/* $NetBSD: ip_mroute.c,v 1.85 2004/04/26 01:31:57 matt Exp $ */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 */ /* * Copyright (c) 1989 Stephen Deering * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 */ /* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1994 * Modified by Charles M. Hannum, NetBSD, May 1995. * * MROUTING Revision: 1.2 */ #include __KERNEL_RCSID(0, "$NetBSD: ip_mroute.c,v 1.85 2004/04/26 01:31:57 matt Exp $"); #include "opt_inet.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #endif #ifdef FAST_IPSEC #include #include #endif #include #define IP_MULTICASTOPTS 0 #define M_PULLUP(m, len) \ do { \ if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \ (m) = m_pullup((m), (len)); \ } while (/*CONSTCOND*/ 0) /* * Globals. All but ip_mrouter and ip_mrtproto could be static, * except for netstat or debugging purposes. */ struct socket *ip_mrouter = 0; int ip_mrtproto = IGMP_DVMRP; /* for netstat only */ #define NO_RTE_FOUND 0x1 #define RTE_FOUND 0x2 #define MFCHASH(a, g) \ ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash) LIST_HEAD(mfchashhdr, mfc) *mfchashtbl; u_long mfchash; u_char nexpire[MFCTBLSIZ]; struct vif viftable[MAXVIFS]; struct mrtstat mrtstat; u_int mrtdebug = 0; /* debug level */ #define DEBUG_MFC 0x02 #define DEBUG_FORWARD 0x04 #define DEBUG_EXPIRE 0x08 #define DEBUG_XMIT 0x10 u_int tbfdebug = 0; /* tbf debug level */ #ifdef RSVP_ISI u_int rsvpdebug = 0; /* rsvp debug level */ extern struct socket *ip_rsvpd; extern int rsvp_on; #endif /* RSVP_ISI */ /* vif attachment using sys/netinet/ip_encap.c */ static void vif_input __P((struct mbuf *, ...)); static int vif_encapcheck __P((const struct mbuf *, int, int, void *)); static const struct protosw vif_protosw = { SOCK_RAW, &inetdomain, IPPROTO_IPV4, PR_ATOMIC|PR_ADDR, vif_input, rip_output, 0, rip_ctloutput, rip_usrreq, 0, 0, 0, 0, }; #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ /* * Define the token bucket filter structures */ #define TBF_REPROCESS (hz / 100) /* 100x / second */ static int get_sg_cnt __P((struct sioc_sg_req *)); static int get_vif_cnt __P((struct sioc_vif_req *)); static int ip_mrouter_init __P((struct socket *, struct mbuf *)); static int get_version __P((struct mbuf *)); static int set_assert __P((struct mbuf *)); static int get_assert __P((struct mbuf *)); static int add_vif __P((struct mbuf *)); static int del_vif __P((struct mbuf *)); static void update_mfc __P((struct mfcctl *, struct mfc *)); static void expire_mfc __P((struct mfc *)); static int add_mfc __P((struct mbuf *)); #ifdef UPCALL_TIMING static void collate __P((struct timeval *)); #endif static int del_mfc __P((struct mbuf *)); static int socket_send __P((struct socket *, struct mbuf *, struct sockaddr_in *)); static void expire_upcalls __P((void *)); #ifdef RSVP_ISI static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *, vifi_t)); #else static int ip_mdq __P((struct mbuf *, struct ifnet *, struct mfc *)); #endif static void phyint_send __P((struct ip *, struct vif *, struct mbuf *)); static void encap_send __P((struct ip *, struct vif *, struct mbuf *)); static void tbf_control __P((struct vif *, struct mbuf *, struct ip *, u_int32_t)); static void tbf_queue __P((struct vif *, struct mbuf *)); static void tbf_process_q __P((struct vif *)); static void tbf_reprocess_q __P((void *)); static int tbf_dq_sel __P((struct vif *, struct ip *)); static void tbf_send_packet __P((struct vif *, struct mbuf *)); static void tbf_update_tokens __P((struct vif *)); static int priority __P((struct vif *, struct ip *)); /* * 'Interfaces' associated with decapsulator (so we can tell * packets that went through it from ones that get reflected * by a broken gateway). These interfaces are never linked into * the system ifnet list & no routes point to them. I.e., packets * can't be sent this way. They only exist as a placeholder for * multicast source verification. */ #if 0 struct ifnet multicast_decap_if[MAXVIFS]; #endif #define ENCAP_TTL 64 #define ENCAP_PROTO IPPROTO_IPIP /* 4 */ /* prototype IP hdr for encapsulated packets */ struct ip multicast_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ ENCAP_TTL, ENCAP_PROTO, 0, /* checksum */ }; /* * Private variables. */ static vifi_t numvifs = 0; static struct callout expire_upcalls_ch; /* * one-back cache used by vif_encapcheck to locate a tunnel's vif * given a datagram's src ip address. */ static struct in_addr last_encap_src; static struct vif *last_encap_vif; /* * whether or not special PIM assert processing is enabled. */ static int pim_assert; /* * Rate limit for assert notification messages, in usec */ #define ASSERT_MSG_TIME 3000000 /* * Find a route for a given origin IP address and Multicast group address * Type of service parameter to be added in the future!!! */ #define MFCFIND(o, g, rt) do { \ struct mfc *_rt; \ (rt) = 0; \ ++mrtstat.mrts_mfc_lookups; \ LIST_FOREACH(_rt, &mfchashtbl[MFCHASH(o, g)], mfc_hash) { \ if (in_hosteq(_rt->mfc_origin, (o)) && \ in_hosteq(_rt->mfc_mcastgrp, (g)) && \ _rt->mfc_stall == 0) { \ (rt) = _rt; \ break; \ } \ } \ if ((rt) == 0) \ ++mrtstat.mrts_mfc_misses; \ } while (/*CONSTCOND*/ 0) /* * Macros to compute elapsed time efficiently * Borrowed from Van Jacobson's scheduling code */ #define TV_DELTA(a, b, delta) do { \ int xxs; \ delta = (a).tv_usec - (b).tv_usec; \ xxs = (a).tv_sec - (b).tv_sec; \ switch (xxs) { \ case 2: \ delta += 1000000; \ /* fall through */ \ case 1: \ delta += 1000000; \ /* fall through */ \ case 0: \ break; \ default: \ delta += (1000000 * xxs); \ break; \ } \ } while (/*CONSTCOND*/ 0) #ifdef UPCALL_TIMING u_int32_t upcall_data[51]; #endif /* UPCALL_TIMING */ /* * Handle MRT setsockopt commands to modify the multicast routing tables. */ int ip_mrouter_set(so, optname, m) struct socket *so; int optname; struct mbuf **m; { int error; if (optname != MRT_INIT && so != ip_mrouter) error = ENOPROTOOPT; else switch (optname) { case MRT_INIT: error = ip_mrouter_init(so, *m); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = add_vif(*m); break; case MRT_DEL_VIF: error = del_vif(*m); break; case MRT_ADD_MFC: error = add_mfc(*m); break; case MRT_DEL_MFC: error = del_mfc(*m); break; case MRT_ASSERT: error = set_assert(*m); break; default: error = ENOPROTOOPT; break; } if (*m) m_free(*m); return (error); } /* * Handle MRT getsockopt commands */ int ip_mrouter_get(so, optname, m) struct socket *so; int optname; struct mbuf **m; { int error; if (so != ip_mrouter) error = ENOPROTOOPT; else { *m = m_get(M_WAIT, MT_SOOPTS); MCLAIM(*m, so->so_mowner); switch (optname) { case MRT_VERSION: error = get_version(*m); break; case MRT_ASSERT: error = get_assert(*m); break; default: error = ENOPROTOOPT; break; } if (error) m_free(*m); } return (error); } /* * Handle ioctl commands to obtain information from the cache */ int mrt_ioctl(so, cmd, data) struct socket *so; u_long cmd; caddr_t data; { int error; if (so != ip_mrouter) error = EINVAL; else switch (cmd) { case SIOCGETVIFCNT: error = get_vif_cnt((struct sioc_vif_req *)data); break; case SIOCGETSGCNT: error = get_sg_cnt((struct sioc_sg_req *)data); break; default: error = EINVAL; break; } return (error); } /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(req) struct sioc_sg_req *req; { struct mfc *rt; int s; s = splsoftnet(); MFCFIND(req->src, req->grp, rt); splx(s); if (rt != 0) { req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; } else req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return (0); } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(req) struct sioc_vif_req *req; { vifi_t vifi = req->vifi; if (vifi >= numvifs) return (EINVAL); req->icount = viftable[vifi].v_pkt_in; req->ocount = viftable[vifi].v_pkt_out; req->ibytes = viftable[vifi].v_bytes_in; req->obytes = viftable[vifi].v_bytes_out; return (0); } /* * Enable multicast routing */ static int ip_mrouter_init(so, m) struct socket *so; struct mbuf *m; { int *v; if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_IGMP) return (EOPNOTSUPP); if (m == 0 || m->m_len < sizeof(int)) return (EINVAL); v = mtod(m, int *); if (*v != 1) return (EINVAL); if (ip_mrouter != 0) return (EADDRINUSE); ip_mrouter = so; mfchashtbl = hashinit(MFCTBLSIZ, HASH_LIST, M_MRTABLE, M_WAITOK, &mfchash); bzero((caddr_t)nexpire, sizeof(nexpire)); pim_assert = 0; callout_init(&expire_upcalls_ch); callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_init\n"); return (0); } /* * Disable multicast routing */ int ip_mrouter_done() { vifi_t vifi; struct vif *vifp; int i; int s; s = splsoftnet(); /* Clear out all the vifs currently in use. */ for (vifi = 0; vifi < numvifs; vifi++) { vifp = &viftable[vifi]; if (!in_nullhost(vifp->v_lcl_addr)) reset_vif(vifp); } numvifs = 0; pim_assert = 0; callout_stop(&expire_upcalls_ch); /* * Free all multicast forwarding cache entries. */ for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { nrt = LIST_NEXT(rt, mfc_hash); expire_mfc(rt); } } free(mfchashtbl, M_MRTABLE); mfchashtbl = 0; /* Reset de-encapsulation cache. */ ip_mrouter = 0; splx(s); if (mrtdebug) log(LOG_DEBUG, "ip_mrouter_done\n"); return (0); } void ip_mrouter_detach(ifp) struct ifnet *ifp; { int vifi, i; struct vif *vifp; struct mfc *rt; struct rtdetq *rte; /* XXX not sure about sideeffect to userland routing daemon */ for (vifi = 0; vifi < numvifs; vifi++) { vifp = &viftable[vifi]; if (vifp->v_ifp == ifp) reset_vif(vifp); } for (i = 0; i < MFCTBLSIZ; i++) { if (nexpire[i] == 0) continue; LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) { for (rte = rt->mfc_stall; rte; rte = rte->next) { if (rte->ifp == ifp) rte->ifp = NULL; } } } } static int get_version(m) struct mbuf *m; { int *v = mtod(m, int *); *v = 0x0305; /* XXX !!!! */ m->m_len = sizeof(int); return (0); } /* * Set PIM assert processing global */ static int set_assert(m) struct mbuf *m; { int *i; if (m == 0 || m->m_len < sizeof(int)) return (EINVAL); i = mtod(m, int *); pim_assert = !!*i; return (0); } /* * Get PIM assert processing global */ static int get_assert(m) struct mbuf *m; { int *i = mtod(m, int *); *i = pim_assert; m->m_len = sizeof(int); return (0); } static struct sockaddr_in sin = { sizeof(sin), AF_INET }; /* * Add a vif to the vif table */ static int add_vif(m) struct mbuf *m; { struct vifctl *vifcp; struct vif *vifp; struct ifaddr *ifa; struct ifnet *ifp; struct ifreq ifr; int error, s; if (m == 0 || m->m_len < sizeof(struct vifctl)) return (EINVAL); vifcp = mtod(m, struct vifctl *); if (vifcp->vifc_vifi >= MAXVIFS) return (EINVAL); vifp = &viftable[vifcp->vifc_vifi]; if (!in_nullhost(vifp->v_lcl_addr)) return (EADDRINUSE); /* Find the interface with an address in AF_INET family. */ sin.sin_addr = vifcp->vifc_lcl_addr; ifa = ifa_ifwithaddr(sintosa(&sin)); if (ifa == 0) return (EADDRNOTAVAIL); if (vifcp->vifc_flags & VIFF_TUNNEL) { if (vifcp->vifc_flags & VIFF_SRCRT) { log(LOG_ERR, "Source routed tunnels not supported\n"); return (EOPNOTSUPP); } /* attach this vif to decapsulator dispatch table */ vifp->v_encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV4, vif_encapcheck, &vif_protosw, vifp); if (!vifp->v_encap_cookie) return (EINVAL); /* Create a fake encapsulation interface. */ ifp = (struct ifnet *)malloc(sizeof(*ifp), M_MRTABLE, M_WAITOK); bzero(ifp, sizeof(*ifp)); snprintf(ifp->if_xname, sizeof(ifp->if_xname), "mdecap%d", vifcp->vifc_vifi); /* Prepare cached route entry. */ bzero(&vifp->v_route, sizeof(vifp->v_route)); } else { /* Use the physical interface associated with the address. */ ifp = ifa->ifa_ifp; /* Make sure the interface supports multicast. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Enable promiscuous reception of all IP multicasts. */ satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr); if (error) return (error); } s = splsoftnet(); /* Define parameters for the tbf structure. */ vifp->tbf_q = 0; vifp->tbf_t = &vifp->tbf_q; microtime(&vifp->tbf_last_pkt_t); vifp->tbf_n_tok = 0; vifp->tbf_q_len = 0; vifp->tbf_max_q_len = MAXQSIZE; vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; /* scaling up here allows division by 1024 in critical code */ vifp->v_rate_limit = vifcp->vifc_rate_limit * 1024 / 1000; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; /* Initialize per vif pkt counters. */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; callout_init(&vifp->v_repq_ch); #ifdef RSVP_ISI vifp->v_rsvp_on = 0; vifp->v_rsvpd = 0; #endif /* RSVP_ISI */ splx(s); /* Adjust numvifs up if the vifi is higher than numvifs. */ if (numvifs <= vifcp->vifc_vifi) numvifs = vifcp->vifc_vifi + 1; if (mrtdebug) log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, thresh %x, rate %d\n", vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask", ntohl(vifcp->vifc_rmt_addr.s_addr), vifcp->vifc_threshold, vifcp->vifc_rate_limit); return (0); } void reset_vif(vifp) struct vif *vifp; { struct mbuf *m, *n; struct ifnet *ifp; struct ifreq ifr; callout_stop(&vifp->v_repq_ch); /* detach this vif from decapsulator dispatch table */ encap_detach(vifp->v_encap_cookie); vifp->v_encap_cookie = NULL; for (m = vifp->tbf_q; m != 0; m = n) { n = m->m_nextpkt; m_freem(m); } if (vifp->v_flags & VIFF_TUNNEL) { free(vifp->v_ifp, M_MRTABLE); if (vifp == last_encap_vif) { last_encap_vif = 0; last_encap_src = zeroin_addr; } } else { satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in); satosin(&ifr.ifr_addr)->sin_family = AF_INET; satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr; ifp = vifp->v_ifp; (*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr); } bzero((caddr_t)vifp, sizeof(*vifp)); } /* * Delete a vif from the vif table */ static int del_vif(m) struct mbuf *m; { vifi_t *vifip; struct vif *vifp; vifi_t vifi; int s; if (m == 0 || m->m_len < sizeof(vifi_t)) return (EINVAL); vifip = mtod(m, vifi_t *); if (*vifip >= numvifs) return (EINVAL); vifp = &viftable[*vifip]; if (in_nullhost(vifp->v_lcl_addr)) return (EADDRNOTAVAIL); s = splsoftnet(); reset_vif(vifp); /* Adjust numvifs down */ for (vifi = numvifs; vifi > 0; vifi--) if (!in_nullhost(viftable[vifi-1].v_lcl_addr)) break; numvifs = vifi; splx(s); if (mrtdebug) log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs); return (0); } static void update_mfc(mfccp, rt) struct mfcctl *mfccp; struct mfc *rt; { vifi_t vifi; rt->mfc_parent = mfccp->mfcc_parent; for (vifi = 0; vifi < numvifs; vifi++) rt->mfc_ttls[vifi] = mfccp->mfcc_ttls[vifi]; rt->mfc_expire = 0; rt->mfc_stall = 0; } static void expire_mfc(rt) struct mfc *rt; { struct rtdetq *rte, *nrte; for (rte = rt->mfc_stall; rte != 0; rte = nrte) { nrte = rte->next; m_freem(rte->m); free(rte, M_MRTABLE); } LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); } /* * Add an mfc entry */ static int add_mfc(m) struct mbuf *m; { struct mfcctl *mfccp; struct mfc *rt; u_int32_t hash = 0; struct rtdetq *rte, *nrte; u_short nstl; int s; if (m == 0 || m->m_len < sizeof(struct mfcctl)) return (EINVAL); mfccp = mtod(m, struct mfcctl *); s = splsoftnet(); MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt); /* If an entry already exists, just update the fields */ if (rt) { if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); if (rt->mfc_expire) nexpire[hash]--; update_mfc(mfccp, rt); splx(s); return (0); } /* * Find the entry for which the upcall was made and update */ nstl = 0; hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && rt->mfc_stall != 0) { if (nstl++) log(LOG_ERR, "add_mfc %s o %x g %x p %x dbx %p\n", "multiple kernel entries", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc o %x g %x p %x dbg %p\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall); if (rt->mfc_expire) nexpire[hash]--; rte = rt->mfc_stall; update_mfc(mfccp, rt); /* free packets Qed at the end of this entry */ for (; rte != 0; rte = nrte) { nrte = rte->next; if (rte->ifp) { #ifdef RSVP_ISI ip_mdq(rte->m, rte->ifp, rt, -1); #else ip_mdq(rte->m, rte->ifp, rt); #endif /* RSVP_ISI */ } m_freem(rte->m); #ifdef UPCALL_TIMING collate(&rte->t); #endif /* UPCALL_TIMING */ free(rte, M_MRTABLE); } } } if (nstl == 0) { /* * No mfc; make a new one */ if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == 0) { splx(s); return (ENOBUFS); } rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; timerclear(&rt->mfc_last_assert); update_mfc(mfccp, rt); /* insert new entry at head of hash chain */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); } splx(s); return (0); } #ifdef UPCALL_TIMING /* * collect delay statistics on the upcalls */ static void collate(t) struct timeval *t; { u_int32_t d; struct timeval tp; u_int32_t delta; microtime(&tp); if (timercmp(t, &tp, <)) { TV_DELTA(tp, *t, delta); d = delta >> 10; if (d > 50) d = 50; ++upcall_data[d]; } } #endif /* UPCALL_TIMING */ /* * Delete an mfc entry */ static int del_mfc(m) struct mbuf *m; { struct mfcctl *mfccp; struct mfc *rt; int s; if (m == 0 || m->m_len < sizeof(struct mfcctl)) return (EINVAL); mfccp = mtod(m, struct mfcctl *); if (mrtdebug & DEBUG_MFC) log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n", ntohl(mfccp->mfcc_origin.s_addr), ntohl(mfccp->mfcc_mcastgrp.s_addr)); s = splsoftnet(); MFCFIND(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp, rt); if (rt == 0) { splx(s); return (EADDRNOTAVAIL); } LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); splx(s); return (0); } static int socket_send(s, mm, src) struct socket *s; struct mbuf *mm; struct sockaddr_in *src; { if (s) { if (sbappendaddr(&s->so_rcv, sintosa(src), mm, (struct mbuf *)0) != 0) { sorwakeup(s); return (0); } } m_freem(mm); return (-1); } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define IP_HDR_LEN 20 /* # bytes of fixed IP header (excluding options) */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ int #ifdef RSVP_ISI ip_mforward(m, ifp, imo) #else ip_mforward(m, ifp) #endif /* RSVP_ISI */ struct mbuf *m; struct ifnet *ifp; #ifdef RSVP_ISI struct ip_moptions *imo; #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); struct mfc *rt; static int srctun = 0; struct mbuf *mm; int s; #ifdef RSVP_ISI struct vif *vifp; vifi_t vifi; #endif /* RSVP_ISI */ /* * Clear any in-bound checksum flags for this packet. */ m->m_pkthdr.csum_flags = 0; if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp); if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 || ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { /* * Packet arrived via a physical interface or * an encapuslated tunnel. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ if ((srctun++ % 1000) == 0) log(LOG_ERR, "ip_mforward: received source-routed packet from %x\n", ntohl(ip->ip_src.s_addr)); return (1); } #ifdef RSVP_ISI if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) { if (ip->ip_ttl < 255) ip->ip_ttl++; /* compensate for -1 in *_send routines */ if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { vifp = viftable + vifi; printf("Sending IPPROTO_RSVP from %x to %x on vif %d (%s%s)\n", ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi, (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "", vifp->v_ifp->if_xname); } return (ip_mdq(m, ifp, (struct mfc *)0, vifi)); } if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) { printf("Warning: IPPROTO_RSVP from %x to %x without vif option\n", ntohl(ip->ip_src), ntohl(ip->ip_dst)); } #endif /* RSVP_ISI */ /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr)) return (0); /* * Determine forwarding vifs from the forwarding cache table */ s = splsoftnet(); MFCFIND(ip->ip_src, ip->ip_dst, rt); /* Entry exists, so forward if necessary */ if (rt != 0) { splx(s); #ifdef RSVP_ISI return (ip_mdq(m, ifp, rt, -1)); #else return (ip_mdq(m, ifp, rt)); #endif /* RSVP_ISI */ } else { /* * If we don't have a route for packet's origin, * Make a copy of the packet & * send message to routing daemon */ struct mbuf *mb0; struct rtdetq *rte; u_int32_t hash; int hlen = ip->ip_hl << 2; #ifdef UPCALL_TIMING struct timeval tp; microtime(&tp); #endif /* UPCALL_TIMING */ mrtstat.mrts_no_route++; if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC)) log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n", ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. Make sure to pullup the header so * that other people can't step on it. */ rte = (struct rtdetq *)malloc(sizeof(*rte), M_MRTABLE, M_NOWAIT); if (rte == 0) { splx(s); return (ENOBUFS); } mb0 = m_copy(m, 0, M_COPYALL); M_PULLUP(mb0, hlen); if (mb0 == 0) { free(rte, M_MRTABLE); splx(s); return (ENOBUFS); } /* is there an upcall waiting for this packet? */ hash = MFCHASH(ip->ip_src, ip->ip_dst); LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) { if (in_hosteq(ip->ip_src, rt->mfc_origin) && in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && rt->mfc_stall != 0) break; } if (rt == 0) { int i; struct igmpmsg *im; /* no upcall, so make a new entry */ rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT); if (rt == 0) { free(rte, M_MRTABLE); m_freem(mb0); splx(s); return (ENOBUFS); } /* * Make a copy of the header to send to the user level * process */ mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == 0) { free(rte, M_MRTABLE); m_freem(mb0); free(rt, M_MRTABLE); splx(s); return (ENOBUFS); } /* * Send message to routing daemon to install * a route into the kernel table */ sin.sin_addr = ip->ip_src; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; mrtstat.mrts_upcalls++; if (socket_send(ip_mrouter, mm, &sin) < 0) { log(LOG_WARNING, "ip_mforward: ip_mrouter socket queue full\n"); ++mrtstat.mrts_upq_sockfull; free(rte, M_MRTABLE); m_freem(mb0); free(rt, M_MRTABLE); splx(s); return (ENOBUFS); } /* insert new entry at head of hash chain */ rt->mfc_origin = ip->ip_src; rt->mfc_mcastgrp = ip->ip_dst; rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; rt->mfc_expire = UPCALL_EXPIRE; nexpire[hash]++; for (i = 0; i < numvifs; i++) rt->mfc_ttls[i] = 0; rt->mfc_parent = -1; /* link into table */ LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash); /* Add this entry to the end of the queue */ rt->mfc_stall = rte; } else { /* determine if q has overflowed */ struct rtdetq **p; int npkts = 0; for (p = &rt->mfc_stall; *p != 0; p = &(*p)->next) if (++npkts > MAX_UPQ) { mrtstat.mrts_upq_ovflw++; free(rte, M_MRTABLE); m_freem(mb0); splx(s); return (0); } /* Add this entry to the end of the queue */ *p = rte; } rte->next = 0; rte->m = mb0; rte->ifp = ifp; #ifdef UPCALL_TIMING rte->t = tp; #endif /* UPCALL_TIMING */ splx(s); return (0); } } /*ARGSUSED*/ static void expire_upcalls(v) void *v; { int i; int s; s = splsoftnet(); for (i = 0; i < MFCTBLSIZ; i++) { struct mfc *rt, *nrt; if (nexpire[i] == 0) continue; for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) { nrt = LIST_NEXT(rt, mfc_hash); if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) continue; nexpire[i]--; ++mrtstat.mrts_cache_cleanups; if (mrtdebug & DEBUG_EXPIRE) log(LOG_DEBUG, "expire_upcalls: expiring (%x %x)\n", ntohl(rt->mfc_origin.s_addr), ntohl(rt->mfc_mcastgrp.s_addr)); expire_mfc(rt); } } splx(s); callout_reset(&expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, NULL); } /* * Packet forwarding routine once entry in the cache is made */ static int #ifdef RSVP_ISI ip_mdq(m, ifp, rt, xmt_vif) #else ip_mdq(m, ifp, rt) #endif /* RSVP_ISI */ struct mbuf *m; struct ifnet *ifp; struct mfc *rt; #ifdef RSVP_ISI vifi_t xmt_vif; #endif /* RSVP_ISI */ { struct ip *ip = mtod(m, struct ip *); vifi_t vifi; struct vif *vifp; int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2); /* * Macro to send packet on vif. Since RSVP packets don't get counted on * input, they shouldn't get counted on output, so statistics keeping is * separate. */ #define MC_SEND(ip, vifp, m) do { \ if ((vifp)->v_flags & VIFF_TUNNEL) \ encap_send((ip), (vifp), (m)); \ else \ phyint_send((ip), (vifp), (m)); \ } while (/*CONSTCOND*/ 0) #ifdef RSVP_ISI /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs. */ if (xmt_vif < numvifs) { MC_SEND(ip, viftable + xmt_vif, m); return (1); } #endif /* RSVP_ISI */ /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) { /* came in the wrong interface */ if (mrtdebug & DEBUG_FORWARD) log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n", ifp, vifi, vifi >= numvifs ? 0 : viftable[vifi].v_ifp); ++mrtstat.mrts_wrong_if; ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, and we are forwarding * packets on this interface, and it is a broadcast medium * interface (and not a tunnel), send a message to the routing * daemon. */ if (pim_assert && rt->mfc_ttls[vifi] && (ifp->if_flags & IFF_BROADCAST) && !(viftable[vifi].v_flags & VIFF_TUNNEL)) { struct mbuf *mm; struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct timeval now; u_int32_t delta; microtime(&now); TV_DELTA(rt->mfc_last_assert, now, delta); if (delta > ASSERT_MSG_TIME) { mm = m_copy(m, 0, hlen); M_PULLUP(mm, hlen); if (mm == 0) { return (ENOBUFS); } rt->mfc_last_assert = now; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; sin.sin_addr = im->im_src; socket_send(ip_mrouter, mm, &sin); } } return (0); } /* If I sourced this packet, it counts as output, else it was input. */ if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) { viftable[vifi].v_pkt_out++; viftable[vifi].v_bytes_out += plen; } else { viftable[vifi].v_pkt_in++; viftable[vifi].v_bytes_in += plen; } rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { vifp->v_pkt_out++; vifp->v_bytes_out += plen; MC_SEND(ip, vifp, m); } return (0); } #ifdef RSVP_ISI /* * check if a vif number is legal/ok. This is used by ip_output, to export * numvifs there, */ int legal_vif_num(vif) int vif; { if (vif >= 0 && vif < numvifs) return (1); else return (0); } #endif /* RSVP_ISI */ static void phyint_send(ip, vifp, m) struct ip *ip; struct vif *vifp; struct mbuf *m; { struct mbuf *mb_copy; int hlen = ip->ip_hl << 2; /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copy(m, 0, M_COPYALL); M_PULLUP(mb_copy, hlen); if (mb_copy == 0) return; if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, mtod(mb_copy, struct ip *), ntohs(ip->ip_len)); } static void encap_send(ip, vifp, m) struct ip *ip; struct vif *vifp; struct mbuf *m; { struct mbuf *mb_copy; struct ip *ip_copy; int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr); /* * copy the old packet & pullup it's IP header into the * new mbuf so we can modify it. Try to fill the new * mbuf since if we don't the ethernet driver will. */ MGETHDR(mb_copy, M_DONTWAIT, MT_DATA); if (mb_copy == 0) return; mb_copy->m_data += max_linkhdr; mb_copy->m_pkthdr.len = len; mb_copy->m_len = sizeof(multicast_encap_iphdr); if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == 0) { m_freem(mb_copy); return; } i = MHLEN - max_linkhdr; if (i > len) i = len; mb_copy = m_pullup(mb_copy, i); if (mb_copy == 0) return; /* * fill in the encapsulating IP header. */ ip_copy = mtod(mb_copy, struct ip *); *ip_copy = multicast_encap_iphdr; ip_copy->ip_id = ip_newid(); ip_copy->ip_len = htons(len); ip_copy->ip_src = vifp->v_lcl_addr; ip_copy->ip_dst = vifp->v_rmt_addr; /* * turn the encapsulated IP header back into a valid one. */ ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr)); --ip->ip_ttl; ip->ip_sum = 0; mb_copy->m_data += sizeof(multicast_encap_iphdr); ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); mb_copy->m_data -= sizeof(multicast_encap_iphdr); if (vifp->v_rate_limit <= 0) tbf_send_packet(vifp, mb_copy); else tbf_control(vifp, mb_copy, ip, ntohs(ip_copy->ip_len)); } /* * De-encapsulate a packet and feed it back through ip input. */ static void vif_input(struct mbuf *m, ...) { int off, proto; va_list ap; struct vif *vifp; int s; struct ifqueue *ifq; va_start(ap, m); off = va_arg(ap, int); proto = va_arg(ap, int); va_end(ap); vifp = (struct vif *)encap_getarg(m); if (!vifp || proto != AF_INET) { m_freem(m); mrtstat.mrts_bad_tunnel++; return; } m_adj(m, off); m->m_pkthdr.rcvif = vifp->v_ifp; ifq = &ipintrq; s = splnet(); if (IF_QFULL(ifq)) { IF_DROP(ifq); m_freem(m); } else { IF_ENQUEUE(ifq, m); /* * normally we would need a "schednetisr(NETISR_IP)" * here but we were called by ip_input and it is going * to loop back & try to dequeue the packet we just * queued as soon as we return so we avoid the * unnecessary software interrrupt. */ } splx(s); } /* * Check if the packet should be grabbed by us. */ static int vif_encapcheck(m, off, proto, arg) const struct mbuf *m; int off; int proto; void *arg; { struct vif *vifp; struct ip ip; #ifdef DIAGNOSTIC if (!arg || proto != IPPROTO_IPV4) panic("unexpected arg in vif_encapcheck"); #endif /* * do not grab the packet if it's not to a multicast destination or if * we don't have an encapsulating tunnel with the source. * Note: This code assumes that the remote site IP address * uniquely identifies the tunnel (i.e., that this site has * at most one tunnel with the remote site). */ /* LINTED const cast */ m_copydata((struct mbuf *)m, off, sizeof(ip), (caddr_t)&ip); if (!IN_MULTICAST(ip.ip_dst.s_addr)) return 0; /* LINTED const cast */ m_copydata((struct mbuf *)m, 0, sizeof(ip), (caddr_t)&ip); if (!in_hosteq(ip.ip_src, last_encap_src)) { vifp = (struct vif *)arg; if (vifp->v_flags & VIFF_TUNNEL && in_hosteq(vifp->v_rmt_addr, ip.ip_src)) ; else return 0; last_encap_vif = vifp; last_encap_src = ip.ip_src; } else vifp = last_encap_vif; /* 32bit match, since we have checked ip_src only */ return 32; } /* * Token bucket filter module */ static void tbf_control(vifp, m, ip, len) struct vif *vifp; struct mbuf *m; struct ip *ip; u_int32_t len; { if (len > MAX_BKT_SIZE) { /* drop if packet is too large */ mrtstat.mrts_pkt2large++; m_freem(m); return; } tbf_update_tokens(vifp); /* * If there are enough tokens, and the queue is empty, send this packet * out immediately. Otherwise, try to insert it on this vif's queue. */ if (vifp->tbf_q_len == 0) { if (len <= vifp->tbf_n_tok) { vifp->tbf_n_tok -= len; tbf_send_packet(vifp, m); } else { /* queue packet and timeout till later */ tbf_queue(vifp, m); callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); } } else { if (vifp->tbf_q_len >= vifp->tbf_max_q_len && !tbf_dq_sel(vifp, ip)) { /* queue length too much, and couldn't make room */ mrtstat.mrts_q_overflow++; m_freem(m); } else { /* queue length low enough, or made room */ tbf_queue(vifp, m); tbf_process_q(vifp); } } } /* * adds a packet to the queue at the interface */ static void tbf_queue(vifp, m) struct vif *vifp; struct mbuf *m; { int s = splsoftnet(); /* insert at tail */ *vifp->tbf_t = m; vifp->tbf_t = &m->m_nextpkt; vifp->tbf_q_len++; splx(s); } /* * processes the queue at the interface */ static void tbf_process_q(vifp) struct vif *vifp; { struct mbuf *m; int len; int s = splsoftnet(); /* * Loop through the queue at the interface and send as many packets * as possible. */ for (m = vifp->tbf_q; m != 0; m = vifp->tbf_q) { len = ntohs(mtod(m, struct ip *)->ip_len); /* determine if the packet can be sent */ if (len <= vifp->tbf_n_tok) { /* if so, * reduce no of tokens, dequeue the packet, * send the packet. */ if ((vifp->tbf_q = m->m_nextpkt) == 0) vifp->tbf_t = &vifp->tbf_q; --vifp->tbf_q_len; m->m_nextpkt = 0; vifp->tbf_n_tok -= len; tbf_send_packet(vifp, m); } else break; } splx(s); } static void tbf_reprocess_q(arg) void *arg; { struct vif *vifp = arg; if (ip_mrouter == 0) return; tbf_update_tokens(vifp); tbf_process_q(vifp); if (vifp->tbf_q_len != 0) callout_reset(&vifp->v_repq_ch, TBF_REPROCESS, tbf_reprocess_q, vifp); } /* function that will selectively discard a member of the queue * based on the precedence value and the priority */ static int tbf_dq_sel(vifp, ip) struct vif *vifp; struct ip *ip; { u_int p; struct mbuf **mp, *m; int s = splsoftnet(); p = priority(vifp, ip); for (mp = &vifp->tbf_q, m = *mp; m != 0; mp = &m->m_nextpkt, m = *mp) { if (p > priority(vifp, mtod(m, struct ip *))) { if ((*mp = m->m_nextpkt) == 0) vifp->tbf_t = mp; --vifp->tbf_q_len; m_freem(m); mrtstat.mrts_drop_sel++; splx(s); return (1); } } splx(s); return (0); } static void tbf_send_packet(vifp, m) struct vif *vifp; struct mbuf *m; { int error; int s = splsoftnet(); if (vifp->v_flags & VIFF_TUNNEL) { /* If tunnel options */ ip_output(m, (struct mbuf *)0, &vifp->v_route, IP_FORWARDING, (struct ip_moptions *)NULL, (struct socket *)NULL); } else { /* if physical interface option, extract the options and then send */ struct ip_moptions imo; imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; imo.imo_multicast_loop = 1; #ifdef RSVP_ISI imo.imo_multicast_vif = -1; #endif error = ip_output(m, (struct mbuf *)0, (struct route *)0, IP_FORWARDING|IP_MULTICASTOPTS, &imo, (struct socket *)NULL); if (mrtdebug & DEBUG_XMIT) log(LOG_DEBUG, "phyint_send on vif %ld err %d\n", (long)(vifp - viftable), error); } splx(s); } /* determine the current time and then * the elapsed time (between the last time and time now) * in milliseconds & update the no. of tokens in the bucket */ static void tbf_update_tokens(vifp) struct vif *vifp; { struct timeval tp; u_int32_t tm; int s = splsoftnet(); microtime(&tp); TV_DELTA(tp, vifp->tbf_last_pkt_t, tm); /* * This formula is actually * "time in seconds" * "bytes/second". * * (tm / 1000000) * (v_rate_limit * 1000 * (1000/1024) / 8) * * The (1000/1024) was introduced in add_vif to optimize * this divide into a shift. */ vifp->tbf_n_tok += tm * vifp->v_rate_limit / 8192; vifp->tbf_last_pkt_t = tp; if (vifp->tbf_n_tok > MAX_BKT_SIZE) vifp->tbf_n_tok = MAX_BKT_SIZE; splx(s); } static int priority(vifp, ip) struct vif *vifp; struct ip *ip; { int prio; /* temporary hack; may add general packet classifier some day */ /* * The UDP port space is divided up into four priority ranges: * [0, 16384) : unclassified - lowest priority * [16384, 32768) : audio - highest priority * [32768, 49152) : whiteboard - medium priority * [49152, 65536) : video - low priority */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *udp = (struct udphdr *)(((char *)ip) + (ip->ip_hl << 2)); switch (ntohs(udp->uh_dport) & 0xc000) { case 0x4000: prio = 70; break; case 0x8000: prio = 60; break; case 0xc000: prio = 55; break; default: prio = 50; break; } if (tbfdebug > 1) log(LOG_DEBUG, "port %x prio %d\n", ntohs(udp->uh_dport), prio); } else prio = 50; return (prio); } /* * End of token bucket filter modifications */ #ifdef RSVP_ISI int ip_rsvp_vif_init(so, m) struct socket *so; struct mbuf *m; { int i; int s; if (rsvpdebug) printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == 0 || m->m_len != sizeof(int)) { return (EINVAL); } i = *(mtod(m, int *)); if (rsvpdebug) printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n", i, rsvp_on); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return (EADDRNOTAVAIL); } /* Check if socket is available. */ if (viftable[i].v_rsvpd != 0) { splx(s); return (EADDRINUSE); } viftable[i].v_rsvpd = so; /* * This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 1; rsvp_on++; } splx(s); return (0); } int ip_rsvp_vif_done(so, m) struct socket *so; struct mbuf *m; { int i; int s; if (rsvpdebug) printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n", so->so_type, so->so_proto->pr_protocol); if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return (EOPNOTSUPP); /* Check mbuf. */ if (m == 0 || m->m_len != sizeof(int)) { return (EINVAL); } i = *(mtod(m, int *)); s = splsoftnet(); /* Check vif. */ if (!legal_vif_num(i)) { splx(s); return (EADDRNOTAVAIL); } if (rsvpdebug) printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n", viftable[i].v_rsvpd, so); viftable[i].v_rsvpd = 0; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (viftable[i].v_rsvp_on) { viftable[i].v_rsvp_on = 0; rsvp_on--; } splx(s); return (0); } void ip_rsvp_force_done(so) struct socket *so; { int vifi; int s; /* Don't bother if it is not the right type of socket. */ if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return; s = splsoftnet(); /* * The socket may be attached to more than one vif...this * is perfectly legal. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_rsvpd == so) { viftable[vifi].v_rsvpd = 0; /* * This may seem silly, but we need to be sure we don't * over-decrement the RSVP counter, in case something * slips up. */ if (viftable[vifi].v_rsvp_on) { viftable[vifi].v_rsvp_on = 0; rsvp_on--; } } } splx(s); return; } void rsvp_input(m, ifp) struct mbuf *m; struct ifnet *ifp; { int vifi; struct ip *ip = mtod(m, struct ip *); static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET }; int s; if (rsvpdebug) printf("rsvp_input: rsvp_on %d\n", rsvp_on); /* * Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!rsvp_on) { m_freem(m); return; } /* * If the old-style non-vif-associated socket is set, then use * it and ignore the new ones. */ if (ip_rsvpd != 0) { if (rsvpdebug) printf("rsvp_input: " "Sending packet up old-style socket\n"); rip_input(m); /*XXX*/ return; } s = splsoftnet(); if (rsvpdebug) printf("rsvp_input: check vifs\n"); /* Find which vif the packet arrived on. */ for (vifi = 0; vifi < numvifs; vifi++) { if (viftable[vifi].v_ifp == ifp) break; } if (vifi == numvifs) { /* Can't find vif packet arrived on. Drop packet. */ if (rsvpdebug) printf("rsvp_input: " "Can't find vif for packet...dropping it.\n"); m_freem(m); splx(s); return; } if (rsvpdebug) printf("rsvp_input: check socket\n"); if (viftable[vifi].v_rsvpd == 0) { /* * drop packet, since there is no specific socket for this * interface */ if (rsvpdebug) printf("rsvp_input: No socket defined for vif %d\n", vifi); m_freem(m); splx(s); return; } rsvp_src.sin_addr = ip->ip_src; if (rsvpdebug && m) printf("rsvp_input: m->m_len = %d, sbspace() = %d\n", m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv)); if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0) if (rsvpdebug) printf("rsvp_input: Failed to append to socket\n"); else if (rsvpdebug) printf("rsvp_input: send packet up\n"); splx(s); } #endif /* RSVP_ISI */