/* $NetBSD: route.c,v 1.119 2008/12/28 20:12:31 christos Exp $ */ /* * Copyright (c) 1983, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #ifndef lint __COPYRIGHT("@(#) Copyright (c) 1983, 1989, 1991, 1993\ The Regents of the University of California. All rights reserved."); #endif /* not lint */ #ifndef lint #if 0 static char sccsid[] = "@(#)route.c 8.6 (Berkeley) 4/28/95"; #else __RCSID("$NetBSD: route.c,v 1.119 2008/12/28 20:12:31 christos Exp $"); #endif #endif /* not lint */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "keywords.h" #include "extern.h" union sockunion { struct sockaddr sa; struct sockaddr_in sin; #ifdef INET6 struct sockaddr_in6 sin6; #endif struct sockaddr_at sat; struct sockaddr_dl sdl; #ifndef SMALL struct sockaddr_iso siso; #endif /* SMALL */ }; typedef union sockunion *sup; struct sou { union sockunion so_dst, so_gate, so_mask, so_genmask, so_ifa, so_ifp; }; static char *any_ntoa(const struct sockaddr *); static const char *route_strerror(int); static void set_metric(const char *, int); static int newroute(int, char *const *); static void inet_makenetandmask(u_int32_t, struct sockaddr_in *, struct sou *); #ifdef INET6 static int inet6_makenetandmask(const struct sockaddr_in6 *, struct sou *); #endif static int getaddr(int, const char *, struct hostent **, struct sou *); static int flushroutes(int, char *const [], int); static int prefixlen(const char *, struct sou *); #ifndef SMALL static void interfaces(void); static void monitor(void); static int print_getmsg(struct rt_msghdr *, int, struct sou *); static const char *linkstate(struct if_msghdr *); #endif /* SMALL */ static int rtmsg(int, int, struct sou *); static void mask_addr(struct sou *); static void print_rtmsg(struct rt_msghdr *, int); static void pmsg_common(struct rt_msghdr *); static void pmsg_addrs(const char *, int); static void bprintf(FILE *, int, const char *); static void sodump(sup, const char *); static void sockaddr(const char *, struct sockaddr *); int pid, rtm_addrs; int sock; int forcehost, forcenet, doflush, nflag, af, qflag, tflag, Sflag; int iflag, verbose, aflen = sizeof(struct sockaddr_in); int locking, lockrest, debugonly, shortoutput; struct rt_metrics rt_metrics; u_int32_t rtm_inits; short ns_nullh[] = {0,0,0}; short ns_bh[] = {-1,-1,-1}; void usage(const char *cp) { if (cp) warnx("botched keyword: %s", cp); (void)fprintf(stderr, "Usage: %s [ -fnqSsv ] cmd [[ - ] args ]\n", getprogname()); exit(1); /* NOTREACHED */ } #define PRIETHER "02x:%02x:%02x:%02x:%02x:%02x" #define PRIETHER_ARGS(__enaddr) (__enaddr)[0], (__enaddr)[1], (__enaddr)[2], \ (__enaddr)[3], (__enaddr)[4], (__enaddr)[5] #define ROUNDUP(a) \ ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) int main(int argc, char * const *argv) { int ch; if (argc < 2) usage(NULL); while ((ch = getopt(argc, argv, "dfnqSstv")) != -1) switch (ch) { case 'd': debugonly = 1; break; case 'f': doflush = 1; break; case 'n': nflag = 1; break; case 'q': qflag = 1; break; case 'S': Sflag = 1; break; case 's': shortoutput = 1; break; case 't': tflag = 1; break; case 'v': verbose = 1; break; case '?': default: usage(NULL); /*NOTREACHED*/ } argc -= optind; argv += optind; pid = getpid(); if (tflag) sock = open("/dev/null", O_WRONLY, 0); else sock = socket(PF_ROUTE, SOCK_RAW, 0); if (sock < 0) err(EXIT_FAILURE, "socket"); if (*argv == NULL) { if (doflush) ch = K_FLUSH; else goto no_cmd; } else ch = keyword(*argv); switch (ch) { #ifndef SMALL case K_GET: #endif /* SMALL */ case K_CHANGE: case K_ADD: case K_DELETE: if (doflush) (void)flushroutes(1, argv, 0); return newroute(argc, argv); case K_SHOW: show(argc, argv); return 0; #ifndef SMALL case K_MONITOR: monitor(); return 0; #endif /* SMALL */ case K_FLUSH: return flushroutes(argc, argv, 0); case K_FLUSHALL: return flushroutes(argc, argv, 1); no_cmd: default: usage(*argv); /*NOTREACHED*/ } } /* * Purge all entries in the routing tables not * associated with network interfaces. */ static int flushroutes(int argc, char * const argv[], int doall) { struct sockaddr *sa; size_t needed; int flags, mib[6], rlen, seqno; char *buf, *next, *lim; const char *afname; struct rt_msghdr *rtm; flags = 0; af = AF_UNSPEC; shutdown(sock, SHUT_RD); /* Don't want to read back our messages */ parse_show_opts(argc, argv, &af, &flags, &afname, false); mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; /* protocol */ mib[3] = 0; /* wildcard address family */ mib[4] = NET_RT_DUMP; mib[5] = 0; /* no flags */ if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) err(EXIT_FAILURE, "route-sysctl-estimate"); buf = lim = NULL; if (needed) { if ((buf = malloc(needed)) == NULL) err(EXIT_FAILURE, "malloc"); if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) err(EXIT_FAILURE, "actual retrieval of routing table"); lim = buf + needed; } if (verbose) { (void)printf("Examining routing table from sysctl\n"); if (af != AF_UNSPEC) printf("(address family %s)\n", afname); } if (needed == 0) return 0; seqno = 0; /* ??? */ for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; sa = (struct sockaddr *)(rtm + 1); if (verbose) print_rtmsg(rtm, rtm->rtm_msglen); if ((rtm->rtm_flags & flags) != flags) continue; if (!(rtm->rtm_flags & (RTF_GATEWAY | RTF_STATIC | RTF_LLINFO)) && !doall) continue; if (af != AF_UNSPEC && sa->sa_family != af) continue; if (debugonly) continue; rtm->rtm_type = RTM_DELETE; rtm->rtm_seq = seqno; if ((rlen = write(sock, next, rtm->rtm_msglen)) < 0) { warnx("writing to routing socket: %s", route_strerror(errno)); return 1; } if (rlen < (int)rtm->rtm_msglen) { warnx("write to routing socket, got %d for rlen", rlen); return 1; } seqno++; if (qflag) continue; if (verbose) print_rtmsg(rtm, rlen); else { (void)printf("%-20.20s ", routename(sa, NULL, rtm->rtm_flags)); sa = (struct sockaddr *)(ROUNDUP(sa->sa_len) + (char *)sa); (void)printf("%-20.20s ", routename(sa, NULL, RTF_HOST)); (void)printf("done\n"); } } free(buf); return 0; } static char hexlist[] = "0123456789abcdef"; static char * any_ntoa(const struct sockaddr *sa) { static char obuf[3 * 256]; const char *in; char *out; int len; #if __GNUC__ > 2 len = sa->sa_len - offsetof(struct sockaddr, sa_data); #else len = sa->sa_len - ((struct sockaddr*)&sa->sa_data - sa); #endif in = sa->sa_data; out = obuf; do { *out++ = hexlist[(*in >> 4) & 15]; *out++ = hexlist[(*in++) & 15]; *out++ = '.'; } while (--len > 0); out[-1] = '\0'; return obuf; } int netmask_length(struct sockaddr *nm, int family) { static int /* number of bits in a nibble */ _t[] = { 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4 }, /* good nibbles are 1111, 1110, 1100, 1000, 0000 */ _g[] = { 1,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1 }; int mask, good, zeroes, maskbytes, bit, i; unsigned char *maskdata; if (nm == NULL) return 0; mask = 0; good = 1; zeroes = 0; switch (family) { case AF_INET: { struct sockaddr_in *nsin = (struct sockaddr_in *)nm; maskdata = (unsigned char *)&nsin->sin_addr; maskbytes = nsin->sin_len - ((caddr_t)&nsin->sin_addr - (caddr_t)nsin); break; } case AF_INET6: { struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nm; maskdata = (unsigned char *)&sin6->sin6_addr; maskbytes = sin6->sin6_len - ((caddr_t)&sin6->sin6_addr - (caddr_t)sin6); break; } default: return 0; } /* * Count the bits in the nibbles of the mask, and marking the * netmask as not good (or at best, non-standard and very * discouraged, in the case of AF_INET) if we find either of * a nibble with non-contiguous bits, or a non-zero nibble * after we've found a zero nibble. */ for (i = 0; i < maskbytes; i++) { /* high nibble */ mask += bit = _t[maskdata[i] >> 4]; good &= _g[maskdata[i] >> 4]; if (zeroes && bit) good = 0; if (bit == 0) zeroes = 1; /* low nibble */ mask += bit = _t[maskdata[i] & 0xf]; good &= _g[maskdata[i] & 0xf]; if (zeroes && bit) good = 0; if (bit == 0) zeroes = 1; } /* * Always return the number of bits found, but as a negative * if the mask wasn't one we like. */ return good ? mask : -mask; } char * netmask_string(const struct sockaddr *mask, int len, int family) { static char smask[INET6_ADDRSTRLEN]; struct sockaddr_in nsin; struct sockaddr_in6 nsin6; if (len >= 0) snprintf(smask, sizeof(smask), "%d", len); else { switch (family) { case AF_INET: memset(&nsin, 0, sizeof(nsin)); memcpy(&nsin, mask, mask->sa_len); snprintf(smask, sizeof(smask), "%s", inet_ntoa(nsin.sin_addr)); break; case AF_INET6: memset(&nsin6, 0, sizeof(nsin6)); memcpy(&nsin6, mask, mask->sa_len); inet_ntop(family, &nsin6.sin6_addr, smask, sizeof(smask)); break; default: snprintf(smask, sizeof(smask), "%s", any_ntoa(mask)); } } return smask; } const char * routename(const struct sockaddr *sa, struct sockaddr *nm, int flags) { const char *cp; static char line[50]; struct hostent *hp; static char domain[MAXHOSTNAMELEN + 1]; static int first = 1; struct in_addr in; int nml; if ((flags & RTF_HOST) == 0) return netname(sa, nm); if (first) { first = 0; if (gethostname(domain, MAXHOSTNAMELEN) == 0 && (cp = strchr(domain, '.'))) (void)strlcpy(domain, cp + 1, sizeof(domain)); else domain[0] = 0; } if (sa->sa_len == 0) strlcpy(line, "default", sizeof(line)); else switch (sa->sa_family) { case AF_INET: in = ((const struct sockaddr_in *)sa)->sin_addr; nml = netmask_length(nm, AF_INET); cp = 0; if (in.s_addr == INADDR_ANY || sa->sa_len < 4) { if (nml == 0) cp = "default"; else { static char notdefault[sizeof(NOTDEFSTRING)]; snprintf(notdefault, sizeof(notdefault), "0.0.0.0/%s", netmask_string(nm, nml, AF_INET)); cp = notdefault; } } if (cp == 0 && !nflag) { hp = gethostbyaddr((char *)&in, sizeof(struct in_addr), AF_INET); if (hp) { char *ccp; if ((ccp = strchr(hp->h_name, '.')) && !strcmp(ccp + 1, domain)) *ccp = '\0'; cp = hp->h_name; } } if (cp) (void)strlcpy(line, cp, sizeof(line)); else (void)strlcpy(line, inet_ntoa(in), sizeof(line)); break; case AF_LINK: return link_ntoa((const struct sockaddr_dl *)sa); #ifdef INET6 case AF_INET6: { struct sockaddr_in6 sin6; int niflags; char nihost[NI_MAXHOST]; niflags = 0; if (nflag) niflags |= NI_NUMERICHOST; memset(&sin6, 0, sizeof(sin6)); memcpy(&sin6, sa, sa->sa_len); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; #ifdef __KAME__ if (sa->sa_len == sizeof(struct sockaddr_in6) && (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sin6.sin6_addr)) && sin6.sin6_scope_id == 0) { sin6.sin6_scope_id = ntohs(*(u_int16_t *)&sin6.sin6_addr.s6_addr[2]); sin6.sin6_addr.s6_addr[2] = 0; sin6.sin6_addr.s6_addr[3] = 0; } #endif nml = netmask_length(nm, AF_INET6); if (IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) { if (nml == 0) strlcpy(line, "::", sizeof(line)); else /* noncontiguous never happens in ipv6 */ snprintf(line, sizeof(line), "::/%d", nml); } else if (getnameinfo((struct sockaddr *)&sin6, sin6.sin6_len, nihost, sizeof(nihost), NULL, 0, niflags) != 0) strlcpy(line, "invalid", sizeof(line)); else { char *ccp; if (!nflag && (ccp = strchr(nihost, '.')) && strcmp(ccp + 1, domain) == 0) *ccp = '\0'; strlcpy(line, nihost, sizeof(line)); } break; } #endif #ifndef SMALL case AF_ISO: (void)snprintf(line, sizeof line, "iso %s", iso_ntoa(&((const struct sockaddr_iso *)sa)->siso_addr)); break; case AF_APPLETALK: (void)snprintf(line, sizeof(line), "atalk %d.%d", ((const struct sockaddr_at *)sa)->sat_addr.s_net, ((const struct sockaddr_at *)sa)->sat_addr.s_node); break; #endif /* SMALL */ default: (void)snprintf(line, sizeof line, "(%d) %s", sa->sa_family, any_ntoa(sa)); break; } return line; } /* * Return the name of the network whose address is given. * The address is assumed to be that of a net or subnet, not a host. */ const char * netname(const struct sockaddr *sa, struct sockaddr *nm) { const char *cp = 0; static char line[50]; struct netent *np = 0; u_int32_t net, mask; u_int32_t i; int subnetshift, nml; struct in_addr in; switch (sa->sa_family) { case AF_INET: in = ((const struct sockaddr_in *)sa)->sin_addr; i = ntohl(in.s_addr); nml = netmask_length(nm, AF_INET); if (i == 0) { if (nml == 0) cp = "default"; else { static char notdefault[sizeof(NOTDEFSTRING)]; snprintf(notdefault, sizeof(notdefault), "0.0.0.0/%s", netmask_string(nm, nml, AF_INET)); cp = notdefault; } } else if (!nflag) { if (IN_CLASSA(i)) { mask = IN_CLASSA_NET; subnetshift = 8; } else if (IN_CLASSB(i)) { mask = IN_CLASSB_NET; subnetshift = 8; } else { mask = IN_CLASSC_NET; subnetshift = 4; } /* * If there are more bits than the standard mask * would suggest, subnets must be in use. * Guess at the subnet mask, assuming reasonable * width subnet fields. */ while (i &~ mask) mask = (int32_t)mask >> subnetshift; net = i & mask; while ((mask & 1) == 0) mask >>= 1, net >>= 1; np = getnetbyaddr(net, AF_INET); if (np) cp = np->n_name; } if (cp) (void)strlcpy(line, cp, sizeof(line)); else { if (nml == 0) strlcpy(line, inet_ntoa(in), sizeof(line)); else if (nml < 0) { snprintf(line, sizeof(line), "%s&%s", inet_ntoa(in), netmask_string(nm, nml, AF_INET)); } else { snprintf(line, sizeof(line), "%s/%d", inet_ntoa(in), nml); } } break; case AF_LINK: return link_ntoa((const struct sockaddr_dl *)sa); #ifdef INET6 case AF_INET6: { struct sockaddr_in6 sin6; int niflags; niflags = 0; if (nflag) niflags |= NI_NUMERICHOST; memset(&sin6, 0, sizeof(sin6)); memcpy(&sin6, sa, sa->sa_len); sin6.sin6_len = sizeof(struct sockaddr_in6); sin6.sin6_family = AF_INET6; #ifdef __KAME__ if (sa->sa_len == sizeof(struct sockaddr_in6) && (IN6_IS_ADDR_LINKLOCAL(&sin6.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&sin6.sin6_addr)) && sin6.sin6_scope_id == 0) { sin6.sin6_scope_id = ntohs(*(u_int16_t *)&sin6.sin6_addr.s6_addr[2]); sin6.sin6_addr.s6_addr[2] = 0; sin6.sin6_addr.s6_addr[3] = 0; } #endif nml = netmask_length(nm, AF_INET6); if (IN6_IS_ADDR_UNSPECIFIED(&sin6.sin6_addr)) { if (nml == 0) strlcpy(line, "::", sizeof(line)); else /* noncontiguous never happens in ipv6 */ snprintf(line, sizeof(line), "::/%d", nml); } else if (getnameinfo((struct sockaddr *)&sin6, sin6.sin6_len, line, sizeof(line), NULL, 0, niflags) != 0) strlcpy(line, "invalid", sizeof(line)); break; } #endif #ifndef SMALL case AF_ISO: (void)snprintf(line, sizeof line, "iso %s", iso_ntoa(&((const struct sockaddr_iso *)sa)->siso_addr)); break; case AF_APPLETALK: (void)snprintf(line, sizeof(line), "atalk %d.%d", ((const struct sockaddr_at *)sa)->sat_addr.s_net, ((const struct sockaddr_at *)sa)->sat_addr.s_node); break; #endif /* SMALL */ default: (void)snprintf(line, sizeof line, "af %d: %s", sa->sa_family, any_ntoa(sa)); break; } return line; } static const char * route_strerror(int error) { switch (error) { case ESRCH: return "not in table"; case EBUSY: return "entry in use"; case ENOBUFS: return "routing table overflow"; default: return strerror(error); } } static void set_metric(const char *value, int key) { int flag = 0; u_long noval, *valp = &noval; switch (key) { #define caseof(x, y, z) case x: valp = &rt_metrics.z; flag = y; break caseof(K_MTU, RTV_MTU, rmx_mtu); caseof(K_HOPCOUNT, RTV_HOPCOUNT, rmx_hopcount); caseof(K_EXPIRE, RTV_EXPIRE, rmx_expire); caseof(K_RECVPIPE, RTV_RPIPE, rmx_recvpipe); caseof(K_SENDPIPE, RTV_SPIPE, rmx_sendpipe); caseof(K_SSTHRESH, RTV_SSTHRESH, rmx_ssthresh); caseof(K_RTT, RTV_RTT, rmx_rtt); caseof(K_RTTVAR, RTV_RTTVAR, rmx_rttvar); } rtm_inits |= flag; if (lockrest || locking) rt_metrics.rmx_locks |= flag; if (locking) locking = 0; *valp = strtoul(value, NULL, 0); } static int newroute(int argc, char *const *argv) { const char *cmd, *dest = "", *gateway = ""; int ishost = 0, ret, attempts, oerrno, flags = RTF_STATIC; int key; struct hostent *hp = 0; struct sou sou, *soup = &sou; memset(&sou, 0, sizeof(sou)); cmd = argv[0]; af = AF_UNSPEC; if (*cmd != 'g') shutdown(sock, SHUT_RD); /* Don't want to read back our messages */ while (--argc > 0) { if (**(++argv)== '-') { switch (key = keyword(1 + *argv)) { case K_SA: af = PF_ROUTE; aflen = sizeof(union sockunion); break; #ifndef SMALL case K_ATALK: af = AF_APPLETALK; aflen = sizeof(struct sockaddr_at); break; #endif case K_INET: af = AF_INET; aflen = sizeof(struct sockaddr_in); break; #ifdef INET6 case K_INET6: af = AF_INET6; aflen = sizeof(struct sockaddr_in6); break; #endif case K_LINK: af = AF_LINK; aflen = sizeof(struct sockaddr_dl); break; #ifndef SMALL case K_OSI: case K_ISO: af = AF_ISO; aflen = sizeof(struct sockaddr_iso); break; #endif /* SMALL */ case K_IFACE: case K_INTERFACE: iflag++; break; case K_NOSTATIC: flags &= ~RTF_STATIC; break; case K_LLINFO: flags |= RTF_LLINFO; break; case K_LOCK: locking = 1; break; case K_LOCKREST: lockrest = 1; break; case K_HOST: forcehost++; break; case K_REJECT: flags |= RTF_REJECT; break; case K_BLACKHOLE: flags |= RTF_BLACKHOLE; break; case K_CLONED: flags |= RTF_CLONED; break; case K_NOCLONED: flags &= ~RTF_CLONED; break; case K_PROTO1: flags |= RTF_PROTO1; break; case K_PROTO2: flags |= RTF_PROTO2; break; case K_CLONING: flags |= RTF_CLONING; break; case K_NOCLONING: flags &= ~RTF_CLONING; break; case K_XRESOLVE: flags |= RTF_XRESOLVE; break; case K_STATIC: flags |= RTF_STATIC; break; case K_IFA: if (!--argc) usage(1+*argv); (void)getaddr(RTA_IFA, *++argv, 0, soup); break; case K_IFP: if (!--argc) usage(1+*argv); (void)getaddr(RTA_IFP, *++argv, 0, soup); break; case K_GENMASK: if (!--argc) usage(1+*argv); (void)getaddr(RTA_GENMASK, *++argv, 0, soup); break; case K_GATEWAY: if (!--argc) usage(1+*argv); (void)getaddr(RTA_GATEWAY, *++argv, 0, soup); break; case K_DST: if (!--argc) usage(1+*argv); ishost = getaddr(RTA_DST, *++argv, &hp, soup); dest = *argv; break; case K_NETMASK: if (!--argc) usage(1+*argv); (void)getaddr(RTA_NETMASK, *++argv, 0, soup); /* FALLTHROUGH */ case K_NET: forcenet++; break; case K_PREFIXLEN: if (!--argc) usage(1+*argv); ishost = prefixlen(*++argv, soup); break; case K_MTU: case K_HOPCOUNT: case K_EXPIRE: case K_RECVPIPE: case K_SENDPIPE: case K_SSTHRESH: case K_RTT: case K_RTTVAR: if (!--argc) usage(1+*argv); set_metric(*++argv, key); break; default: usage(1+*argv); } } else { if ((rtm_addrs & RTA_DST) == 0) { dest = *argv; ishost = getaddr(RTA_DST, *argv, &hp, soup); } else if ((rtm_addrs & RTA_GATEWAY) == 0) { gateway = *argv; (void)getaddr(RTA_GATEWAY, *argv, &hp, soup); } else { ret = atoi(*argv); if (ret == 0) { if (strcmp(*argv, "0") == 0) { if (!qflag) { warnx("%s, %s", "old usage of trailing 0", "assuming route to if"); } } else usage(NULL); iflag = 1; continue; } else if (ret > 0 && ret < 10) { if (!qflag) { warnx("%s, %s", "old usage of trailing digit", "assuming route via gateway"); } iflag = 0; continue; } (void)getaddr(RTA_NETMASK, *argv, 0, soup); } } } if (forcehost && forcenet) errx(EXIT_FAILURE, "-host and -net conflict"); else if (forcehost) ishost = 1; else if (forcenet) ishost = 0; flags |= RTF_UP; if (ishost) flags |= RTF_HOST; if (iflag == 0) flags |= RTF_GATEWAY; for (attempts = 1; ; attempts++) { errno = 0; if ((ret = rtmsg(*cmd, flags, soup)) == 0) break; if (errno != ENETUNREACH && errno != ESRCH) break; if (af == AF_INET && *gateway && hp && hp->h_addr_list[1]) { hp->h_addr_list++; memmove(&soup->so_gate.sin.sin_addr, hp->h_addr_list[0], hp->h_length); } else break; } if (*cmd == 'g') return ret != 0; if (!qflag) { oerrno = errno; (void)printf("%s %s %s", cmd, ishost? "host" : "net", dest); if (*gateway) { (void)printf(": gateway %s", gateway); if (attempts > 1 && ret == 0 && af == AF_INET) (void)printf(" (%s)", inet_ntoa(soup->so_gate.sin.sin_addr)); } if (ret == 0) (void)printf("\n"); else (void)printf(": %s\n", route_strerror(oerrno)); } return ret != 0; } static void inet_makenetandmask(const u_int32_t net, struct sockaddr_in * const isin, struct sou *soup) { struct sockaddr_in *sin; u_int32_t addr, mask = 0; char *cp; rtm_addrs |= RTA_NETMASK; if (net == 0) mask = addr = 0; else if (net < 128) { addr = net << IN_CLASSA_NSHIFT; mask = IN_CLASSA_NET; } else if (net < 192) { addr = net << IN_CLASSA_NSHIFT; mask = IN_CLASSB_NET; } else if (net < 224) { addr = net << IN_CLASSA_NSHIFT; mask = IN_CLASSC_NET; } else if (net < 256) { addr = net << IN_CLASSA_NSHIFT; mask = IN_CLASSD_NET; } else if (net < 49152) { /* 192 * 256 */ addr = net << IN_CLASSB_NSHIFT; mask = IN_CLASSB_NET; } else if (net < 57344) { /* 224 * 256 */ addr = net << IN_CLASSB_NSHIFT; mask = IN_CLASSC_NET; } else if (net < 65536) { addr = net << IN_CLASSB_NSHIFT; mask = IN_CLASSB_NET; } else if (net < 14680064L) { /* 224 * 65536 */ addr = net << IN_CLASSC_NSHIFT; mask = IN_CLASSC_NET; } else if (net < 16777216L) { addr = net << IN_CLASSC_NSHIFT; mask = IN_CLASSD_NET; } else { addr = net; if ((addr & IN_CLASSA_HOST) == 0) mask = IN_CLASSA_NET; else if ((addr & IN_CLASSB_HOST) == 0) mask = IN_CLASSB_NET; else if ((addr & IN_CLASSC_HOST) == 0) mask = IN_CLASSC_NET; else mask = -1; } isin->sin_addr.s_addr = htonl(addr); sin = &soup->so_mask.sin; sin->sin_addr.s_addr = htonl(mask); sin->sin_len = 0; sin->sin_family = 0; cp = (char *)(&sin->sin_addr + 1); while (*--cp == 0 && cp > (char *)sin) ; sin->sin_len = 1 + cp - (char *)sin; sin->sin_family = AF_INET; } #ifdef INET6 /* * XXX the function may need more improvement... */ static int inet6_makenetandmask(const struct sockaddr_in6 * const sin6, struct sou *soup) { const char *plen; struct in6_addr in6; plen = NULL; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr) && sin6->sin6_scope_id == 0) { plen = "0"; } else if ((sin6->sin6_addr.s6_addr[0] & 0xe0) == 0x20) { /* aggregatable global unicast - RFC2374 */ memset(&in6, 0, sizeof(in6)); if (!memcmp(&sin6->sin6_addr.s6_addr[8], &in6.s6_addr[8], 8)) plen = "64"; } if (!plen || strcmp(plen, "128") == 0) return 1; else { rtm_addrs |= RTA_NETMASK; (void)prefixlen(plen, soup); return 0; } } #endif /* * Interpret an argument as a network address of some kind, * returning 1 if a host address, 0 if a network address. */ static int getaddr(int which, const char *s, struct hostent **hpp, struct sou *soup) { sup su; struct hostent *hp; struct netent *np; u_int32_t val; char *t; int afamily; /* local copy of af so we can change it */ if (af == AF_UNSPEC) { af = AF_INET; aflen = sizeof(struct sockaddr_in); } afamily = af; rtm_addrs |= which; switch (which) { case RTA_DST: su = &soup->so_dst; break; case RTA_GATEWAY: su = &soup->so_gate; break; case RTA_NETMASK: su = &soup->so_mask; break; case RTA_GENMASK: su = &soup->so_genmask; break; case RTA_IFP: su = &soup->so_ifp; afamily = AF_LINK; break; case RTA_IFA: su = &soup->so_ifa; su->sa.sa_family = af; break; default: su = NULL; usage("Internal Error"); /*NOTREACHED*/ } su->sa.sa_len = aflen; su->sa.sa_family = afamily; /* cases that don't want it have left already */ if (strcmp(s, "default") == 0) { switch (which) { case RTA_DST: forcenet++; (void)getaddr(RTA_NETMASK, s, 0, soup); break; case RTA_NETMASK: case RTA_GENMASK: su->sa.sa_len = 0; } return 0; } switch (afamily) { #ifdef INET6 case AF_INET6: { struct addrinfo hints, *res; char *slash = 0; if (which == RTA_DST && (slash = (strrchr(s, '/'))) != 0) *slash = '\0'; memset(&hints, 0, sizeof(hints)); hints.ai_family = afamily; /*AF_INET6*/ hints.ai_flags = AI_NUMERICHOST; hints.ai_socktype = SOCK_DGRAM; /*dummy*/ if (getaddrinfo(s, "0", &hints, &res) != 0) { hints.ai_flags = 0; if (slash) { *slash = '/'; slash = 0; } if (getaddrinfo(s, "0", &hints, &res) != 0) errx(EXIT_FAILURE, "%s: bad value", s); } if (slash) *slash = '/'; if (sizeof(su->sin6) != res->ai_addrlen) errx(EXIT_FAILURE, "%s: bad value", s); if (res->ai_next) { errx(EXIT_FAILURE, "%s: address resolved to multiple values", s); } memcpy(&su->sin6, res->ai_addr, sizeof(su->sin6)); freeaddrinfo(res); #ifdef __KAME__ if ((IN6_IS_ADDR_LINKLOCAL(&su->sin6.sin6_addr) || IN6_IS_ADDR_MC_LINKLOCAL(&su->sin6.sin6_addr)) && su->sin6.sin6_scope_id) { *(u_int16_t *)&su->sin6.sin6_addr.s6_addr[2] = htons(su->sin6.sin6_scope_id); su->sin6.sin6_scope_id = 0; } #endif if (hints.ai_flags == AI_NUMERICHOST) { if (slash) return prefixlen(slash + 1, soup); if (which == RTA_DST) return inet6_makenetandmask(&su->sin6, soup); return 0; } else return 1; } #endif #ifndef SMALL case AF_OSI: su->siso.siso_addr = *iso_addr(s); if (which == RTA_NETMASK || which == RTA_GENMASK) { const char *cp = TSEL(&su->siso); su->siso.siso_nlen = 0; do {--cp ;} while ((cp > (char *)su) && (*cp == 0)); su->siso.siso_len = 1 + cp - (char *)su; } return 1; #endif /* SMALL */ case PF_ROUTE: su->sa.sa_len = sizeof(*su); sockaddr(s, &su->sa); return 1; #ifndef SMALL case AF_APPLETALK: t = strchr (s, '.'); if (!t) { badataddr: errx(EXIT_FAILURE, "bad address: %s", s); } val = atoi (s); if (val > 65535) goto badataddr; su->sat.sat_addr.s_net = val; val = atoi (t); if (val > 256) goto badataddr; su->sat.sat_addr.s_node = val; rtm_addrs |= RTA_NETMASK; return(forcehost || su->sat.sat_addr.s_node != 0); #endif case AF_LINK: link_addr(s, &su->sdl); return 1; case AF_INET: default: break; } if (hpp == NULL) hpp = &hp; *hpp = NULL; if ((t = strchr(s, '/')) != NULL && which == RTA_DST) { *t = '\0'; if (forcenet == 0) { if ((val = inet_addr(s)) != INADDR_NONE) { inet_makenetandmask(htonl(val), &su->sin, soup); return prefixlen(&t[1], soup); } } else { if ((val = inet_network(s)) != INADDR_NONE) { inet_makenetandmask(val, &su->sin, soup); return prefixlen(&t[1], soup); } } *t = '/'; } if (inet_aton(s, &su->sin.sin_addr) && (which != RTA_DST || forcenet == 0)) { val = su->sin.sin_addr.s_addr; if (inet_lnaof(su->sin.sin_addr) != INADDR_ANY) return 1; else { val = ntohl(val); goto netdone; } } if ((val = inet_network(s)) != INADDR_NONE || ((np = getnetbyname(s)) != NULL && (val = np->n_net) != 0)) { netdone: if (which == RTA_DST) inet_makenetandmask(val, &su->sin, soup); return 0; } hp = gethostbyname(s); if (hp) { *hpp = hp; su->sin.sin_family = hp->h_addrtype; memmove(&su->sin.sin_addr, hp->h_addr, hp->h_length); return 1; } errx(EXIT_FAILURE, "%s: bad value", s); /*NOTREACHED*/ } int prefixlen(const char *s, struct sou *soup) { int len = atoi(s), q, r; int max; switch (af) { case AF_INET: max = sizeof(struct in_addr) * 8; break; #ifdef INET6 case AF_INET6: max = sizeof(struct in6_addr) * 8; break; #endif default: errx(EXIT_FAILURE, "prefixlen is not supported with af %d", af); /*NOTREACHED*/ } rtm_addrs |= RTA_NETMASK; if (len < -1 || len > max) errx(EXIT_FAILURE, "%s: bad value", s); q = len >> 3; r = len & 7; switch (af) { case AF_INET: memset(&soup->so_mask, 0, sizeof(soup->so_mask)); soup->so_mask.sin.sin_family = AF_INET; soup->so_mask.sin.sin_len = sizeof(struct sockaddr_in); soup->so_mask.sin.sin_addr.s_addr = (len == 0 ? 0 : htonl(0xffffffff << (32 - len))); break; #ifdef INET6 case AF_INET6: soup->so_mask.sin6.sin6_family = AF_INET6; soup->so_mask.sin6.sin6_len = sizeof(struct sockaddr_in6); memset(&soup->so_mask.sin6.sin6_addr, 0, sizeof(soup->so_mask.sin6.sin6_addr)); if (q > 0) memset(&soup->so_mask.sin6.sin6_addr, 0xff, q); if (r > 0) *((u_char *)&soup->so_mask.sin6.sin6_addr + q) = (0xff00 >> r) & 0xff; break; #endif } return len == max; } #ifndef SMALL static void interfaces(void) { size_t needed; int mib[6]; char *buf, *lim, *next; struct rt_msghdr *rtm; mib[0] = CTL_NET; mib[1] = PF_ROUTE; mib[2] = 0; /* protocol */ mib[3] = 0; /* wildcard address family */ mib[4] = NET_RT_IFLIST; mib[5] = 0; /* no flags */ if (sysctl(mib, 6, NULL, &needed, NULL, 0) < 0) err(EXIT_FAILURE, "route-sysctl-estimate"); if (needed) { if ((buf = malloc(needed)) == NULL) err(EXIT_FAILURE, "malloc"); if (sysctl(mib, 6, buf, &needed, NULL, 0) < 0) { err(EXIT_FAILURE, "actual retrieval of interface table"); } lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { rtm = (struct rt_msghdr *)next; print_rtmsg(rtm, rtm->rtm_msglen); } free(buf); } } static void monitor(void) { int n; union { char msg[2048]; struct rt_msghdr hdr; } u; verbose = 1; if (debugonly) { interfaces(); exit(0); } for(;;) { time_t now; n = read(sock, &u, sizeof(u)); now = time(NULL); (void)printf("got message of size %d on %s", n, ctime(&now)); print_rtmsg(&u.hdr, n); } } #endif /* SMALL */ struct { struct rt_msghdr m_rtm; char m_space[512]; } m_rtmsg; static int rtmsg(int cmd, int flags, struct sou *soup) { static int seq; int rlen; char *cp = m_rtmsg.m_space; int l; #define NEXTADDR(w, u) \ if (rtm_addrs & (w)) {\ l = ROUNDUP(u.sa.sa_len); memmove(cp, &(u), l); cp += l;\ if (verbose && ! shortoutput) sodump(&(u),#u);\ } errno = 0; memset(&m_rtmsg, 0, sizeof(m_rtmsg)); if (cmd == 'a') cmd = RTM_ADD; else if (cmd == 'c') cmd = RTM_CHANGE; else if (cmd == 'g') { #ifdef SMALL return -1; #else /* SMALL */ cmd = RTM_GET; if (soup->so_ifp.sa.sa_family == AF_UNSPEC) { soup->so_ifp.sa.sa_family = AF_LINK; soup->so_ifp.sa.sa_len = sizeof(struct sockaddr_dl); rtm_addrs |= RTA_IFP; } #endif /* SMALL */ } else cmd = RTM_DELETE; #define rtm m_rtmsg.m_rtm rtm.rtm_type = cmd; rtm.rtm_flags = flags; rtm.rtm_version = RTM_VERSION; rtm.rtm_seq = ++seq; rtm.rtm_addrs = rtm_addrs; rtm.rtm_rmx = rt_metrics; rtm.rtm_inits = rtm_inits; if (rtm_addrs & RTA_NETMASK) mask_addr(soup); NEXTADDR(RTA_DST, soup->so_dst); NEXTADDR(RTA_GATEWAY, soup->so_gate); NEXTADDR(RTA_NETMASK, soup->so_mask); NEXTADDR(RTA_GENMASK, soup->so_genmask); NEXTADDR(RTA_IFP, soup->so_ifp); NEXTADDR(RTA_IFA, soup->so_ifa); rtm.rtm_msglen = l = cp - (char *)&m_rtmsg; if (verbose && ! shortoutput) { if (rtm_addrs) putchar('\n'); print_rtmsg(&rtm, l); } if (debugonly) return 0; if ((rlen = write(sock, (char *)&m_rtmsg, l)) < 0) { warnx("writing to routing socket: %s", route_strerror(errno)); return -1; } if (rlen < l) { warnx("write to routing socket, got %d for rlen", rlen); return 1; } #ifndef SMALL if (cmd == RTM_GET) { do { l = read(sock, (char *)&m_rtmsg, sizeof(m_rtmsg)); } while (l > 0 && (rtm.rtm_seq != seq || rtm.rtm_pid != pid)); if (l < 0) err(EXIT_FAILURE, "read from routing socket"); else return print_getmsg(&rtm, l, soup); } #endif /* SMALL */ #undef rtm return 0; } static void mask_addr(struct sou *soup) { int olen = soup->so_mask.sa.sa_len; char *cp1 = olen + (char *)&soup->so_mask, *cp2; for (soup->so_mask.sa.sa_len = 0; cp1 > (char *)&soup->so_mask; ) if (*--cp1 != 0) { soup->so_mask.sa.sa_len = 1 + cp1 - (char *)&soup->so_mask; break; } if ((rtm_addrs & RTA_DST) == 0) return; switch (soup->so_dst.sa.sa_family) { case AF_INET: #ifdef INET6 case AF_INET6: #endif #ifndef SMALL case AF_APPLETALK: #endif /* SMALL */ case 0: return; #ifndef SMALL case AF_ISO: olen = MIN(soup->so_dst.siso.siso_nlen, MAX(soup->so_mask.sa.sa_len - 6, 0)); break; #endif /* SMALL */ } cp1 = soup->so_mask.sa.sa_len + 1 + (char *)&soup->so_dst; cp2 = soup->so_dst.sa.sa_len + 1 + (char *)&soup->so_dst; while (cp2 > cp1) *--cp2 = 0; cp2 = soup->so_mask.sa.sa_len + 1 + (char *)&soup->so_mask; while (cp1 > soup->so_dst.sa.sa_data) *--cp1 &= *--cp2; #ifndef SMALL switch (soup->so_dst.sa.sa_family) { case AF_ISO: soup->so_dst.siso.siso_nlen = olen; break; } #endif /* SMALL */ } const char *msgtypes[] = { "", "RTM_ADD: Add Route", "RTM_DELETE: Delete Route", "RTM_CHANGE: Change Metrics or flags", "RTM_GET: Report Metrics", "RTM_LOSING: Kernel Suspects Partitioning", "RTM_REDIRECT: Told to use different route", "RTM_MISS: Lookup failed on this address", "RTM_LOCK: fix specified metrics", "RTM_OLDADD: caused by SIOCADDRT", "RTM_OLDDEL: caused by SIOCDELRT", "RTM_RESOLVE: Route created by cloning", "RTM_NEWADDR: address being added to iface", "RTM_DELADDR: address being removed from iface", "RTM_OIFINFO: iface status change (pre-1.5)", "RTM_IFINFO: iface status change", "RTM_IFANNOUNCE: iface arrival/departure", "RTM_IEEE80211: IEEE80211 wireless event", 0, }; const char metricnames[] = "\011pksent\010rttvar\7rtt\6ssthresh\5sendpipe\4recvpipe\3expire\2hopcount\1mtu"; const char routeflags[] = "\1UP\2GATEWAY\3HOST\4REJECT\5DYNAMIC\6MODIFIED\7DONE\010MASK_PRESENT\011CLONING\012XRESOLVE\013LLINFO\014STATIC\015BLACKHOLE\016CLONED\017PROTO2\020PROTO1"; const char ifnetflags[] = "\1UP\2BROADCAST\3DEBUG\4LOOPBACK\5PTP\6NOTRAILERS\7RUNNING\010NOARP\011PPROMISC\012ALLMULTI\013OACTIVE\014SIMPLEX\015LINK0\016LINK1\017LINK2\020MULTICAST"; const char addrnames[] = "\1DST\2GATEWAY\3NETMASK\4GENMASK\5IFP\6IFA\7AUTHOR\010BRD"; #ifndef SMALL static const char * linkstate(struct if_msghdr *ifm) { static char buf[64]; switch (ifm->ifm_data.ifi_link_state) { case LINK_STATE_UNKNOWN: return "carrier: unknown"; case LINK_STATE_DOWN: return "carrier: no carrier"; case LINK_STATE_UP: return "carrier: active"; default: (void)snprintf(buf, sizeof(buf), "carrier: 0x%x", ifm->ifm_data.ifi_link_state); return buf; } } #endif /* SMALL */ static void print_rtmsg(struct rt_msghdr *rtm, int msglen) { struct if_msghdr *ifm; struct ifa_msghdr *ifam; struct if_announcemsghdr *ifan; union { struct ieee80211_join_event join; struct ieee80211_leave_event leave; struct ieee80211_replay_event replay; struct ieee80211_michael_event michael; } ev; size_t evlen = 0; if (verbose == 0) return; if (rtm->rtm_version != RTM_VERSION) { (void)printf("routing message version %d not understood\n", rtm->rtm_version); return; } if (msgtypes[rtm->rtm_type]) (void)printf("%s: ", msgtypes[rtm->rtm_type]); else (void)printf("#%d: ", rtm->rtm_type); (void)printf("len %d, ", rtm->rtm_msglen); switch (rtm->rtm_type) { case RTM_IFINFO: ifm = (struct if_msghdr *)rtm; (void)printf("if# %d, %s, flags: ", ifm->ifm_index, #ifdef SMALL "" #else linkstate(ifm) #endif /* SMALL */ ); bprintf(stdout, ifm->ifm_flags, ifnetflags); pmsg_addrs((char *)(ifm + 1), ifm->ifm_addrs); break; case RTM_NEWADDR: case RTM_DELADDR: ifam = (struct ifa_msghdr *)rtm; (void)printf("metric %d, flags: ", ifam->ifam_metric); bprintf(stdout, ifam->ifam_flags, routeflags); pmsg_addrs((char *)(ifam + 1), ifam->ifam_addrs); break; case RTM_IEEE80211: ifan = (struct if_announcemsghdr *)rtm; (void)printf("if# %d, what: ", ifan->ifan_index); switch (ifan->ifan_what) { case RTM_IEEE80211_ASSOC: printf("associate"); break; case RTM_IEEE80211_REASSOC: printf("re-associate"); break; case RTM_IEEE80211_DISASSOC: printf("disassociate"); break; case RTM_IEEE80211_SCAN: printf("scan complete"); break; case RTM_IEEE80211_JOIN: evlen = sizeof(ev.join); printf("join"); break; case RTM_IEEE80211_LEAVE: evlen = sizeof(ev.leave); printf("leave"); break; case RTM_IEEE80211_MICHAEL: evlen = sizeof(ev.michael); printf("michael"); break; case RTM_IEEE80211_REPLAY: evlen = sizeof(ev.replay); printf("replay"); break; default: evlen = 0; printf("#%d", ifan->ifan_what); break; } if (sizeof(*ifan) + evlen > ifan->ifan_msglen) { printf(" (truncated)\n"); break; } (void)memcpy(&ev, (ifan + 1), evlen); switch (ifan->ifan_what) { case RTM_IEEE80211_JOIN: case RTM_IEEE80211_LEAVE: printf(" mac %" PRIETHER, PRIETHER_ARGS(ev.join.iev_addr)); break; case RTM_IEEE80211_REPLAY: case RTM_IEEE80211_MICHAEL: printf(" src %" PRIETHER " dst %" PRIETHER " cipher %" PRIu8 " keyix %" PRIu8, PRIETHER_ARGS(ev.replay.iev_src), PRIETHER_ARGS(ev.replay.iev_dst), ev.replay.iev_cipher, ev.replay.iev_keyix); if (ifan->ifan_what == RTM_IEEE80211_REPLAY) { printf(" key rsc %#" PRIx64 " frame rsc %#" PRIx64, ev.replay.iev_keyrsc, ev.replay.iev_rsc); } break; default: break; } printf("\n"); break; case RTM_IFANNOUNCE: ifan = (struct if_announcemsghdr *)rtm; (void)printf("if# %d, what: ", ifan->ifan_index); switch (ifan->ifan_what) { case IFAN_ARRIVAL: printf("arrival"); break; case IFAN_DEPARTURE: printf("departure"); break; default: printf("#%d", ifan->ifan_what); break; } printf("\n"); break; default: (void)printf("pid %d, seq %d, errno %d, flags: ", rtm->rtm_pid, rtm->rtm_seq, rtm->rtm_errno); bprintf(stdout, rtm->rtm_flags, routeflags); pmsg_common(rtm); } } #ifndef SMALL static int print_getmsg(struct rt_msghdr *rtm, int msglen, struct sou *soup) { struct sockaddr *dst = NULL, *gate = NULL, *mask = NULL, *ifa = NULL; struct sockaddr_dl *ifp = NULL; struct sockaddr *sa; char *cp; int i; if (! shortoutput) (void)printf(" route to: %s\n", routename(&soup->so_dst.sa, NULL, RTF_HOST)); if (rtm->rtm_version != RTM_VERSION) { warnx("routing message version %d not understood", rtm->rtm_version); return 1; } if (rtm->rtm_msglen > msglen) { warnx("message length mismatch, in packet %d, returned %d", rtm->rtm_msglen, msglen); } if (rtm->rtm_errno) { warnx("RTM_GET: %s (errno %d)", strerror(rtm->rtm_errno), rtm->rtm_errno); return 1; } cp = ((char *)(rtm + 1)); if (rtm->rtm_addrs) for (i = 1; i; i <<= 1) if (i & rtm->rtm_addrs) { sa = (struct sockaddr *)cp; switch (i) { case RTA_DST: dst = sa; break; case RTA_GATEWAY: gate = sa; break; case RTA_NETMASK: mask = sa; break; case RTA_IFP: if (sa->sa_family == AF_LINK && ((struct sockaddr_dl *)sa)->sdl_nlen) ifp = (struct sockaddr_dl *)sa; break; case RTA_IFA: ifa = sa; break; } ADVANCE(cp, sa); } if (dst && mask) mask->sa_family = dst->sa_family; /* XXX */ if (dst && ! shortoutput) (void)printf("destination: %s\n", routename(dst, mask, RTF_HOST)); if (mask && ! shortoutput) { int savenflag = nflag; nflag = 1; (void)printf(" mask: %s\n", routename(mask, NULL, RTF_HOST)); nflag = savenflag; } if (gate && rtm->rtm_flags & RTF_GATEWAY) { const char *name; name = routename(gate, NULL, RTF_HOST); if (shortoutput) { if (*name == '\0') return 1; (void)printf("%s\n", name); } else (void)printf(" gateway: %s\n", name); } if (ifa && ! shortoutput) (void)printf(" local addr: %s\n", routename(ifa, NULL, RTF_HOST)); if (ifp && ! shortoutput) (void)printf(" interface: %.*s\n", ifp->sdl_nlen, ifp->sdl_data); if (! shortoutput) { (void)printf(" flags: "); bprintf(stdout, rtm->rtm_flags, routeflags); } #define lock(f) ((rtm->rtm_rmx.rmx_locks & __CONCAT(RTV_,f)) ? 'L' : ' ') #define msec(u) (((u) + 500) / 1000) /* usec to msec */ if (! shortoutput) { (void)printf("\n%s\n", "\ recvpipe sendpipe ssthresh rtt,msec rttvar hopcount mtu expire"); printf("%8ld%c ", rtm->rtm_rmx.rmx_recvpipe, lock(RPIPE)); printf("%8ld%c ", rtm->rtm_rmx.rmx_sendpipe, lock(SPIPE)); printf("%8ld%c ", rtm->rtm_rmx.rmx_ssthresh, lock(SSTHRESH)); printf("%8ld%c ", msec(rtm->rtm_rmx.rmx_rtt), lock(RTT)); printf("%8ld%c ", msec(rtm->rtm_rmx.rmx_rttvar), lock(RTTVAR)); printf("%8ld%c ", rtm->rtm_rmx.rmx_hopcount, lock(HOPCOUNT)); printf("%8ld%c ", rtm->rtm_rmx.rmx_mtu, lock(MTU)); if (rtm->rtm_rmx.rmx_expire) rtm->rtm_rmx.rmx_expire -= time(0); printf("%8ld%c\n", rtm->rtm_rmx.rmx_expire, lock(EXPIRE)); } #undef lock #undef msec #define RTA_IGN (RTA_DST|RTA_GATEWAY|RTA_NETMASK|RTA_IFP|RTA_IFA|RTA_BRD) if (shortoutput) return (rtm->rtm_addrs & RTF_GATEWAY) == 0; else if (verbose) pmsg_common(rtm); else if (rtm->rtm_addrs &~ RTA_IGN) { (void)printf("sockaddrs: "); bprintf(stdout, rtm->rtm_addrs, addrnames); putchar('\n'); } return 0; #undef RTA_IGN } #endif /* SMALL */ void pmsg_common(struct rt_msghdr *rtm) { (void)printf("\nlocks: "); bprintf(stdout, rtm->rtm_rmx.rmx_locks, metricnames); (void)printf(" inits: "); bprintf(stdout, rtm->rtm_inits, metricnames); pmsg_addrs((char *)(rtm + 1), rtm->rtm_addrs); } static void extract_addrs(const char *cp, int addrs, const struct sockaddr *sa[], int *nmfp) { int i, nmf = -1; for (i = 0; i < RTAX_MAX; i++) { if ((1 << i) & addrs) { sa[i] = (const struct sockaddr *)cp; if ((i == RTAX_DST || i == RTAX_IFA) && nmf == -1) nmf = sa[i]->sa_family; ADVANCE(cp, sa[i]); } else sa[i] = NULL; } if (nmfp != NULL) *nmfp = nmf; } static void pmsg_addrs(const char *cp, int addrs) { const struct sockaddr *sa[RTAX_MAX]; int i, nmf; if (addrs != 0) { (void)printf("\nsockaddrs: "); bprintf(stdout, addrs, addrnames); (void)putchar('\n'); extract_addrs(cp, addrs, sa, &nmf); for (i = 0; i < RTAX_MAX; i++) { if (sa[i] == NULL) continue; if (i == RTAX_NETMASK && sa[i]->sa_len) (void)printf(" %s", netmask_string(sa[i], -1, nmf)); else (void)printf(" %s", routename(sa[i], NULL, RTF_HOST)); } } (void)putchar('\n'); (void)fflush(stdout); } static void bprintf(FILE *fp, int b, const char *f) { int i; int gotsome = 0; const uint8_t *s = (const uint8_t *)f; if (b == 0) return; while ((i = *s++) != 0) { if (b & (1 << (i-1))) { if (gotsome == 0) i = '<'; else i = ','; (void)putc(i, fp); gotsome = 1; for (; (i = *s) > 32; s++) (void)putc(i, fp); } else while (*s > 32) s++; } if (gotsome) (void)putc('>', fp); } int keyword(const char *cp) { struct keytab *kt = keywords; while (kt->kt_cp && strcmp(kt->kt_cp, cp)) kt++; return kt->kt_i; } static void sodump(sup su, const char *which) { #ifdef INET6 char ntop_buf[NI_MAXHOST]; #endif switch (su->sa.sa_family) { case AF_INET: (void)printf("%s: inet %s; ", which, inet_ntoa(su->sin.sin_addr)); break; #ifndef SMALL case AF_APPLETALK: (void)printf("%s: atalk %d.%d; ", which, su->sat.sat_addr.s_net, su->sat.sat_addr.s_node); break; #endif case AF_LINK: (void)printf("%s: link %s; ", which, link_ntoa(&su->sdl)); break; #ifdef INET6 case AF_INET6: (void)printf("%s: inet6 %s; ", which, inet_ntop(AF_INET6, &su->sin6.sin6_addr, ntop_buf, sizeof(ntop_buf))); break; #endif #ifndef SMALL case AF_ISO: (void)printf("%s: iso %s; ", which, iso_ntoa(&su->siso.siso_addr)); break; #endif /* SMALL */ default: (void)printf("%s: (%d) %s; ", which, su->sa.sa_family, any_ntoa(&su->sa)); } (void)fflush(stdout); } /* States*/ #define VIRGIN 0 #define GOTONE 1 #define GOTTWO 2 /* Inputs */ #define DIGIT (4*0) #define END (4*1) #define DELIM (4*2) static void sockaddr(const char *addr, struct sockaddr *sa) { char *cp = (char *)sa; int size = sa->sa_len; char *cplim = cp + size; int byte = 0, state = VIRGIN, new = 0; (void)memset(cp, 0, size); cp++; do { if ((*addr >= '0') && (*addr <= '9')) { new = *addr - '0'; } else if ((*addr >= 'a') && (*addr <= 'f')) { new = *addr - 'a' + 10; } else if ((*addr >= 'A') && (*addr <= 'F')) { new = *addr - 'A' + 10; } else if (*addr == 0) state |= END; else state |= DELIM; addr++; switch (state /* | INPUT */) { case GOTTWO | DIGIT: *cp++ = byte; /*FALLTHROUGH*/ case VIRGIN | DIGIT: state = GOTONE; byte = new; continue; case GOTONE | DIGIT: state = GOTTWO; byte = new + (byte << 4); continue; default: /* | DELIM */ state = VIRGIN; *cp++ = byte; byte = 0; continue; case GOTONE | END: case GOTTWO | END: *cp++ = byte; /* FALLTHROUGH */ case VIRGIN | END: break; } break; } while (cp < cplim); sa->sa_len = cp - (char *)sa; }