == 0) { /* * No more data in this mbuf; alloc another. * * If there is enough data for an mbuf cluster, attempt * to allocate one of those, otherwise, a regular mbuf * will do. * Note that a regular mbuf is always required, even if * we get a cluster - getting a cluster does not * allocate any mbufs, and one is needed to assign the * cluster to. The mbuf that has a cluster extension * can not be used to contain data - only the cluster * can contain data. */ dst = m; MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) return 0; if (total_len >= MINCLSIZE) MCLGET(m, M_DONTWAIT); m->m_len = 0; dst->m_next = m; amount = min(total_len, M_TRAILINGSPACE(m)); } src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len, amount); m->m_len += amount; total_len -= amount; } return m; } /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void ed_getmcaf(ac, af) struct arpcom *ac; u_long *af; { struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; register u_char *cp, c; register u_long crc; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } af[0] = af[1] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { c = *cp++; for (i = 8; --i >= 0;) { if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) { crc <<= 1; crc ^= 0x04c11db6 | 1; } else crc <<= 1; c >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 24); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; }