/* $NetBSD: vfs_subr.c,v 1.368 2009/02/05 13:37:24 enami Exp $ */ /*- * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ /* * Note on v_usecount and locking: * * At nearly all points it is known that v_usecount could be zero, the * vnode interlock will be held. * * To change v_usecount away from zero, the interlock must be held. To * change from a non-zero value to zero, again the interlock must be * held. * * Changing the usecount from a non-zero value to a non-zero value can * safely be done using atomic operations, without the interlock held. */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.368 2009/02/05 13:37:24 enami Exp $"); #include "opt_ddb.h" #include "opt_compat_netbsd.h" #include "opt_compat_43.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; const int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; /* * Insq/Remq for the vnode usage lists. */ #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) #define bufremvn(bp) { \ LIST_REMOVE(bp, b_vnbufs); \ (bp)->b_vnbufs.le_next = NOLIST; \ } int doforce = 1; /* 1 => permit forcible unmounting */ int prtactive = 0; /* 1 => print out reclaim of active vnodes */ static vnodelst_t vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list); static vnodelst_t vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list); static vnodelst_t vrele_list = TAILQ_HEAD_INITIALIZER(vrele_list); struct mntlist mountlist = /* mounted filesystem list */ CIRCLEQ_HEAD_INITIALIZER(mountlist); u_int numvnodes; static specificdata_domain_t mount_specificdata_domain; static int vrele_pending; static int vrele_gen; static kmutex_t vrele_lock; static kcondvar_t vrele_cv; static lwp_t *vrele_lwp; kmutex_t mountlist_lock; kmutex_t mntid_lock; kmutex_t mntvnode_lock; kmutex_t vnode_free_list_lock; kmutex_t vfs_list_lock; static pool_cache_t vnode_cache; /* * These define the root filesystem and device. */ struct vnode *rootvnode; struct device *root_device; /* root device */ /* * Local declarations. */ static void vrele_thread(void *); static void insmntque(vnode_t *, struct mount *); static int getdevvp(dev_t, vnode_t **, enum vtype); static vnode_t *getcleanvnode(void); void vpanic(vnode_t *, const char *); #ifdef DEBUG void printlockedvnodes(void); #endif #ifdef DIAGNOSTIC void vpanic(vnode_t *vp, const char *msg) { vprint(NULL, vp); panic("%s\n", msg); } #else #define vpanic(vp, msg) /* nothing */ #endif void vn_init1(void) { vnode_cache = pool_cache_init(sizeof(struct vnode), 0, 0, 0, "vnodepl", NULL, IPL_NONE, NULL, NULL, NULL); KASSERT(vnode_cache != NULL); /* Create deferred release thread. */ mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&vrele_cv, "vrele"); if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread, NULL, &vrele_lwp, "vrele")) panic("fork vrele"); } /* * Initialize the vnode management data structures. */ void vntblinit(void) { mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE); mount_specificdata_domain = specificdata_domain_create(); /* Initialize the filesystem syncer. */ vn_initialize_syncerd(); vn_init1(); } int vfs_drainvnodes(long target, struct lwp *l) { while (numvnodes > target) { vnode_t *vp; mutex_enter(&vnode_free_list_lock); vp = getcleanvnode(); if (vp == NULL) return EBUSY; /* give up */ ungetnewvnode(vp); } return 0; } /* * Lookup a mount point by filesystem identifier. * * XXX Needs to add a reference to the mount point. */ struct mount * vfs_getvfs(fsid_t *fsid) { struct mount *mp; mutex_enter(&mountlist_lock); CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) { if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] && mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) { mutex_exit(&mountlist_lock); return (mp); } } mutex_exit(&mountlist_lock); return ((struct mount *)0); } /* * Drop a reference to a mount structure, freeing if the last reference. */ void vfs_destroy(struct mount *mp) { if (__predict_true((int)atomic_dec_uint_nv(&mp->mnt_refcnt) > 0)) { return; } /* * Nothing else has visibility of the mount: we can now * free the data structures. */ KASSERT(mp->mnt_refcnt == 0); specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref); rw_destroy(&mp->mnt_unmounting); mutex_destroy(&mp->mnt_updating); mutex_destroy(&mp->mnt_renamelock); if (mp->mnt_op != NULL) { vfs_delref(mp->mnt_op); } kmem_free(mp, sizeof(*mp)); } /* * grab a vnode from freelist and clean it. */ vnode_t * getcleanvnode(void) { vnode_t *vp; vnodelst_t *listhd; KASSERT(mutex_owned(&vnode_free_list_lock)); retry: listhd = &vnode_free_list; try_nextlist: TAILQ_FOREACH(vp, listhd, v_freelist) { /* * It's safe to test v_usecount and v_iflag * without holding the interlock here, since * these vnodes should never appear on the * lists. */ if (vp->v_usecount != 0) { vpanic(vp, "free vnode isn't"); } if ((vp->v_iflag & VI_CLEAN) != 0) { vpanic(vp, "clean vnode on freelist"); } if (vp->v_freelisthd != listhd) { printf("vnode sez %p, listhd %p\n", vp->v_freelisthd, listhd); vpanic(vp, "list head mismatch"); } if (!mutex_tryenter(&vp->v_interlock)) continue; /* * Our lwp might hold the underlying vnode * locked, so don't try to reclaim a VI_LAYER * node if it's locked. */ if ((vp->v_iflag & VI_XLOCK) == 0 && ((vp->v_iflag & VI_LAYER) == 0 || VOP_ISLOCKED(vp) == 0)) { break; } mutex_exit(&vp->v_interlock); } if (vp == NULL) { if (listhd == &vnode_free_list) { listhd = &vnode_hold_list; goto try_nextlist; } mutex_exit(&vnode_free_list_lock); return NULL; } /* Remove it from the freelist. */ TAILQ_REMOVE(listhd, vp, v_freelist); vp->v_freelisthd = NULL; mutex_exit(&vnode_free_list_lock); /* * The vnode is still associated with a file system, so we must * clean it out before reusing it. We need to add a reference * before doing this. If the vnode gains another reference while * being cleaned out then we lose - retry. */ atomic_inc_uint(&vp->v_usecount); vclean(vp, DOCLOSE); if (vp->v_usecount == 1) { /* We're about to dirty it. */ vp->v_iflag &= ~VI_CLEAN; mutex_exit(&vp->v_interlock); if (vp->v_type == VBLK || vp->v_type == VCHR) { spec_node_destroy(vp); } vp->v_type = VNON; } else { /* * Don't return to freelist - the holder of the last * reference will destroy it. */ vrelel(vp, 0); /* releases vp->v_interlock */ mutex_enter(&vnode_free_list_lock); goto retry; } if (vp->v_data != NULL || vp->v_uobj.uo_npages != 0 || !TAILQ_EMPTY(&vp->v_uobj.memq)) { vpanic(vp, "cleaned vnode isn't"); } if (vp->v_numoutput != 0) { vpanic(vp, "clean vnode has pending I/O's"); } if ((vp->v_iflag & VI_ONWORKLST) != 0) { vpanic(vp, "clean vnode on syncer list"); } return vp; } /* * Mark a mount point as busy, and gain a new reference to it. Used to * prevent the file system from being unmounted during critical sections. * * => The caller must hold a pre-existing reference to the mount. * => Will fail if the file system is being unmounted, or is unmounted. */ int vfs_busy(struct mount *mp, struct mount **nextp) { KASSERT(mp->mnt_refcnt > 0); if (__predict_false(!rw_tryenter(&mp->mnt_unmounting, RW_READER))) { if (nextp != NULL) { KASSERT(mutex_owned(&mountlist_lock)); *nextp = CIRCLEQ_NEXT(mp, mnt_list); } return EBUSY; } if (__predict_false((mp->mnt_iflag & IMNT_GONE) != 0)) { rw_exit(&mp->mnt_unmounting); if (nextp != NULL) { KASSERT(mutex_owned(&mountlist_lock)); *nextp = CIRCLEQ_NEXT(mp, mnt_list); } return ENOENT; } if (nextp != NULL) { mutex_exit(&mountlist_lock); } atomic_inc_uint(&mp->mnt_refcnt); return 0; } /* * Unbusy a busy filesystem. * * => If keepref is true, preserve reference added by vfs_busy(). * => If nextp != NULL, acquire mountlist_lock. */ void vfs_unbusy(struct mount *mp, bool keepref, struct mount **nextp) { KASSERT(mp->mnt_refcnt > 0); if (nextp != NULL) { mutex_enter(&mountlist_lock); } rw_exit(&mp->mnt_unmounting); if (!keepref) { vfs_destroy(mp); } if (nextp != NULL) { KASSERT(mutex_owned(&mountlist_lock)); *nextp = CIRCLEQ_NEXT(mp, mnt_list); } } /* * Lookup a filesystem type, and if found allocate and initialize * a mount structure for it. * * Devname is usually updated by mount(8) after booting. */ int vfs_rootmountalloc(const char *fstypename, const char *devname, struct mount **mpp) { struct vfsops *vfsp = NULL; struct mount *mp; mutex_enter(&vfs_list_lock); LIST_FOREACH(vfsp, &vfs_list, vfs_list) if (!strncmp(vfsp->vfs_name, fstypename, sizeof(mp->mnt_stat.f_fstypename))) break; if (vfsp == NULL) { mutex_exit(&vfs_list_lock); return (ENODEV); } vfsp->vfs_refcount++; mutex_exit(&vfs_list_lock); mp = kmem_zalloc(sizeof(*mp), KM_SLEEP); if (mp == NULL) return ENOMEM; mp->mnt_refcnt = 1; rw_init(&mp->mnt_unmounting); mutex_init(&mp->mnt_updating, MUTEX_DEFAULT, IPL_NONE); mutex_init(&mp->mnt_renamelock, MUTEX_DEFAULT, IPL_NONE); (void)vfs_busy(mp, NULL); TAILQ_INIT(&mp->mnt_vnodelist); mp->mnt_op = vfsp; mp->mnt_flag = MNT_RDONLY; mp->mnt_vnodecovered = NULL; (void)strlcpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name, sizeof(mp->mnt_stat.f_fstypename)); mp->mnt_stat.f_mntonname[0] = '/'; mp->mnt_stat.f_mntonname[1] = '\0'; mp->mnt_stat.f_mntfromname[sizeof(mp->mnt_stat.f_mntfromname) - 1] = '\0'; (void)copystr(devname, mp->mnt_stat.f_mntfromname, sizeof(mp->mnt_stat.f_mntfromname) - 1, 0); mount_initspecific(mp); *mpp = mp; return (0); } /* * Routines having to do with the management of the vnode table. */ extern int (**dead_vnodeop_p)(void *); /* * Return the next vnode from the free list. */ int getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *), vnode_t **vpp) { struct uvm_object *uobj; static int toggle; vnode_t *vp; int error = 0, tryalloc; try_again: if (mp != NULL) { /* * Mark filesystem busy while we're creating a * vnode. If unmount is in progress, this will * fail. */ error = vfs_busy(mp, NULL); if (error) return error; } /* * We must choose whether to allocate a new vnode or recycle an * existing one. The criterion for allocating a new one is that * the total number of vnodes is less than the number desired or * there are no vnodes on either free list. Generally we only * want to recycle vnodes that have no buffers associated with * them, so we look first on the vnode_free_list. If it is empty, * we next consider vnodes with referencing buffers on the * vnode_hold_list. The toggle ensures that half the time we * will use a buffer from the vnode_hold_list, and half the time * we will allocate a new one unless the list has grown to twice * the desired size. We are reticent to recycle vnodes from the * vnode_hold_list because we will lose the identity of all its * referencing buffers. */ vp = NULL; mutex_enter(&vnode_free_list_lock); toggle ^= 1; if (numvnodes > 2 * desiredvnodes) toggle = 0; tryalloc = numvnodes < desiredvnodes || (TAILQ_FIRST(&vnode_free_list) == NULL && (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle)); if (tryalloc) { numvnodes++; mutex_exit(&vnode_free_list_lock); if ((vp = vnalloc(NULL)) == NULL) { mutex_enter(&vnode_free_list_lock); numvnodes--; } else vp->v_usecount = 1; } if (vp == NULL) { vp = getcleanvnode(); if (vp == NULL) { if (mp != NULL) { vfs_unbusy(mp, false, NULL); } if (tryalloc) { printf("WARNING: unable to allocate new " "vnode, retrying...\n"); kpause("newvn", false, hz, NULL); goto try_again; } tablefull("vnode", "increase kern.maxvnodes or NVNODE"); *vpp = 0; return (ENFILE); } vp->v_iflag = 0; vp->v_vflag = 0; vp->v_uflag = 0; vp->v_socket = NULL; } KASSERT(vp->v_usecount == 1); KASSERT(vp->v_freelisthd == NULL); KASSERT(LIST_EMPTY(&vp->v_nclist)); KASSERT(LIST_EMPTY(&vp->v_dnclist)); vp->v_type = VNON; vp->v_vnlock = &vp->v_lock; vp->v_tag = tag; vp->v_op = vops; insmntque(vp, mp); *vpp = vp; vp->v_data = 0; /* * initialize uvm_object within vnode. */ uobj = &vp->v_uobj; KASSERT(uobj->pgops == &uvm_vnodeops); KASSERT(uobj->uo_npages == 0); KASSERT(TAILQ_FIRST(&uobj->memq) == NULL); vp->v_size = vp->v_writesize = VSIZENOTSET; if (mp != NULL) { if ((mp->mnt_iflag & IMNT_MPSAFE) != 0) vp->v_vflag |= VV_MPSAFE; vfs_unbusy(mp, true, NULL); } return (0); } /* * This is really just the reverse of getnewvnode(). Needed for * VFS_VGET functions who may need to push back a vnode in case * of a locking race. */ void ungetnewvnode(vnode_t *vp) { KASSERT(vp->v_usecount == 1); KASSERT(vp->v_data == NULL); KASSERT(vp->v_freelisthd == NULL); mutex_enter(&vp->v_interlock); vp->v_iflag |= VI_CLEAN; vrelel(vp, 0); } /* * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a * marker vnode and we are prepared to wait for the allocation. */ vnode_t * vnalloc(struct mount *mp) { vnode_t *vp; vp = pool_cache_get(vnode_cache, (mp != NULL ? PR_WAITOK : PR_NOWAIT)); if (vp == NULL) { return NULL; } memset(vp, 0, sizeof(*vp)); UVM_OBJ_INIT(&vp->v_uobj, &uvm_vnodeops, 0); cv_init(&vp->v_cv, "vnode"); /* * done by memset() above. * LIST_INIT(&vp->v_nclist); * LIST_INIT(&vp->v_dnclist); */ if (mp != NULL) { vp->v_mount = mp; vp->v_type = VBAD; vp->v_iflag = VI_MARKER; } else { rw_init(&vp->v_lock.vl_lock); } return vp; } /* * Free an unused, unreferenced vnode. */ void vnfree(vnode_t *vp) { KASSERT(vp->v_usecount == 0); if ((vp->v_iflag & VI_MARKER) == 0) { rw_destroy(&vp->v_lock.vl_lock); mutex_enter(&vnode_free_list_lock); numvnodes--; mutex_exit(&vnode_free_list_lock); } UVM_OBJ_DESTROY(&vp->v_uobj); cv_destroy(&vp->v_cv); pool_cache_put(vnode_cache, vp); } /* * Remove a vnode from its freelist. */ static inline void vremfree(vnode_t *vp) { KASSERT(mutex_owned(&vp->v_interlock)); KASSERT(vp->v_usecount == 0); /* * Note that the reference count must not change until * the vnode is removed. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { KASSERT(vp->v_freelisthd == &vnode_hold_list); } else { KASSERT(vp->v_freelisthd == &vnode_free_list); } TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = NULL; mutex_exit(&vnode_free_list_lock); } /* * Move a vnode from one mount queue to another. */ static void insmntque(vnode_t *vp, struct mount *mp) { struct mount *omp; #ifdef DIAGNOSTIC if ((mp != NULL) && (mp->mnt_iflag & IMNT_UNMOUNT) && !(mp->mnt_flag & MNT_SOFTDEP) && vp->v_tag != VT_VFS) { panic("insmntque into dying filesystem"); } #endif mutex_enter(&mntvnode_lock); /* * Delete from old mount point vnode list, if on one. */ if ((omp = vp->v_mount) != NULL) TAILQ_REMOVE(&vp->v_mount->mnt_vnodelist, vp, v_mntvnodes); /* * Insert into list of vnodes for the new mount point, if * available. The caller must take a reference on the mount * structure and donate to the vnode. */ if ((vp->v_mount = mp) != NULL) TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes); mutex_exit(&mntvnode_lock); if (omp != NULL) { /* Release reference to old mount. */ vfs_destroy(omp); } } /* * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or * recycled. */ void vwait(vnode_t *vp, int flags) { KASSERT(mutex_owned(&vp->v_interlock)); KASSERT(vp->v_usecount != 0); while ((vp->v_iflag & flags) != 0) cv_wait(&vp->v_cv, &vp->v_interlock); } /* * Insert a marker vnode into a mount's vnode list, after the * specified vnode. mntvnode_lock must be held. */ void vmark(vnode_t *mvp, vnode_t *vp) { struct mount *mp; mp = mvp->v_mount; KASSERT(mutex_owned(&mntvnode_lock)); KASSERT((mvp->v_iflag & VI_MARKER) != 0); KASSERT(vp->v_mount == mp); TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes); } /* * Remove a marker vnode from a mount's vnode list, and return * a pointer to the next vnode in the list. mntvnode_lock must * be held. */ vnode_t * vunmark(vnode_t *mvp) { vnode_t *vp; struct mount *mp; mp = mvp->v_mount; KASSERT(mutex_owned(&mntvnode_lock)); KASSERT((mvp->v_iflag & VI_MARKER) != 0); vp = TAILQ_NEXT(mvp, v_mntvnodes); TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes); KASSERT(vp == NULL || vp->v_mount == mp); return vp; } /* * Update outstanding I/O count and do wakeup if requested. */ void vwakeup(struct buf *bp) { struct vnode *vp; if ((vp = bp->b_vp) == NULL) return; KASSERT(bp->b_objlock == &vp->v_interlock); KASSERT(mutex_owned(bp->b_objlock)); if (--vp->v_numoutput < 0) panic("vwakeup: neg numoutput, vp %p", vp); if (vp->v_numoutput == 0) cv_broadcast(&vp->v_cv); } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, bool catch, int slptimeo) { struct buf *bp, *nbp; int error; int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); /* XXXUBC this doesn't look at flags or slp* */ mutex_enter(&vp->v_interlock); error = VOP_PUTPAGES(vp, 0, 0, flushflags); if (error) { return error; } if (flags & V_SAVE) { error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); if (error) return (error); KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } /* * XXX Since there are no node locks for NFS, I believe * there is a slight chance that a delayed write will * occur while sleeping just above, so check for it. */ if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { #ifdef DEBUG printf("buffer still DELWRI\n"); #endif bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); VOP_BWRITE(bp); mutex_enter(&bufcache_lock); goto restart; } brelsel(bp, BC_INVAL | BC_VFLUSH); } #ifdef DIAGNOSTIC if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) panic("vinvalbuf: flush failed, vp %p", vp); #endif mutex_exit(&bufcache_lock); return (0); } /* * Destroy any in core blocks past the truncation length. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo) { struct buf *bp, *nbp; int error; voff_t off; off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); mutex_enter(&vp->v_interlock); error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); if (error) { return error; } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } mutex_exit(&bufcache_lock); return (0); } /* * Flush all dirty buffers from a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ void vflushbuf(struct vnode *vp, int sync) { struct buf *bp, *nbp; int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0); bool dirty; mutex_enter(&vp->v_interlock); (void) VOP_PUTPAGES(vp, 0, 0, flags); loop: mutex_enter(&bufcache_lock); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if ((bp->b_cflags & BC_BUSY)) continue; if ((bp->b_oflags & BO_DELWRI) == 0) panic("vflushbuf: not dirty, bp %p", bp); bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); /* * Wait for I/O associated with indirect blocks to complete, * since there is no way to quickly wait for them below. */ if (bp->b_vp == vp || sync == 0) (void) bawrite(bp); else (void) bwrite(bp); goto loop; } mutex_exit(&bufcache_lock); if (sync == 0) return; mutex_enter(&vp->v_interlock); while (vp->v_numoutput != 0) cv_wait(&vp->v_cv, &vp->v_interlock); dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); mutex_exit(&vp->v_interlock); if (dirty) { vprint("vflushbuf: dirty", vp); goto loop; } } /* * Create a vnode for a block device. * Used for root filesystem and swap areas. * Also used for memory file system special devices. */ int bdevvp(dev_t dev, vnode_t **vpp) { return (getdevvp(dev, vpp, VBLK)); } /* * Create a vnode for a character device. * Used for kernfs and some console handling. */ int cdevvp(dev_t dev, vnode_t **vpp) { return (getdevvp(dev, vpp, VCHR)); } /* * Associate a buffer with a vnode. There must already be a hold on * the vnode. */ void bgetvp(struct vnode *vp, struct buf *bp) { KASSERT(bp->b_vp == NULL); KASSERT(bp->b_objlock == &buffer_lock); KASSERT(mutex_owned(&vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); vholdl(vp); bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; /* * Insert onto list for new vnode. */ bufinsvn(bp, &vp->v_cleanblkhd); bp->b_objlock = &vp->v_interlock; } /* * Disassociate a buffer from a vnode. */ void brelvp(struct buf *bp) { struct vnode *vp = bp->b_vp; KASSERT(vp != NULL); KASSERT(bp->b_objlock == &vp->v_interlock); KASSERT(mutex_owned(&vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } bp->b_objlock = &buffer_lock; bp->b_vp = NULL; holdrelel(vp); } /* * Reassign a buffer from one vnode list to another. * The list reassignment must be within the same vnode. * Used to assign file specific control information * (indirect blocks) to the list to which they belong. */ void reassignbuf(struct buf *bp, struct vnode *vp) { struct buflists *listheadp; int delayx; KASSERT(mutex_owned(&bufcache_lock)); KASSERT(bp->b_objlock == &vp->v_interlock); KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); /* * If dirty, put on list of dirty buffers; * otherwise insert onto list of clean buffers. */ if ((bp->b_oflags & BO_DELWRI) == 0) { listheadp = &vp->v_cleanblkhd; if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } } else { listheadp = &vp->v_dirtyblkhd; if ((vp->v_iflag & VI_ONWORKLST) == 0) { switch (vp->v_type) { case VDIR: delayx = dirdelay; break; case VBLK: if (vp->v_specmountpoint != NULL) { delayx = metadelay; break; } /* fall through */ default: delayx = filedelay; break; } if (!vp->v_mount || (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) vn_syncer_add_to_worklist(vp, delayx); } } bufinsvn(bp, listheadp); } /* * Create a vnode for a device. * Used by bdevvp (block device) for root file system etc., * and by cdevvp (character device) for console and kernfs. */ static int getdevvp(dev_t dev, vnode_t **vpp, enum vtype type) { vnode_t *vp; vnode_t *nvp; int error; if (dev == NODEV) { *vpp = NULL; return (0); } error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp); if (error) { *vpp = NULL; return (error); } vp = nvp; vp->v_type = type; vp->v_vflag |= VV_MPSAFE; uvm_vnp_setsize(vp, 0); spec_node_init(vp, dev); *vpp = vp; return (0); } /* * Try to gain a reference to a vnode, without acquiring its interlock. * The caller must hold a lock that will prevent the vnode from being * recycled or freed. */ bool vtryget(vnode_t *vp) { u_int use, next; /* * If the vnode is being freed, don't make life any harder * for vclean() by adding another reference without waiting. * This is not strictly necessary, but we'll do it anyway. */ if (__predict_false((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0)) { return false; } for (use = vp->v_usecount;; use = next) { if (use == 0) { /* Need interlock held if first reference. */ return false; } next = atomic_cas_uint(&vp->v_usecount, use, use + 1); if (__predict_true(next == use)) { return true; } } } /* * Grab a particular vnode from the free list, increment its * reference count and lock it. If the vnode lock bit is set the * vnode is being eliminated in vgone. In that case, we can not * grab the vnode, so the process is awakened when the transition is * completed, and an error returned to indicate that the vnode is no * longer usable (possibly having been changed to a new file system type). */ int vget(vnode_t *vp, int flags) { int error; KASSERT((vp->v_iflag & VI_MARKER) == 0); if ((flags & LK_INTERLOCK) == 0) mutex_enter(&vp->v_interlock); /* * Before adding a reference, we must remove the vnode * from its freelist. */ if (vp->v_usecount == 0) { vremfree(vp); vp->v_usecount = 1; } else { atomic_inc_uint(&vp->v_usecount); } /* * If the vnode is in the process of being cleaned out for * another use, we wait for the cleaning to finish and then * return failure. Cleaning is determined by checking if * the VI_XLOCK or VI_FREEING flags are set. */ if ((vp->v_iflag & (VI_XLOCK | VI_FREEING)) != 0) { if ((flags & LK_NOWAIT) != 0) { vrelel(vp, 0); return EBUSY; } vwait(vp, VI_XLOCK | VI_FREEING); vrelel(vp, 0); return ENOENT; } if (flags & LK_TYPE_MASK) { error = vn_lock(vp, flags | LK_INTERLOCK); if (error != 0) { vrele(vp); } return error; } mutex_exit(&vp->v_interlock); return 0; } /* * vput(), just unlock and vrele() */ void vput(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); VOP_UNLOCK(vp, 0); vrele(vp); } /* * Try to drop reference on a vnode. Abort if we are releasing the * last reference. Note: this _must_ succeed if not the last reference. */ static inline bool vtryrele(vnode_t *vp) { u_int use, next; for (use = vp->v_usecount;; use = next) { if (use == 1) { return false; } next = atomic_cas_uint(&vp->v_usecount, use, use - 1); if (__predict_true(next == use)) { return true; } } } /* * Vnode release. If reference count drops to zero, call inactive * routine and either return to freelist or free to the pool. */ void vrelel(vnode_t *vp, int flags) { bool recycle, defer; int error; KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_freelisthd == NULL); if (__predict_false(vp->v_op == dead_vnodeop_p && (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) { vpanic(vp, "dead but not clean"); } /* * If not the last reference, just drop the reference count * and unlock. */ if (vtryrele(vp)) { vp->v_iflag |= VI_INACTREDO; mutex_exit(&vp->v_interlock); return; } if (vp->v_usecount <= 0 || vp->v_writecount != 0) { vpanic(vp, "vrelel: bad ref count"); } KASSERT((vp->v_iflag & VI_XLOCK) == 0); /* * If not clean, deactivate the vnode, but preserve * our reference across the call to VOP_INACTIVE(). */ retry: if ((vp->v_iflag & VI_CLEAN) == 0) { recycle = false; vp->v_iflag |= VI_INACTNOW; /* * XXX This ugly block can be largely eliminated if * locking is pushed down into the file systems. */ if (curlwp == uvm.pagedaemon_lwp) { /* The pagedaemon can't wait around; defer. */ defer = true; } else if (curlwp == vrele_lwp) { /* We have to try harder. */ vp->v_iflag &= ~VI_INACTREDO; error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); if (error != 0) { /* XXX */ vpanic(vp, "vrele: unable to lock %p"); } defer = false; } else if ((vp->v_iflag & VI_LAYER) != 0) { /* * Acquiring the stack's lock in vclean() even * for an honest vput/vrele is dangerous because * our caller may hold other vnode locks; defer. */ defer = true; } else { /* If we can't acquire the lock, then defer. */ vp->v_iflag &= ~VI_INACTREDO; error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT); if (error != 0) { defer = true; mutex_enter(&vp->v_interlock); } else { defer = false; } } if (defer) { /* * Defer reclaim to the kthread; it's not safe to * clean it here. We donate it our last reference. */ KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((vp->v_iflag & VI_INACTPEND) == 0); vp->v_iflag &= ~VI_INACTNOW; vp->v_iflag |= VI_INACTPEND; mutex_enter(&vrele_lock); TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist); if (++vrele_pending > (desiredvnodes >> 8)) cv_signal(&vrele_cv); mutex_exit(&vrele_lock); mutex_exit(&vp->v_interlock); return; } #ifdef DIAGNOSTIC if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) { vprint("vrelel: missing VOP_CLOSE()", vp); } #endif /* * The vnode can gain another reference while being * deactivated. If VOP_INACTIVE() indicates that * the described file has been deleted, then recycle * the vnode irrespective of additional references. * Another thread may be waiting to re-use the on-disk * inode. * * Note that VOP_INACTIVE() will drop the vnode lock. */ VOP_INACTIVE(vp, &recycle); mutex_enter(&vp->v_interlock); vp->v_iflag &= ~VI_INACTNOW; if (!recycle) { if (vtryrele(vp)) { mutex_exit(&vp->v_interlock); return; } /* * If we grew another reference while * VOP_INACTIVE() was underway, retry. */ if ((vp->v_iflag & VI_INACTREDO) != 0) { goto retry; } } /* Take care of space accounting. */ if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP); vp->v_vflag &= ~VV_MAPPED; /* * Recycle the vnode if the file is now unused (unlinked), * otherwise just free it. */ if (recycle) { vclean(vp, DOCLOSE); } KASSERT(vp->v_usecount > 0); } if (atomic_dec_uint_nv(&vp->v_usecount) != 0) { /* Gained another reference while being reclaimed. */ mutex_exit(&vp->v_interlock); return; } if ((vp->v_iflag & VI_CLEAN) != 0) { /* * It's clean so destroy it. It isn't referenced * anywhere since it has been reclaimed. */ KASSERT(vp->v_holdcnt == 0); KASSERT(vp->v_writecount == 0); mutex_exit(&vp->v_interlock); insmntque(vp, NULL); if (vp->v_type == VBLK || vp->v_type == VCHR) { spec_node_destroy(vp); } vnfree(vp); } else { /* * Otherwise, put it back onto the freelist. It * can't be destroyed while still associated with * a file system. */ mutex_enter(&vnode_free_list_lock); if (vp->v_holdcnt > 0) { vp->v_freelisthd = &vnode_hold_list; } else { vp->v_freelisthd = &vnode_free_list; } TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); mutex_exit(&vp->v_interlock); } } void vrele(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) { return; } mutex_enter(&vp->v_interlock); vrelel(vp, 0); } static void vrele_thread(void *cookie) { vnode_t *vp; for (;;) { mutex_enter(&vrele_lock); while (TAILQ_EMPTY(&vrele_list)) { vrele_gen++; cv_broadcast(&vrele_cv); cv_timedwait(&vrele_cv, &vrele_lock, hz); } vp = TAILQ_FIRST(&vrele_list); TAILQ_REMOVE(&vrele_list, vp, v_freelist); vrele_pending--; mutex_exit(&vrele_lock); /* * If not the last reference, then ignore the vnode * and look for more work. */ mutex_enter(&vp->v_interlock); KASSERT((vp->v_iflag & VI_INACTPEND) != 0); vp->v_iflag &= ~VI_INACTPEND; vrelel(vp, 0); } } /* * Page or buffer structure gets a reference. * Called with v_interlock held. */ void vholdl(vnode_t *vp) { KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_free_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_hold_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Page or buffer structure frees a reference. * Called with v_interlock held. */ void holdrelel(vnode_t *vp) { KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); if (vp->v_holdcnt <= 0) { vpanic(vp, "holdrelel: holdcnt vp %p"); } vp->v_holdcnt--; if (vp->v_holdcnt == 0 && vp->v_usecount == 0) { mutex_enter(&vnode_free_list_lock); KASSERT(vp->v_freelisthd == &vnode_hold_list); TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist); vp->v_freelisthd = &vnode_free_list; TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist); mutex_exit(&vnode_free_list_lock); } } /* * Vnode reference, where a reference is already held by some other * object (for example, a file structure). */ void vref(vnode_t *vp) { KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_usecount != 0); atomic_inc_uint(&vp->v_usecount); } /* * Remove any vnodes in the vnode table belonging to mount point mp. * * If FORCECLOSE is not specified, there should not be any active ones, * return error if any are found (nb: this is a user error, not a * system error). If FORCECLOSE is specified, detach any active vnodes * that are found. * * If WRITECLOSE is set, only flush out regular file vnodes open for * writing. * * SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped. */ #ifdef DEBUG int busyprt = 0; /* print out busy vnodes */ struct ctldebug debug1 = { "busyprt", &busyprt }; #endif static vnode_t * vflushnext(vnode_t *mvp, int *when) { if (hardclock_ticks > *when) { mutex_exit(&mntvnode_lock); yield(); mutex_enter(&mntvnode_lock); *when = hardclock_ticks + hz / 10; } return vunmark(mvp); } int vflush(struct mount *mp, vnode_t *skipvp, int flags) { vnode_t *vp, *mvp; int busy = 0, when = 0, gen; /* * First, flush out any vnode references from vrele_list. */ mutex_enter(&vrele_lock); gen = vrele_gen; while (vrele_pending && gen == vrele_gen) { cv_broadcast(&vrele_cv); cv_wait(&vrele_cv, &vrele_lock); } mutex_exit(&vrele_lock); /* Allocate a marker vnode. */ if ((mvp = vnalloc(mp)) == NULL) return (ENOMEM); /* * NOTE: not using the TAILQ_FOREACH here since in this loop vgone() * and vclean() are called */ mutex_enter(&mntvnode_lock); for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = vflushnext(mvp, &when)) { vmark(mvp, vp); if (vp->v_mount != mp || vismarker(vp)) continue; /* * Skip over a selected vnode. */ if (vp == skipvp) continue; mutex_enter(&vp->v_interlock); /* * Ignore clean but still referenced vnodes. */ if ((vp->v_iflag & VI_CLEAN) != 0) { mutex_exit(&vp->v_interlock); continue; } /* * Skip over a vnodes marked VSYSTEM. */ if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) { mutex_exit(&vp->v_interlock); continue; } /* * If WRITECLOSE is set, only flush out regular file * vnodes open for writing. */ if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG)) { mutex_exit(&vp->v_interlock); continue; } /* * With v_usecount == 0, all we need to do is clear * out the vnode data structures and we are done. */ if (vp->v_usecount == 0) { mutex_exit(&mntvnode_lock); vremfree(vp); vp->v_usecount = 1; vclean(vp, DOCLOSE); vrelel(vp, 0); mutex_enter(&mntvnode_lock); continue; } /* * If FORCECLOSE is set, forcibly close the vnode. * For block or character devices, revert to an * anonymous device. For all other files, just * kill them. */ if (flags & FORCECLOSE) { mutex_exit(&mntvnode_lock); atomic_inc_uint(&vp->v_usecount); if (vp->v_type != VBLK && vp->v_type != VCHR) { vclean(vp, DOCLOSE); vrelel(vp, 0); } else { vclean(vp, 0); vp->v_op = spec_vnodeop_p; /* XXXSMP */ mutex_exit(&vp->v_interlock); /* * The vnode isn't clean, but still resides * on the mount list. Remove it. XXX This * is a bit dodgy. */ insmntque(vp, NULL); vrele(vp); } mutex_enter(&mntvnode_lock); continue; } #ifdef DEBUG if (busyprt) vprint("vflush: busy vnode", vp); #endif mutex_exit(&vp->v_interlock); busy++; } mutex_exit(&mntvnode_lock); vnfree(mvp); if (busy) return (EBUSY); return (0); } /* * Disassociate the underlying file system from a vnode. * * Must be called with the interlock held, and will return with it held. */ void vclean(vnode_t *vp, int flags) { lwp_t *l = curlwp; bool recycle, active; int error; KASSERT(mutex_owned(&vp->v_interlock)); KASSERT((vp->v_iflag & VI_MARKER) == 0); KASSERT(vp->v_usecount != 0); /* If cleaning is already in progress wait until done and return. */ if (vp->v_iflag & VI_XLOCK) { vwait(vp, VI_XLOCK); return; } /* If already clean, nothing to do. */ if ((vp->v_iflag & VI_CLEAN) != 0) { return; } /* * Prevent the vnode from being recycled or brought into use * while we clean it out. */ vp->v_iflag |= VI_XLOCK; if (vp->v_iflag & VI_EXECMAP) { atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages); atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages); } vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP); active = (vp->v_usecount > 1); /* XXXAD should not lock vnode under layer */ VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK); /* * Clean out any cached data associated with the vnode. * If purging an active vnode, it must be closed and * deactivated before being reclaimed. Note that the * VOP_INACTIVE will unlock the vnode. */ if (flags & DOCLOSE) { error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0); if (error != 0) { /* XXX, fix vn_start_write's grab of mp and use that. */ if (wapbl_vphaswapbl(vp)) WAPBL_DISCARD(wapbl_vptomp(vp)); error = vinvalbuf(vp, 0, NOCRED, l, 0, 0); } KASSERT(error == 0); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) { spec_node_revoke(vp); } } if (active) { VOP_INACTIVE(vp, &recycle); } else { /* * Any other processes trying to obtain this lock must first * wait for VI_XLOCK to clear, then call the new lock operation. */ VOP_UNLOCK(vp, 0); } /* Disassociate the underlying file system from the vnode. */ if (VOP_RECLAIM(vp)) { vpanic(vp, "vclean: cannot reclaim"); } KASSERT(vp->v_uobj.uo_npages == 0); if (vp->v_type == VREG && vp->v_ractx != NULL) { uvm_ra_freectx(vp->v_ractx); vp->v_ractx = NULL; } cache_purge(vp); /* Done with purge, notify sleepers of the grim news. */ mutex_enter(&vp->v_interlock); vp->v_op = dead_vnodeop_p; vp->v_tag = VT_NON; vp->v_vnlock = &vp->v_lock; KNOTE(&vp->v_klist, NOTE_REVOKE); vp->v_iflag &= ~(VI_XLOCK | VI_FREEING); vp->v_vflag &= ~VV_LOCKSWORK; if ((flags & DOCLOSE) != 0) { vp->v_iflag |= VI_CLEAN; } cv_broadcast(&vp->v_cv); KASSERT((vp->v_iflag & VI_ONWORKLST) == 0); } /* * Recycle an unused vnode to the front of the free list. * Release the passed interlock if the vnode will be recycled. */ int vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l) { KASSERT((vp->v_iflag & VI_MARKER) == 0); mutex_enter(&vp->v_interlock); if (vp->v_usecount != 0) { mutex_exit(&vp->v_interlock); return (0); } if (inter_lkp) mutex_exit(inter_lkp); vremfree(vp); vp->v_usecount = 1; vclean(vp, DOCLOSE); vrelel(vp, 0); return (1); } /* * Eliminate all activity associated with a vnode in preparation for * reuse. Drops a reference from the vnode. */ void vgone(vnode_t *vp) { mutex_enter(&vp->v_interlock); vclean(vp, DOCLOSE); vrelel(vp, 0); } /* * Lookup a vnode by device number. */ int vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) { vnode_t *vp; int rc = 0; mutex_enter(&device_lock); for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) { if (dev != vp->v_rdev || type != vp->v_type) continue; *vpp = vp; rc = 1; break; } mutex_exit(&device_lock); return (rc); } /* * Revoke all the vnodes corresponding to the specified minor number * range (endpoints inclusive) of the specified major. */ void vdevgone(int maj, int minl, int minh, enum vtype type) { vnode_t *vp, **vpp; dev_t dev; int mn; vp = NULL; /* XXX gcc */ mutex_enter(&device_lock); for (mn = minl; mn <= minh; mn++) { dev = makedev(maj, mn); vpp = &specfs_hash[SPECHASH(dev)]; for (vp = *vpp; vp != NULL;) { mutex_enter(&vp->v_interlock); if ((vp->v_iflag & VI_CLEAN) != 0 || dev != vp->v_rdev || type != vp->v_type) { mutex_exit(&vp->v_interlock); vp = vp->v_specnext; continue; } mutex_exit(&device_lock); if (vget(vp, LK_INTERLOCK) == 0) { VOP_REVOKE(vp, REVOKEALL); vrele(vp); } mutex_enter(&device_lock); vp = *vpp; } } mutex_exit(&device_lock); } /* * Calculate the total number of references to a special device. */ int vcount(vnode_t *vp) { int count; mutex_enter(&device_lock); mutex_enter(&vp->v_interlock); if (vp->v_specnode == NULL) { count = vp->v_usecount - ((vp->v_iflag & VI_INACTPEND) != 0); mutex_exit(&vp->v_interlock); mutex_exit(&device_lock); return (count); } mutex_exit(&vp->v_interlock); count = vp->v_specnode->sn_dev->sd_opencnt; mutex_exit(&device_lock); return (count); } /* * Eliminate all activity associated with the requested vnode * and with all vnodes aliased to the requested vnode. */ void vrevoke(vnode_t *vp) { vnode_t *vq, **vpp; enum vtype type; dev_t dev; KASSERT(vp->v_usecount > 0); mutex_enter(&vp->v_interlock); if ((vp->v_iflag & VI_CLEAN) != 0) { mutex_exit(&vp->v_interlock); return; } else if (vp->v_type != VBLK && vp->v_type != VCHR) { atomic_inc_uint(&vp->v_usecount); vclean(vp, DOCLOSE); vrelel(vp, 0); return; } else { dev = vp->v_rdev; type = vp->v_type; mutex_exit(&vp->v_interlock); } vpp = &specfs_hash[SPECHASH(dev)]; mutex_enter(&device_lock); for (vq = *vpp; vq != NULL;) { /* If clean or being cleaned, then ignore it. */ mutex_enter(&vq->v_interlock); if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 || vq->v_rdev != dev || vq->v_type != type) { mutex_exit(&vq->v_interlock); vq = vq->v_specnext; continue; } mutex_exit(&device_lock); if (vq->v_usecount == 0) { vremfree(vq); vq->v_usecount = 1; } else { atomic_inc_uint(&vq->v_usecount); } vclean(vq, DOCLOSE); vrelel(vq, 0); mutex_enter(&device_lock); vq = *vpp; } mutex_exit(&device_lock); } /* * sysctl helper routine to return list of supported fstypes */ int sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) { char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; char *where = oldp; struct vfsops *v; size_t needed, left, slen; int error, first; if (newp != NULL) return (EPERM); if (namelen != 0) return (EINVAL); first = 1; error = 0; needed = 0; left = *oldlenp; sysctl_unlock(); mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (where == NULL) needed += strlen(v->vfs_name) + 1; else { memset(bf, 0, sizeof(bf)); if (first) { strncpy(bf, v->vfs_name, sizeof(bf)); first = 0; } else { bf[0] = ' '; strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); } bf[sizeof(bf)-1] = '\0'; slen = strlen(bf); if (left < slen + 1) break; v->vfs_refcount++; mutex_exit(&vfs_list_lock); /* +1 to copy out the trailing NUL byte */ error = copyout(bf, where, slen + 1); mutex_enter(&vfs_list_lock); v->vfs_refcount--; if (error) break; where += slen; needed += slen; left -= slen; } } mutex_exit(&vfs_list_lock); sysctl_relock(); *oldlenp = needed; return (error); } int kinfo_vdebug = 1; int kinfo_vgetfailed; #define KINFO_VNODESLOP 10 /* * Dump vnode list (via sysctl). * Copyout address of vnode followed by vnode. */ /* ARGSUSED */ int sysctl_kern_vnode(SYSCTLFN_ARGS) { char *where = oldp; size_t *sizep = oldlenp; struct mount *mp, *nmp; vnode_t *vp, *mvp, vbuf; char *bp = where, *savebp; char *ewhere; int error; if (namelen != 0) return (EOPNOTSUPP); if (newp != NULL) return (EPERM); #define VPTRSZ sizeof(vnode_t *) #define VNODESZ sizeof(vnode_t) if (where == NULL) { *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); return (0); } ewhere = where + *sizep; sysctl_unlock(); mutex_enter(&mountlist_lock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, &nmp)) { continue; } savebp = bp; /* Allocate a marker vnode. */ if ((mvp = vnalloc(mp)) == NULL) { sysctl_relock(); return (ENOMEM); } mutex_enter(&mntvnode_lock); for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) { vmark(mvp, vp); /* * Check that the vp is still associated with * this filesystem. RACE: could have been * recycled onto the same filesystem. */ if (vp->v_mount != mp || vismarker(vp)) continue; if (bp + VPTRSZ + VNODESZ > ewhere) { (void)vunmark(mvp); mutex_exit(&mntvnode_lock); vnfree(mvp); sysctl_relock(); *sizep = bp - where; return (ENOMEM); } memcpy(&vbuf, vp, VNODESZ); mutex_exit(&mntvnode_lock); if ((error = copyout(&vp, bp, VPTRSZ)) || (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { mutex_enter(&mntvnode_lock); (void)vunmark(mvp); mutex_exit(&mntvnode_lock); vnfree(mvp); sysctl_relock(); return (error); } bp += VPTRSZ + VNODESZ; mutex_enter(&mntvnode_lock); } mutex_exit(&mntvnode_lock); vnfree(mvp); vfs_unbusy(mp, false, &nmp); } mutex_exit(&mountlist_lock); sysctl_relock(); *sizep = bp - where; return (0); } /* * Remove clean vnodes from a mountpoint's vnode list. */ void vfs_scrubvnlist(struct mount *mp) { vnode_t *vp, *nvp; retry: mutex_enter(&mntvnode_lock); for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { nvp = TAILQ_NEXT(vp, v_mntvnodes); mutex_enter(&vp->v_interlock); if ((vp->v_iflag & VI_CLEAN) != 0) { TAILQ_REMOVE(&mp->mnt_vnodelist, vp, v_mntvnodes); vp->v_mount = NULL; mutex_exit(&mntvnode_lock); mutex_exit(&vp->v_interlock); vfs_destroy(mp); goto retry; } mutex_exit(&vp->v_interlock); } mutex_exit(&mntvnode_lock); } /* * Check to see if a filesystem is mounted on a block device. */ int vfs_mountedon(vnode_t *vp) { vnode_t *vq; int error = 0; if (vp->v_type != VBLK) return ENOTBLK; if (vp->v_specmountpoint != NULL) return (EBUSY); mutex_enter(&device_lock); for (vq = specfs_hash[SPECHASH(vp->v_rdev)]; vq != NULL; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; if (vq->v_specmountpoint != NULL) { error = EBUSY; break; } } mutex_exit(&device_lock); return (error); } /* * Unmount all file systems. * We traverse the list in reverse order under the assumption that doing so * will avoid needing to worry about dependencies. */ void vfs_unmountall(struct lwp *l) { struct mount *mp, *nmp; int allerror, error; printf("unmounting file systems..."); for (allerror = 0, mp = CIRCLEQ_LAST(&mountlist); !CIRCLEQ_EMPTY(&mountlist); mp = nmp) { nmp = CIRCLEQ_PREV(mp, mnt_list); #ifdef DEBUG printf("\nunmounting %s (%s)...", mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname); #endif atomic_inc_uint(&mp->mnt_refcnt); if ((error = dounmount(mp, MNT_FORCE, l)) != 0) { printf("unmount of %s failed with error %d\n", mp->mnt_stat.f_mntonname, error); allerror = 1; } } printf(" done\n"); if (allerror) printf("WARNING: some file systems would not unmount\n"); } /* * Sync and unmount file systems before shutting down. */ void vfs_shutdown(void) { struct lwp *l; /* XXX we're certainly not running in lwp0's context! */ l = curlwp; if (l == NULL) l = &lwp0; printf("syncing disks... "); /* remove user processes from run queue */ suspendsched(); (void) spl0(); /* avoid coming back this way again if we panic. */ doing_shutdown = 1; sys_sync(l, NULL, NULL); /* Wait for sync to finish. */ if (buf_syncwait() != 0) { #if defined(DDB) && defined(DEBUG_HALT_BUSY) Debugger(); #endif printf("giving up\n"); return; } else printf("done\n"); /* * If we've panic'd, don't make the situation potentially * worse by unmounting the file systems. */ if (panicstr != NULL) return; /* Release inodes held by texts before update. */ #ifdef notdef vnshutdown(); #endif /* Unmount file systems. */ vfs_unmountall(l); } /* * Mount the root file system. If the operator didn't specify a * file system to use, try all possible file systems until one * succeeds. */ int vfs_mountroot(void) { struct vfsops *v; int error = ENODEV; if (root_device == NULL) panic("vfs_mountroot: root device unknown"); switch (device_class(root_device)) { case DV_IFNET: if (rootdev != NODEV) panic("vfs_mountroot: rootdev set for DV_IFNET " "(0x%llx -> %llu,%llu)", (unsigned long long)rootdev, (unsigned long long)major(rootdev), (unsigned long long)minor(rootdev)); break; case DV_DISK: if (rootdev == NODEV) panic("vfs_mountroot: rootdev not set for DV_DISK"); if (bdevvp(rootdev, &rootvp)) panic("vfs_mountroot: can't get vnode for rootdev"); error = VOP_OPEN(rootvp, FREAD, FSCRED); if (error) { printf("vfs_mountroot: can't open root device\n"); return (error); } break; default: printf("%s: inappropriate for root file system\n", device_xname(root_device)); return (ENODEV); } /* * If user specified a root fs type, use it. Make sure the * specified type exists and has a mount_root() */ if (strcmp(rootfstype, ROOT_FSTYPE_ANY) != 0) { v = vfs_getopsbyname(rootfstype); error = EFTYPE; if (v != NULL) { if (v->vfs_mountroot != NULL) { error = (v->vfs_mountroot)(); } v->vfs_refcount--; } goto done; } /* * Try each file system currently configured into the kernel. */ mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (v->vfs_mountroot == NULL) continue; #ifdef DEBUG aprint_normal("mountroot: trying %s...\n", v->vfs_name); #endif v->vfs_refcount++; mutex_exit(&vfs_list_lock); error = (*v->vfs_mountroot)(); mutex_enter(&vfs_list_lock); v->vfs_refcount--; if (!error) { aprint_normal("root file system type: %s\n", v->vfs_name); break; } } mutex_exit(&vfs_list_lock); if (v == NULL) { printf("no file system for %s", device_xname(root_device)); if (device_class(root_device) == DV_DISK) printf(" (dev 0x%llx)", (unsigned long long)rootdev); printf("\n"); error = EFTYPE; } done: if (error && device_class(root_device) == DV_DISK) { VOP_CLOSE(rootvp, FREAD, FSCRED); vrele(rootvp); } return (error); } /* * Get a new unique fsid */ void vfs_getnewfsid(struct mount *mp) { static u_short xxxfs_mntid; fsid_t tfsid; int mtype; mutex_enter(&mntid_lock); mtype = makefstype(mp->mnt_op->vfs_name); mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0); mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype; mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; if (xxxfs_mntid == 0) ++xxxfs_mntid; tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid); tfsid.__fsid_val[1] = mtype; if (!CIRCLEQ_EMPTY(&mountlist)) { while (vfs_getvfs(&tfsid)) { tfsid.__fsid_val[0]++; xxxfs_mntid++; } } mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0]; mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; mutex_exit(&mntid_lock); } /* * Make a 'unique' number from a mount type name. */ long makefstype(const char *type) { long rv; for (rv = 0; *type; type++) { rv <<= 2; rv ^= *type; } return rv; } /* * Set vnode attributes to VNOVAL */ void vattr_null(struct vattr *vap) { vap->va_type = VNON; /* * Assign individually so that it is safe even if size and * sign of each member are varied. */ vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_size = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_atime.tv_sec = vap->va_mtime.tv_sec = vap->va_ctime.tv_sec = vap->va_birthtime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = vap->va_mtime.tv_nsec = vap->va_ctime.tv_nsec = vap->va_birthtime.tv_nsec = VNOVAL; vap->va_gen = VNOVAL; vap->va_flags = VNOVAL; vap->va_rdev = VNOVAL; vap->va_bytes = VNOVAL; vap->va_vaflags = 0; } #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) #define ARRAY_PRINT(idx, arr) \ ((idx) > 0 && (idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") const char * const vnode_tags[] = { VNODE_TAGS }; const char * const vnode_types[] = { VNODE_TYPES }; const char vnode_flagbits[] = VNODE_FLAGBITS; /* * Print out a description of a vnode. */ void vprint(const char *label, struct vnode *vp) { struct vnlock *vl; char bf[96]; int flag; vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock); flag = vp->v_iflag | vp->v_vflag | vp->v_uflag; snprintb(bf, sizeof(bf), vnode_flagbits, flag); if (label != NULL) printf("%s: ", label); printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), " "usecount %d, writecount %d, holdcount %d\n" "\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n", vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt); if (vp->v_data != NULL) { printf("\t"); VOP_PRINT(vp); } } #ifdef DEBUG /* * List all of the locked vnodes in the system. * Called when debugging the kernel. */ void printlockedvnodes(void) { struct mount *mp, *nmp; struct vnode *vp; printf("Locked vnodes\n"); mutex_enter(&mountlist_lock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, &nmp)) { continue; } TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (VOP_ISLOCKED(vp)) vprint(NULL, vp); } mutex_enter(&mountlist_lock); vfs_unbusy(mp, false, &nmp); } mutex_exit(&mountlist_lock); } #endif /* * Do the usual access checking. * file_mode, uid and gid are from the vnode in question, * while acc_mode and cred are from the VOP_ACCESS parameter list */ int vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, mode_t acc_mode, kauth_cred_t cred) { mode_t mask; int error, ismember; /* * Super-user always gets read/write access, but execute access depends * on at least one execute bit being set. */ if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) == 0) { if ((acc_mode & VEXEC) && type != VDIR && (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0) return (EACCES); return (0); } mask = 0; /* Otherwise, check the owner. */ if (kauth_cred_geteuid(cred) == uid) { if (acc_mode & VEXEC) mask |= S_IXUSR; if (acc_mode & VREAD) mask |= S_IRUSR; if (acc_mode & VWRITE) mask |= S_IWUSR; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check the groups. */ error = kauth_cred_ismember_gid(cred, gid, &ismember); if (error) return (error); if (kauth_cred_getegid(cred) == gid || ismember) { if (acc_mode & VEXEC) mask |= S_IXGRP; if (acc_mode & VREAD) mask |= S_IRGRP; if (acc_mode & VWRITE) mask |= S_IWGRP; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check everyone else. */ if (acc_mode & VEXEC) mask |= S_IXOTH; if (acc_mode & VREAD) mask |= S_IROTH; if (acc_mode & VWRITE) mask |= S_IWOTH; return ((file_mode & mask) == mask ? 0 : EACCES); } /* * Given a file system name, look up the vfsops for that * file system, or return NULL if file system isn't present * in the kernel. */ struct vfsops * vfs_getopsbyname(const char *name) { struct vfsops *v; mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (strcmp(v->vfs_name, name) == 0) break; } if (v != NULL) v->vfs_refcount++; mutex_exit(&vfs_list_lock); return (v); } void copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) { const struct statvfs *mbp; if (sbp == (mbp = &mp->mnt_stat)) return; (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); sbp->f_fsid = mbp->f_fsid; sbp->f_owner = mbp->f_owner; sbp->f_flag = mbp->f_flag; sbp->f_syncwrites = mbp->f_syncwrites; sbp->f_asyncwrites = mbp->f_asyncwrites; sbp->f_syncreads = mbp->f_syncreads; sbp->f_asyncreads = mbp->f_asyncreads; (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, sizeof(sbp->f_fstypename)); (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, sizeof(sbp->f_mntonname)); (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, sizeof(sbp->f_mntfromname)); sbp->f_namemax = mbp->f_namemax; } int set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, const char *vfsname, struct mount *mp, struct lwp *l) { int error; size_t size; struct statvfs *sfs = &mp->mnt_stat; int (*fun)(const void *, void *, size_t, size_t *); (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, sizeof(mp->mnt_stat.f_fstypename)); if (onp) { struct cwdinfo *cwdi = l->l_proc->p_cwdi; fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; if (cwdi->cwdi_rdir != NULL) { size_t len; char *bp; char *path = PNBUF_GET(); bp = path + MAXPATHLEN; *--bp = '\0'; rw_enter(&cwdi->cwdi_lock, RW_READER); error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, path, MAXPATHLEN / 2, 0, l); rw_exit(&cwdi->cwdi_lock); if (error) { PNBUF_PUT(path); return error; } len = strlen(bp); if (len > sizeof(sfs->f_mntonname) - 1) len = sizeof(sfs->f_mntonname) - 1; (void)strncpy(sfs->f_mntonname, bp, len); PNBUF_PUT(path); if (len < sizeof(sfs->f_mntonname) - 1) { error = (*fun)(onp, &sfs->f_mntonname[len], sizeof(sfs->f_mntonname) - len - 1, &size); if (error) return error; size += len; } else { size = len; } } else { error = (*fun)(onp, &sfs->f_mntonname, sizeof(sfs->f_mntonname) - 1, &size); if (error) return error; } (void)memset(sfs->f_mntonname + size, 0, sizeof(sfs->f_mntonname) - size); } if (fromp) { fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; error = (*fun)(fromp, sfs->f_mntfromname, sizeof(sfs->f_mntfromname) - 1, &size); if (error) return error; (void)memset(sfs->f_mntfromname + size, 0, sizeof(sfs->f_mntfromname) - size); } return 0; } void vfs_timestamp(struct timespec *ts) { nanotime(ts); } time_t rootfstime; /* recorded root fs time, if known */ void setrootfstime(time_t t) { rootfstime = t; } /* * Sham lock manager for vnodes. This is a temporary measure. */ int vlockmgr(struct vnlock *vl, int flags) { KASSERT((flags & ~(LK_CANRECURSE | LK_NOWAIT | LK_TYPE_MASK)) == 0); switch (flags & LK_TYPE_MASK) { case LK_SHARED: if (rw_tryenter(&vl->vl_lock, RW_READER)) { return 0; } if ((flags & LK_NOWAIT) != 0) { return EBUSY; } rw_enter(&vl->vl_lock, RW_READER); return 0; case LK_EXCLUSIVE: if (rw_tryenter(&vl->vl_lock, RW_WRITER)) { return 0; } if ((vl->vl_canrecurse || (flags & LK_CANRECURSE) != 0) && rw_write_held(&vl->vl_lock)) { vl->vl_recursecnt++; return 0; } if ((flags & LK_NOWAIT) != 0) { return EBUSY; } rw_enter(&vl->vl_lock, RW_WRITER); return 0; case LK_RELEASE: if (vl->vl_recursecnt != 0) { KASSERT(rw_write_held(&vl->vl_lock)); vl->vl_recursecnt--; return 0; } rw_exit(&vl->vl_lock); return 0; default: panic("vlockmgr: flags %x", flags); } } int vlockstatus(struct vnlock *vl) { if (rw_write_held(&vl->vl_lock)) { return LK_EXCLUSIVE; } if (rw_read_held(&vl->vl_lock)) { return LK_SHARED; } return 0; } /* * mount_specific_key_create -- * Create a key for subsystem mount-specific data. */ int mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) { return (specificdata_key_create(mount_specificdata_domain, keyp, dtor)); } /* * mount_specific_key_delete -- * Delete a key for subsystem mount-specific data. */ void mount_specific_key_delete(specificdata_key_t key) { specificdata_key_delete(mount_specificdata_domain, key); } /* * mount_initspecific -- * Initialize a mount's specificdata container. */ void mount_initspecific(struct mount *mp) { int error; error = specificdata_init(mount_specificdata_domain, &mp->mnt_specdataref); KASSERT(error == 0); } /* * mount_finispecific -- * Finalize a mount's specificdata container. */ void mount_finispecific(struct mount *mp) { specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref); } /* * mount_getspecific -- * Return mount-specific data corresponding to the specified key. */ void * mount_getspecific(struct mount *mp, specificdata_key_t key) { return (specificdata_getspecific(mount_specificdata_domain, &mp->mnt_specdataref, key)); } /* * mount_setspecific -- * Set mount-specific data corresponding to the specified key. */ void mount_setspecific(struct mount *mp, specificdata_key_t key, void *data) { specificdata_setspecific(mount_specificdata_domain, &mp->mnt_specdataref, key, data); } int VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_START(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_start))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_UNMOUNT(struct mount *mp, int a) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_unmount))(mp, a); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_ROOT(struct mount *mp, struct vnode **a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_root))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_STATVFS(struct mount *mp, struct statvfs *a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_statvfs))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_sync))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) { int error; if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) { int error; KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); KERNEL_UNLOCK_ONE(NULL); /* XXX */ return error; } int VFS_SUSPENDCTL(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } #ifdef DDB static const char buf_flagbits[] = BUF_FLAGBITS; void vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) { char bf[1024]; (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" PRIx64 " dev 0x%x\n", bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); snprintb(bf, sizeof(bf), buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); (*pr)(" error %d flags 0x%s\n", bp->b_error, bf); (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", bp->b_bufsize, bp->b_bcount, bp->b_resid); (*pr)(" data %p saveaddr %p dep %p\n", bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep)); (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); } void vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) { char bf[256]; uvm_object_printit(&vp->v_uobj, full, pr); snprintb(bf, sizeof(bf), vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); (*pr)("\nVNODE flags %s\n", bf); (*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n", vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize); (*pr)("data %p writecount %ld holdcnt %ld\n", vp->v_data, vp->v_writecount, vp->v_holdcnt); (*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n", ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, vp->v_mount, vp->v_mountedhere); (*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock); if (full) { struct buf *bp; (*pr)("clean bufs:\n"); LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } (*pr)("dirty bufs:\n"); LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } } } void vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) { char sbuf[256]; (*pr)("vnodecovered = %p syncer = %p data = %p\n", mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data); (*pr)("fs_bshift %d dev_bshift = %d\n", mp->mnt_fs_bshift,mp->mnt_dev_bshift); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); (*pr)("flag = %s\n", sbuf); snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); (*pr)("iflag = %s\n", sbuf); (*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt, &mp->mnt_unmounting, &mp->mnt_updating); (*pr)("statvfs cache:\n"); (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", mp->mnt_stat.f_fsidx.__fsid_val[0], mp->mnt_stat.f_fsidx.__fsid_val[1]); (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); (*pr)("\tflag = %s\n",sbuf); (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); { int cnt = 0; struct vnode *vp; (*pr)("locked vnodes ="); TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (VOP_ISLOCKED(vp)) { if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } } (*pr)("\n"); } if (full) { int cnt = 0; struct vnode *vp; (*pr)("all vnodes ="); TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (!TAILQ_NEXT(vp, v_mntvnodes)) { (*pr)(" %p", vp); } else if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } (*pr)("\n", vp); } } #endif /* DDB */