/* $NetBSD: if_ether.h,v 1.72 2018/04/19 21:20:43 christos Exp $ */ /* * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 */ #ifndef _NET_IF_ETHER_H_ #define _NET_IF_ETHER_H_ #ifdef _KERNEL #ifdef _KERNEL_OPT #include "opt_mbuftrace.h" #endif #include #endif #ifndef _STANDALONE #include #endif /* * Some basic Ethernet constants. */ #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */ #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */ #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */ #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) #define ETHER_MIN_LEN 64 /* minimum frame length, including CRC */ #define ETHER_MAX_LEN 1518 /* maximum frame length, including CRC */ #define ETHER_MAX_LEN_JUMBO 9018 /* maximum jumbo frame len, including CRC */ /* * Some Ethernet extensions. */ #define ETHER_VLAN_ENCAP_LEN 4 /* length of 802.1Q VLAN encapsulation */ #define EVL_VLANOFTAG(tag) ((tag) & 4095) /* VLAN ID */ #define EVL_PRIOFTAG(tag) (((tag) >> 13) & 7) /* Priority */ #define EVL_CFIOFTAG(tag) (((tag) >> 12) & 1) /* CFI */ #define ETHER_PPPOE_ENCAP_LEN 8 /* length of PPPoE encapsulation */ /* * Ethernet address - 6 octets * this is only used by the ethers(3) functions. */ struct ether_addr { uint8_t ether_addr_octet[ETHER_ADDR_LEN]; } __packed; /* * Structure of a 10Mb/s Ethernet header. */ struct ether_header { uint8_t ether_dhost[ETHER_ADDR_LEN]; uint8_t ether_shost[ETHER_ADDR_LEN]; uint16_t ether_type; } __packed; #include #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ #define ETHER_IS_LOCAL(addr) (*(addr) & 0x02) /* is address local? */ #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN) #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) /* * Compute the maximum frame size based on ethertype (i.e. possible * encapsulation) and whether or not an FCS is present. */ #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \ ((ifp)->if_mtu + ETHER_HDR_LEN + \ ((hasfcs) ? ETHER_CRC_LEN : 0) + \ (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0) + \ (((etype) == ETHERTYPE_PPPOE) ? ETHER_PPPOE_ENCAP_LEN : 0)) /* * Ethernet CRC32 polynomials (big- and little-endian verions). */ #define ETHER_CRC_POLY_LE 0xedb88320 #define ETHER_CRC_POLY_BE 0x04c11db6 #ifndef _STANDALONE /* * Ethernet-specific mbuf flags. */ #define M_HASFCS M_LINK0 /* FCS included at end of frame */ #define M_PROMISC M_LINK1 /* this packet is not for us */ #ifdef _KERNEL /* * Macro to map an IP multicast address to an Ethernet multicast address. * The high-order 25 bits of the Ethernet address are statically assigned, * and the low-order 23 bits are taken from the low end of the IP address. */ #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ /* const struct in_addr *ipaddr; */ \ /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \ do { \ (enaddr)[0] = 0x01; \ (enaddr)[1] = 0x00; \ (enaddr)[2] = 0x5e; \ (enaddr)[3] = ((const uint8_t *)ipaddr)[1] & 0x7f; \ (enaddr)[4] = ((const uint8_t *)ipaddr)[2]; \ (enaddr)[5] = ((const uint8_t *)ipaddr)[3]; \ } while (/*CONSTCOND*/0) /* * Macro to map an IP6 multicast address to an Ethernet multicast address. * The high-order 16 bits of the Ethernet address are statically assigned, * and the low-order 32 bits are taken from the low end of the IP6 address. */ #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ /* struct in6_addr *ip6addr; */ \ /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \ { \ (enaddr)[0] = 0x33; \ (enaddr)[1] = 0x33; \ (enaddr)[2] = ((const uint8_t *)ip6addr)[12]; \ (enaddr)[3] = ((const uint8_t *)ip6addr)[13]; \ (enaddr)[4] = ((const uint8_t *)ip6addr)[14]; \ (enaddr)[5] = ((const uint8_t *)ip6addr)[15]; \ } #endif struct mii_data; struct ethercom; typedef int (*ether_cb_t)(struct ethercom *); /* * Structure shared between the ethernet driver modules and * the multicast list code. For example, each ec_softc or il_softc * begins with this structure. */ struct ethercom { struct ifnet ec_if; /* network-visible interface */ LIST_HEAD(, ether_multi) ec_multiaddrs; /* list of ether multicast addrs */ int ec_multicnt; /* length of ec_multiaddrs list */ int ec_capabilities; /* capabilities, provided by driver */ int ec_capenable; /* tells hardware which capabilities to enable */ int ec_nvlans; /* # VLANs on this interface */ /* The device handle for the MII bus child device. */ struct mii_data *ec_mii; /* Called after a change to ec_if.if_flags. Returns * ENETRESET if the device should be reinitialized with * ec_if.if_init, 0 on success, not 0 on failure. */ ether_cb_t ec_ifflags_cb; kmutex_t *ec_lock; #ifdef MBUFTRACE struct mowner ec_rx_mowner; /* mbufs received */ struct mowner ec_tx_mowner; /* mbufs transmitted */ #endif }; #define ETHERCAP_VLAN_MTU 0x00000001 /* VLAN-compatible MTU */ #define ETHERCAP_VLAN_HWTAGGING 0x00000002 /* hardware VLAN tag support */ #define ETHERCAP_JUMBO_MTU 0x00000004 /* 9000 byte MTU supported */ #define ETHERCAP_MASK 0x00000007 #define ECCAPBITS \ "\020" \ "\1VLAN_MTU" \ "\2VLAN_HWTAGGING" \ "\3JUMBO_MTU" /* ioctl() for Ethernet capabilities */ struct eccapreq { char eccr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ int eccr_capabilities; /* supported capabiliites */ int eccr_capenable; /* capabilities enabled */ }; #ifdef _KERNEL extern const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN]; extern const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN]; extern const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; extern const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; void ether_set_ifflags_cb(struct ethercom *, ether_cb_t); int ether_ioctl(struct ifnet *, u_long, void *); int ether_addmulti(const struct sockaddr *, struct ethercom *); int ether_delmulti(const struct sockaddr *, struct ethercom *); int ether_multiaddr(const struct sockaddr *, uint8_t[], uint8_t[]); void ether_input(struct ifnet *, struct mbuf *); #endif /* _KERNEL */ /* * Ethernet multicast address structure. There is one of these for each * multicast address or range of multicast addresses that we are supposed * to listen to on a particular interface. They are kept in a linked list, * rooted in the interface's ethercom structure. */ struct ether_multi { uint8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ uint8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ u_int enm_refcount; /* no. claims to this addr/range */ LIST_ENTRY(ether_multi) enm_list; }; struct ether_multi_sysctl { u_int enm_refcount; uint8_t enm_addrlo[ETHER_ADDR_LEN]; uint8_t enm_addrhi[ETHER_ADDR_LEN]; }; /* * Structure used by macros below to remember position when stepping through * all of the ether_multi records. */ struct ether_multistep { struct ether_multi *e_enm; }; /* * Macro for looking up the ether_multi record for a given range of Ethernet * multicast addresses connected to a given ethercom structure. If no matching * record is found, "enm" returns NULL. */ #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm) \ /* uint8_t addrlo[ETHER_ADDR_LEN]; */ \ /* uint8_t addrhi[ETHER_ADDR_LEN]; */ \ /* struct ethercom *ec; */ \ /* struct ether_multi *enm; */ \ { \ for ((enm) = LIST_FIRST(&(ec)->ec_multiaddrs); \ (enm) != NULL && \ (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \ memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ (enm) = LIST_NEXT((enm), enm_list)); \ } /* * Macro to step through all of the ether_multi records, one at a time. * The current position is remembered in "step", which the caller must * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" * and get the first record. Both macros return a NULL "enm" when there * are no remaining records. */ #define ETHER_NEXT_MULTI(step, enm) \ /* struct ether_multistep step; */ \ /* struct ether_multi *enm; */ \ { \ if (((enm) = (step).e_enm) != NULL) \ (step).e_enm = LIST_NEXT((enm), enm_list); \ } #define ETHER_FIRST_MULTI(step, ec, enm) \ /* struct ether_multistep step; */ \ /* struct ethercom *ec; */ \ /* struct ether_multi *enm; */ \ { \ (step).e_enm = LIST_FIRST(&(ec)->ec_multiaddrs); \ ETHER_NEXT_MULTI((step), (enm)); \ } #ifdef _KERNEL #define ETHER_LOCK(ec) mutex_enter((ec)->ec_lock) #define ETHER_UNLOCK(ec) mutex_exit((ec)->ec_lock) /* * Ethernet 802.1Q VLAN structures. */ /* add VLAN tag to input/received packet */ static __inline void vlan_set_tag(struct mbuf *m, uint16_t vlantag) { /* VLAN tag contains priority, CFI and VLAN ID */ KASSERT((m->m_flags & M_PKTHDR) != 0); m->m_pkthdr.ether_vtag = vlantag; m->m_flags |= M_VLANTAG; return; } static __inline bool vlan_has_tag(struct mbuf *m) { return (m->m_flags & M_VLANTAG) != 0; } /* extract VLAN ID value from a VLAN tag */ static __inline uint16_t vlan_get_tag(struct mbuf *m) { KASSERT((m->m_flags & M_PKTHDR) != 0); KASSERT(m->m_flags & M_VLANTAG); return m->m_pkthdr.ether_vtag; } /* test if any VLAN is configured for this interface */ #define VLAN_ATTACHED(ec) ((ec)->ec_nvlans > 0) void etherinit(void); void ether_ifattach(struct ifnet *, const uint8_t *); void ether_ifdetach(struct ifnet *); int ether_mediachange(struct ifnet *); void ether_mediastatus(struct ifnet *, struct ifmediareq *); char *ether_sprintf(const uint8_t *); char *ether_snprintf(char *, size_t, const uint8_t *); uint32_t ether_crc32_le(const uint8_t *, size_t); uint32_t ether_crc32_be(const uint8_t *, size_t); int ether_aton_r(u_char *, size_t, const char *); int ether_enable_vlan_mtu(struct ifnet *); int ether_disable_vlan_mtu(struct ifnet *); #else /* * Prototype ethers(3) functions. */ #include __BEGIN_DECLS char * ether_ntoa(const struct ether_addr *); struct ether_addr * ether_aton(const char *); int ether_ntohost(char *, const struct ether_addr *); int ether_hostton(const char *, struct ether_addr *); int ether_line(const char *, struct ether_addr *, char *); __END_DECLS #endif #endif /* _STANDALONE */ #endif /* !_NET_IF_ETHER_H_ */