/* $NetBSD: vfs_subr.c,v 1.470 2017/10/27 12:25:15 joerg Exp $ */ /*- * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, by Andrew Doran, * by Marshall Kirk McKusick and Greg Ganger at the University of Michigan. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.470 2017/10/27 12:25:15 joerg Exp $"); #ifdef _KERNEL_OPT #include "opt_ddb.h" #include "opt_compat_netbsd.h" #include "opt_compat_43.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; const int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; /* * Insq/Remq for the vnode usage lists. */ #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) #define bufremvn(bp) { \ LIST_REMOVE(bp, b_vnbufs); \ (bp)->b_vnbufs.le_next = NOLIST; \ } int doforce = 1; /* 1 => permit forcible unmounting */ extern struct mount *dead_rootmount; /* * Local declarations. */ static void vn_initialize_syncerd(void); /* * Initialize the vnode management data structures. */ void vntblinit(void) { vn_initialize_syncerd(); vfs_mount_sysinit(); vfs_vnode_sysinit(); } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, bool catch_p, int slptimeo) { struct buf *bp, *nbp; int error; int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); /* XXXUBC this doesn't look at flags or slp* */ mutex_enter(vp->v_interlock); error = VOP_PUTPAGES(vp, 0, 0, flushflags); if (error) { return error; } if (flags & V_SAVE) { error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); if (error) return (error); KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch_p, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch_p, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } /* * XXX Since there are no node locks for NFS, I believe * there is a slight chance that a delayed write will * occur while sleeping just above, so check for it. */ if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { #ifdef DEBUG printf("buffer still DELWRI\n"); #endif bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); VOP_BWRITE(bp->b_vp, bp); mutex_enter(&bufcache_lock); goto restart; } brelsel(bp, BC_INVAL | BC_VFLUSH); } #ifdef DIAGNOSTIC if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) panic("vinvalbuf: flush failed, vp %p", vp); #endif mutex_exit(&bufcache_lock); return (0); } /* * Destroy any in core blocks past the truncation length. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch_p, int slptimeo) { struct buf *bp, *nbp; int error; voff_t off; off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); mutex_enter(vp->v_interlock); error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); if (error) { return error; } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch_p, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch_p, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } mutex_exit(&bufcache_lock); return (0); } /* * Flush all dirty buffers from a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vflushbuf(struct vnode *vp, int flags) { struct buf *bp, *nbp; int error, pflags; bool dirty, sync; sync = (flags & FSYNC_WAIT) != 0; pflags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0) | ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); mutex_enter(vp->v_interlock); (void) VOP_PUTPAGES(vp, 0, 0, pflags); loop: mutex_enter(&bufcache_lock); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if ((bp->b_cflags & BC_BUSY)) continue; if ((bp->b_oflags & BO_DELWRI) == 0) panic("vflushbuf: not dirty, bp %p", bp); bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); /* * Wait for I/O associated with indirect blocks to complete, * since there is no way to quickly wait for them below. */ if (bp->b_vp == vp || !sync) (void) bawrite(bp); else { error = bwrite(bp); if (error) return error; } goto loop; } mutex_exit(&bufcache_lock); if (!sync) return 0; mutex_enter(vp->v_interlock); while (vp->v_numoutput != 0) cv_wait(&vp->v_cv, vp->v_interlock); dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); mutex_exit(vp->v_interlock); if (dirty) { vprint("vflushbuf: dirty", vp); goto loop; } return 0; } /* * Create a vnode for a block device. * Used for root filesystem and swap areas. * Also used for memory file system special devices. */ int bdevvp(dev_t dev, vnode_t **vpp) { struct vattr va; vattr_null(&va); va.va_type = VBLK; va.va_rdev = dev; return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); } /* * Create a vnode for a character device. * Used for kernfs and some console handling. */ int cdevvp(dev_t dev, vnode_t **vpp) { struct vattr va; vattr_null(&va); va.va_type = VCHR; va.va_rdev = dev; return vcache_new(dead_rootmount, NULL, &va, NOCRED, vpp); } /* * Associate a buffer with a vnode. There must already be a hold on * the vnode. */ void bgetvp(struct vnode *vp, struct buf *bp) { KASSERT(bp->b_vp == NULL); KASSERT(bp->b_objlock == &buffer_lock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); vholdl(vp); bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; /* * Insert onto list for new vnode. */ bufinsvn(bp, &vp->v_cleanblkhd); bp->b_objlock = vp->v_interlock; } /* * Disassociate a buffer from a vnode. */ void brelvp(struct buf *bp) { struct vnode *vp = bp->b_vp; KASSERT(vp != NULL); KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } bp->b_objlock = &buffer_lock; bp->b_vp = NULL; holdrelel(vp); } /* * Reassign a buffer from one vnode list to another. * The list reassignment must be within the same vnode. * Used to assign file specific control information * (indirect blocks) to the list to which they belong. */ void reassignbuf(struct buf *bp, struct vnode *vp) { struct buflists *listheadp; int delayx; KASSERT(mutex_owned(&bufcache_lock)); KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); /* * If dirty, put on list of dirty buffers; * otherwise insert onto list of clean buffers. */ if ((bp->b_oflags & BO_DELWRI) == 0) { listheadp = &vp->v_cleanblkhd; if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } } else { listheadp = &vp->v_dirtyblkhd; if ((vp->v_iflag & VI_ONWORKLST) == 0) { switch (vp->v_type) { case VDIR: delayx = dirdelay; break; case VBLK: if (spec_node_getmountedfs(vp) != NULL) { delayx = metadelay; break; } /* fall through */ default: delayx = filedelay; break; } if (!vp->v_mount || (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) vn_syncer_add_to_worklist(vp, delayx); } } bufinsvn(bp, listheadp); } /* * Lookup a vnode by device number and return it referenced. */ int vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) { return (spec_node_lookup_by_dev(type, dev, vpp) == 0); } /* * Revoke all the vnodes corresponding to the specified minor number * range (endpoints inclusive) of the specified major. */ void vdevgone(int maj, int minl, int minh, enum vtype type) { vnode_t *vp; dev_t dev; int mn; for (mn = minl; mn <= minh; mn++) { dev = makedev(maj, mn); while (spec_node_lookup_by_dev(type, dev, &vp) == 0) { VOP_REVOKE(vp, REVOKEALL); vrele(vp); } } } /* * The filesystem synchronizer mechanism - syncer. * * It is useful to delay writes of file data and filesystem metadata for * a certain amount of time so that quickly created and deleted files need * not waste disk bandwidth being created and removed. To implement this, * vnodes are appended to a "workitem" queue. * * Most pending metadata should not wait for more than ten seconds. Thus, * mounted on block devices are delayed only about a half the time that file * data is delayed. Similarly, directory updates are more critical, so are * only delayed about a third the time that file data is delayed. * * There are SYNCER_MAXDELAY queues that are processed in a round-robin * manner at a rate of one each second (driven off the filesystem syner * thread). The syncer_delayno variable indicates the next queue that is * to be processed. Items that need to be processed soon are placed in * this queue: * * syncer_workitem_pending[syncer_delayno] * * A delay of e.g. fifteen seconds is done by placing the request fifteen * entries later in the queue: * * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask] * * Flag VI_ONWORKLST indicates that vnode is added into the queue. */ #define SYNCER_MAXDELAY 32 typedef TAILQ_HEAD(synclist, vnode_impl) synclist_t; static void vn_syncer_add1(struct vnode *, int); static void sysctl_vfs_syncfs_setup(struct sysctllog **); /* * Defines and variables for the syncer process. */ int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */ time_t syncdelay = 30; /* max time to delay syncing data */ time_t filedelay = 30; /* time to delay syncing files */ time_t dirdelay = 15; /* time to delay syncing directories */ time_t metadelay = 10; /* time to delay syncing metadata */ time_t lockdelay = 1; /* time to delay if locking fails */ static kmutex_t syncer_data_lock; /* short term lock on data structs */ static int syncer_delayno = 0; static long syncer_last; static synclist_t * syncer_workitem_pending; static void vn_initialize_syncerd(void) { int i; syncer_last = SYNCER_MAXDELAY + 2; sysctl_vfs_syncfs_setup(NULL); syncer_workitem_pending = kmem_alloc(syncer_last * sizeof (struct synclist), KM_SLEEP); for (i = 0; i < syncer_last; i++) TAILQ_INIT(&syncer_workitem_pending[i]); mutex_init(&syncer_data_lock, MUTEX_DEFAULT, IPL_NONE); } /* * Return delay factor appropriate for the given file system. For * WAPBL we use the sync vnode to burst out metadata updates: sync * those file systems more frequently. */ static inline int sync_delay(struct mount *mp) { return mp->mnt_wapbl != NULL ? metadelay : syncdelay; } /* * Compute the next slot index from delay. */ static inline int sync_delay_slot(int delayx) { if (delayx > syncer_maxdelay - 2) delayx = syncer_maxdelay - 2; return (syncer_delayno + delayx) % syncer_last; } /* * Add an item to the syncer work queue. */ static void vn_syncer_add1(struct vnode *vp, int delayx) { synclist_t *slp; vnode_impl_t *vip = VNODE_TO_VIMPL(vp); KASSERT(mutex_owned(&syncer_data_lock)); if (vp->v_iflag & VI_ONWORKLST) { /* * Remove in order to adjust the position of the vnode. * Note: called from sched_sync(), which will not hold * interlock, therefore we cannot modify v_iflag here. */ slp = &syncer_workitem_pending[vip->vi_synclist_slot]; TAILQ_REMOVE(slp, vip, vi_synclist); } else { KASSERT(mutex_owned(vp->v_interlock)); vp->v_iflag |= VI_ONWORKLST; } vip->vi_synclist_slot = sync_delay_slot(delayx); slp = &syncer_workitem_pending[vip->vi_synclist_slot]; TAILQ_INSERT_TAIL(slp, vip, vi_synclist); } void vn_syncer_add_to_worklist(struct vnode *vp, int delayx) { KASSERT(mutex_owned(vp->v_interlock)); mutex_enter(&syncer_data_lock); vn_syncer_add1(vp, delayx); mutex_exit(&syncer_data_lock); } /* * Remove an item from the syncer work queue. */ void vn_syncer_remove_from_worklist(struct vnode *vp) { synclist_t *slp; vnode_impl_t *vip = VNODE_TO_VIMPL(vp); KASSERT(mutex_owned(vp->v_interlock)); mutex_enter(&syncer_data_lock); if (vp->v_iflag & VI_ONWORKLST) { vp->v_iflag &= ~VI_ONWORKLST; slp = &syncer_workitem_pending[vip->vi_synclist_slot]; TAILQ_REMOVE(slp, vip, vi_synclist); } mutex_exit(&syncer_data_lock); } /* * Add this mount point to the syncer. */ void vfs_syncer_add_to_worklist(struct mount *mp) { static int start, incr, next; int vdelay; KASSERT(mutex_owned(&mp->mnt_updating)); KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) == 0); /* * We attempt to scatter the mount points on the list * so that they will go off at evenly distributed times * even if all the filesystems are mounted at once. */ next += incr; if (next == 0 || next > syncer_maxdelay) { start /= 2; incr /= 2; if (start == 0) { start = syncer_maxdelay / 2; incr = syncer_maxdelay; } next = start; } mp->mnt_iflag |= IMNT_ONWORKLIST; vdelay = sync_delay(mp); mp->mnt_synclist_slot = vdelay > 0 ? next % vdelay : 0; } /* * Remove the mount point from the syncer. */ void vfs_syncer_remove_from_worklist(struct mount *mp) { KASSERT(mutex_owned(&mp->mnt_updating)); KASSERT((mp->mnt_iflag & IMNT_ONWORKLIST) != 0); mp->mnt_iflag &= ~IMNT_ONWORKLIST; } /* * Try lazy sync, return true on success. */ static bool lazy_sync_vnode(struct vnode *vp) { bool synced; KASSERT(mutex_owned(&syncer_data_lock)); synced = false; /* We are locking in the wrong direction. */ if (mutex_tryenter(vp->v_interlock)) { mutex_exit(&syncer_data_lock); if (vcache_tryvget(vp) == 0) { if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { synced = true; (void) VOP_FSYNC(vp, curlwp->l_cred, FSYNC_LAZY, 0, 0); vput(vp); } else vrele(vp); } mutex_enter(&syncer_data_lock); } return synced; } /* * System filesystem synchronizer daemon. */ void sched_sync(void *arg) { mount_iterator_t *iter; synclist_t *slp; struct vnode *vp; struct mount *mp; time_t starttime; bool synced; for (;;) { starttime = time_second; /* * Sync mounts whose dirty time has expired. */ mountlist_iterator_init(&iter); while ((mp = mountlist_iterator_trynext(iter)) != NULL) { if ((mp->mnt_iflag & IMNT_ONWORKLIST) == 0 || mp->mnt_synclist_slot != syncer_delayno) { continue; } mp->mnt_synclist_slot = sync_delay_slot(sync_delay(mp)); VFS_SYNC(mp, MNT_LAZY, curlwp->l_cred); } mountlist_iterator_destroy(iter); mutex_enter(&syncer_data_lock); /* * Push files whose dirty time has expired. */ slp = &syncer_workitem_pending[syncer_delayno]; syncer_delayno += 1; if (syncer_delayno >= syncer_last) syncer_delayno = 0; while ((vp = VIMPL_TO_VNODE(TAILQ_FIRST(slp))) != NULL) { synced = lazy_sync_vnode(vp); /* * XXX The vnode may have been recycled, in which * case it may have a new identity. */ if (VIMPL_TO_VNODE(TAILQ_FIRST(slp)) == vp) { /* * Put us back on the worklist. The worklist * routine will remove us from our current * position and then add us back in at a later * position. * * Try again sooner rather than later if * we were unable to lock the vnode. Lock * failure should not prevent us from doing * the sync "soon". * * If we locked it yet arrive here, it's * likely that lazy sync is in progress and * so the vnode still has dirty metadata. * syncdelay is mainly to get this vnode out * of the way so we do not consider it again * "soon" in this loop, so the delay time is * not critical as long as it is not "soon". * While write-back strategy is the file * system's domain, we expect write-back to * occur no later than syncdelay seconds * into the future. */ vn_syncer_add1(vp, synced ? syncdelay : lockdelay); } } /* * If it has taken us less than a second to process the * current work, then wait. Otherwise start right over * again. We can still lose time if any single round * takes more than two seconds, but it does not really * matter as we are just trying to generally pace the * filesystem activity. */ if (time_second == starttime) { kpause("syncer", false, hz, &syncer_data_lock); } mutex_exit(&syncer_data_lock); } } static void sysctl_vfs_syncfs_setup(struct sysctllog **clog) { const struct sysctlnode *rnode, *cnode; sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sync", SYSCTL_DESCR("syncer options"), NULL, 0, NULL, 0, CTL_VFS, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_QUAD, "delay", SYSCTL_DESCR("max time to delay syncing data"), NULL, 0, &syncdelay, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_QUAD, "filedelay", SYSCTL_DESCR("time to delay syncing files"), NULL, 0, &filedelay, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_QUAD, "dirdelay", SYSCTL_DESCR("time to delay syncing directories"), NULL, 0, &dirdelay, 0, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_QUAD, "metadelay", SYSCTL_DESCR("time to delay syncing metadata"), NULL, 0, &metadelay, 0, CTL_CREATE, CTL_EOL); } /* * sysctl helper routine to return list of supported fstypes */ int sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) { char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; char *where = oldp; struct vfsops *v; size_t needed, left, slen; int error, first; if (newp != NULL) return (EPERM); if (namelen != 0) return (EINVAL); first = 1; error = 0; needed = 0; left = *oldlenp; sysctl_unlock(); mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (where == NULL) needed += strlen(v->vfs_name) + 1; else { memset(bf, 0, sizeof(bf)); if (first) { strncpy(bf, v->vfs_name, sizeof(bf)); first = 0; } else { bf[0] = ' '; strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); } bf[sizeof(bf)-1] = '\0'; slen = strlen(bf); if (left < slen + 1) break; v->vfs_refcount++; mutex_exit(&vfs_list_lock); /* +1 to copy out the trailing NUL byte */ error = copyout(bf, where, slen + 1); mutex_enter(&vfs_list_lock); v->vfs_refcount--; if (error) break; where += slen; needed += slen; left -= slen; } } mutex_exit(&vfs_list_lock); sysctl_relock(); *oldlenp = needed; return (error); } int kinfo_vdebug = 1; int kinfo_vgetfailed; #define KINFO_VNODESLOP 10 /* * Dump vnode list (via sysctl). * Copyout address of vnode followed by vnode. */ int sysctl_kern_vnode(SYSCTLFN_ARGS) { char *where = oldp; size_t *sizep = oldlenp; struct mount *mp; vnode_t *vp, vbuf; mount_iterator_t *iter; struct vnode_iterator *marker; char *bp = where; char *ewhere; int error; if (namelen != 0) return (EOPNOTSUPP); if (newp != NULL) return (EPERM); #define VPTRSZ sizeof(vnode_t *) #define VNODESZ sizeof(vnode_t) if (where == NULL) { *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); return (0); } ewhere = where + *sizep; sysctl_unlock(); mountlist_iterator_init(&iter); while ((mp = mountlist_iterator_next(iter)) != NULL) { vfs_vnode_iterator_init(mp, &marker); while ((vp = vfs_vnode_iterator_next(marker, NULL, NULL))) { if (bp + VPTRSZ + VNODESZ > ewhere) { vrele(vp); vfs_vnode_iterator_destroy(marker); mountlist_iterator_destroy(iter); sysctl_relock(); *sizep = bp - where; return (ENOMEM); } memcpy(&vbuf, vp, VNODESZ); if ((error = copyout(&vp, bp, VPTRSZ)) || (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { vrele(vp); vfs_vnode_iterator_destroy(marker); mountlist_iterator_destroy(iter); sysctl_relock(); return (error); } vrele(vp); bp += VPTRSZ + VNODESZ; } vfs_vnode_iterator_destroy(marker); } mountlist_iterator_destroy(iter); sysctl_relock(); *sizep = bp - where; return (0); } /* * Set vnode attributes to VNOVAL */ void vattr_null(struct vattr *vap) { memset(vap, 0, sizeof(*vap)); vap->va_type = VNON; /* * Assign individually so that it is safe even if size and * sign of each member are varied. */ vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_size = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_atime.tv_sec = vap->va_mtime.tv_sec = vap->va_ctime.tv_sec = vap->va_birthtime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = vap->va_mtime.tv_nsec = vap->va_ctime.tv_nsec = vap->va_birthtime.tv_nsec = VNOVAL; vap->va_gen = VNOVAL; vap->va_flags = VNOVAL; vap->va_rdev = VNOVAL; vap->va_bytes = VNOVAL; } /* * Vnode state to string. */ const char * vstate_name(enum vnode_state state) { switch (state) { case VS_ACTIVE: return "ACTIVE"; case VS_MARKER: return "MARKER"; case VS_LOADING: return "LOADING"; case VS_LOADED: return "LOADED"; case VS_BLOCKED: return "BLOCKED"; case VS_RECLAIMING: return "RECLAIMING"; case VS_RECLAIMED: return "RECLAIMED"; default: return "ILLEGAL"; } } /* * Print a description of a vnode (common part). */ static void vprint_common(struct vnode *vp, const char *prefix, void (*pr)(const char *, ...) __printflike(1, 2)) { int n; char bf[96]; const uint8_t *cp; vnode_impl_t *vip; const char * const vnode_tags[] = { VNODE_TAGS }; const char * const vnode_types[] = { VNODE_TYPES }; const char vnode_flagbits[] = VNODE_FLAGBITS; #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) #define ARRAY_PRINT(idx, arr) \ ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") vip = VNODE_TO_VIMPL(vp); snprintb(bf, sizeof(bf), vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); (*pr)("vnode %p flags %s\n", vp, bf); (*pr)("%stag %s(%d) type %s(%d) mount %p typedata %p\n", prefix, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, vp->v_mount, vp->v_mountedhere); (*pr)("%susecount %d writecount %d holdcount %d\n", prefix, vp->v_usecount, vp->v_writecount, vp->v_holdcnt); (*pr)("%ssize %" PRIx64 " writesize %" PRIx64 " numoutput %d\n", prefix, vp->v_size, vp->v_writesize, vp->v_numoutput); (*pr)("%sdata %p lock %p\n", prefix, vp->v_data, &vip->vi_lock); (*pr)("%sstate %s key(%p %zd)", prefix, vstate_name(vip->vi_state), vip->vi_key.vk_mount, vip->vi_key.vk_key_len); n = vip->vi_key.vk_key_len; cp = vip->vi_key.vk_key; while (n-- > 0) (*pr)(" %02x", *cp++); (*pr)("\n"); (*pr)("%slrulisthd %p\n", prefix, vip->vi_lrulisthd); #undef ARRAY_PRINT #undef ARRAY_SIZE } /* * Print out a description of a vnode. */ void vprint(const char *label, struct vnode *vp) { if (label != NULL) printf("%s: ", label); vprint_common(vp, "\t", printf); if (vp->v_data != NULL) { printf("\t"); VOP_PRINT(vp); } } /* Deprecated. Kept for KPI compatibility. */ int vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, mode_t acc_mode, kauth_cred_t cred) { #ifdef DIAGNOSTIC printf("vaccess: deprecated interface used.\n"); #endif /* DIAGNOSTIC */ return kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(acc_mode, type, file_mode), NULL /* This may panic. */, NULL, genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); } /* * Given a file system name, look up the vfsops for that * file system, or return NULL if file system isn't present * in the kernel. */ struct vfsops * vfs_getopsbyname(const char *name) { struct vfsops *v; mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (strcmp(v->vfs_name, name) == 0) break; } if (v != NULL) v->vfs_refcount++; mutex_exit(&vfs_list_lock); return (v); } void copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) { const struct statvfs *mbp; if (sbp == (mbp = &mp->mnt_stat)) return; (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); sbp->f_fsid = mbp->f_fsid; sbp->f_owner = mbp->f_owner; sbp->f_flag = mbp->f_flag; sbp->f_syncwrites = mbp->f_syncwrites; sbp->f_asyncwrites = mbp->f_asyncwrites; sbp->f_syncreads = mbp->f_syncreads; sbp->f_asyncreads = mbp->f_asyncreads; (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, sizeof(sbp->f_fstypename)); (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, sizeof(sbp->f_mntonname)); (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, sizeof(sbp->f_mntfromname)); sbp->f_namemax = mbp->f_namemax; } int set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, const char *vfsname, struct mount *mp, struct lwp *l) { int error; size_t size; struct statvfs *sfs = &mp->mnt_stat; int (*fun)(const void *, void *, size_t, size_t *); (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, sizeof(mp->mnt_stat.f_fstypename)); if (onp) { struct cwdinfo *cwdi = l->l_proc->p_cwdi; fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; if (cwdi->cwdi_rdir != NULL) { size_t len; char *bp; char *path = PNBUF_GET(); bp = path + MAXPATHLEN; *--bp = '\0'; rw_enter(&cwdi->cwdi_lock, RW_READER); error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, path, MAXPATHLEN / 2, 0, l); rw_exit(&cwdi->cwdi_lock); if (error) { PNBUF_PUT(path); return error; } len = strlen(bp); if (len > sizeof(sfs->f_mntonname) - 1) len = sizeof(sfs->f_mntonname) - 1; (void)strncpy(sfs->f_mntonname, bp, len); PNBUF_PUT(path); if (len < sizeof(sfs->f_mntonname) - 1) { error = (*fun)(onp, &sfs->f_mntonname[len], sizeof(sfs->f_mntonname) - len - 1, &size); if (error) return error; size += len; } else { size = len; } } else { error = (*fun)(onp, &sfs->f_mntonname, sizeof(sfs->f_mntonname) - 1, &size); if (error) return error; } (void)memset(sfs->f_mntonname + size, 0, sizeof(sfs->f_mntonname) - size); } if (fromp) { fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; error = (*fun)(fromp, sfs->f_mntfromname, sizeof(sfs->f_mntfromname) - 1, &size); if (error) return error; (void)memset(sfs->f_mntfromname + size, 0, sizeof(sfs->f_mntfromname) - size); } return 0; } void vfs_timestamp(struct timespec *ts) { nanotime(ts); } time_t rootfstime; /* recorded root fs time, if known */ void setrootfstime(time_t t) { rootfstime = t; } static const uint8_t vttodt_tab[ ] = { [VNON] = DT_UNKNOWN, [VREG] = DT_REG, [VDIR] = DT_DIR, [VBLK] = DT_BLK, [VCHR] = DT_CHR, [VLNK] = DT_LNK, [VSOCK] = DT_SOCK, [VFIFO] = DT_FIFO, [VBAD] = DT_UNKNOWN }; uint8_t vtype2dt(enum vtype vt) { CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); return vttodt_tab[vt]; } int VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_START(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_start))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_UNMOUNT(struct mount *mp, int a) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_unmount))(mp, a); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_ROOT(struct mount *mp, struct vnode **a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_root))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_quotactl))(mp, args); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_STATVFS(struct mount *mp, struct statvfs *a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_statvfs))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_sync))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) { int error; if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) { int error; KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); KERNEL_UNLOCK_ONE(NULL); /* XXX */ return error; } int VFS_SUSPENDCTL(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } #if defined(DDB) || defined(DEBUGPRINT) static const char buf_flagbits[] = BUF_FLAGBITS; void vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) { char bf[1024]; (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" PRIx64 " dev 0x%x\n", bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); snprintb(bf, sizeof(bf), buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); (*pr)(" error %d flags %s\n", bp->b_error, bf); (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", bp->b_bufsize, bp->b_bcount, bp->b_resid); (*pr)(" data %p saveaddr %p\n", bp->b_data, bp->b_saveaddr); (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); } void vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) { uvm_object_printit(&vp->v_uobj, full, pr); (*pr)("\n"); vprint_common(vp, "", printf); if (full) { struct buf *bp; (*pr)("clean bufs:\n"); LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } (*pr)("dirty bufs:\n"); LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } } } void vfs_vnode_lock_print(void *vlock, int full, void (*pr)(const char *, ...)) { struct mount *mp; vnode_impl_t *vip; for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { if (&vip->vi_lock != vlock) continue; vfs_vnode_print(VIMPL_TO_VNODE(vip), full, pr); } } } void vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) { char sbuf[256]; (*pr)("vnodecovered = %p data = %p\n", mp->mnt_vnodecovered,mp->mnt_data); (*pr)("fs_bshift %d dev_bshift = %d\n", mp->mnt_fs_bshift,mp->mnt_dev_bshift); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); (*pr)("flag = %s\n", sbuf); snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); (*pr)("iflag = %s\n", sbuf); (*pr)("refcnt = %d updating @ %p\n", mp->mnt_refcnt, &mp->mnt_updating); (*pr)("statvfs cache:\n"); (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", mp->mnt_stat.f_fsidx.__fsid_val[0], mp->mnt_stat.f_fsidx.__fsid_val[1]); (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); (*pr)("\tflag = %s\n",sbuf); (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); { int cnt = 0; vnode_t *vp; vnode_impl_t *vip; (*pr)("locked vnodes ="); TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { vp = VIMPL_TO_VNODE(vip); if (VOP_ISLOCKED(vp)) { if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } } (*pr)("\n"); } if (full) { int cnt = 0; vnode_t *vp; vnode_impl_t *vip; (*pr)("all vnodes ="); TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { vp = VIMPL_TO_VNODE(vip); if (!TAILQ_NEXT(vip, vi_mntvnodes)) { (*pr)(" %p", vp); } else if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } (*pr)("\n"); } } /* * List all of the locked vnodes in the system. */ void printlockedvnodes(void); void printlockedvnodes(void) { struct mount *mp; vnode_t *vp; vnode_impl_t *vip; printf("Locked vnodes\n"); for (mp = _mountlist_next(NULL); mp; mp = _mountlist_next(mp)) { TAILQ_FOREACH(vip, &mp->mnt_vnodelist, vi_mntvnodes) { vp = VIMPL_TO_VNODE(vip); if (VOP_ISLOCKED(vp)) vprint(NULL, vp); } } } #endif /* DDB || DEBUGPRINT */