/* * Copyright (c) 1988, 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)esp.c 8.4 (Berkeley) 5/6/94 * * from: Header: esp.c,v 1.28 93/04/27 14:40:44 torek Exp (LBL) * $Id: esp.c,v 1.5 1994/05/27 02:38:15 deraadt Exp $ * * Loosely derived from Mary Baker's devSCSIC90.c from the Berkeley * Sprite project, which is: * * Copyright 1988 Regents of the University of California * Permission to use, copy, modify, and distribute this * software and its documentation for any purpose and without * fee is hereby granted, provided that the above copyright * notice appear in all copies. The University of California * makes no representations about the suitability of this * software for any purpose. It is provided "as is" without * express or implied warranty. * * from /sprite/src/kernel/dev/sun4c.md/RCS/devSCSIC90.c,v 1.4 * 90/12/19 12:37:58 mgbaker Exp $ SPRITE (Berkeley) */ /* * Sbus ESP/DMA driver. A single driver must be used for both devices * as they are physically tied to each other: The DMA chip can only * be used to assist ESP SCSI transactions; the ESP interrupt enable is * in the DMA chip csr. * * Since DMA and SCSI interrupts are handled in the same routine, the * DMA device does not declare itself as an sbus device. This saves * some space. */ #include #include #include #include #include #include #include #include #include #define ESP_PHASE_NAMES #include #include /* * This driver is largely a giant state machine: * * Given some previous SCSI state (as set up or tracked by us * earlier) and the interrupt registers provided on the chips * (dmacsr, espstat, espstep, and espintr), derive an action. * In many cases this is just a matter of reading the target's * phase and following its orders, which sets a new state. * * This sequencing is done in espact(); the state is primed in espselect(). * * Data transfer is always done via DMA. Unfortunately, there are * limits in the DMA and ESP chips on how much data can be moved * in a single operation. The ESP chip has a 16-bit counter, so * it is limited to 65536 bytes. More insidiously, while the DMA * chip has a 32-bit address, this is composed of a 24-bit counter * with an 8-bit latch, so it cannot cross a 16 MB boundary. To * handle these, we program a smaller count than our caller requests; * when this shorter transfer is done, if the target is still up * for data transfer, we simply keep going (updating the DMA address) * as needed. */ /* per-DMA variables */ struct dma_softc { struct device dc_dev; /* base device */ volatile struct dmareg *dc_dma; /* register virtual address */ int dc_dmarev; /* revision */ char *dc_dmafmt; /* format for error messages */ }; void dmaattach(struct device *, struct device *, void *); struct cfdriver dmacd = { NULL, "dma", matchbyname, dmaattach, DV_DULL, sizeof(struct dma_softc) }; /* per-ESP variables */ struct esp_softc { /* * External interfaces. */ struct hba_softc sc_hba; /* base device + hba, must be first */ #define sc_dev sc_hba.hba_dev struct sbusdev sc_sd; /* sbus device */ struct intrhand sc_ih; /* interrupt entry */ struct evcnt sc_intrcnt; /* interrupt counter */ struct dma_softc *sc_dc; /* pointer to corresponding dma sc */ /* * Addresses mapped to hardware registers. */ volatile struct espreg *sc_esp; volatile struct dmareg *sc_dma; /* * Copies of registers cleared/unlatched by reading. * (FIFO flags is not cleared, but we want it for debugging.) */ u_long sc_dmacsr; u_char sc_espstat; u_char sc_espstep; u_char sc_espintr; u_char sc_espfflags; /* miscellaneous */ int sc_clockfreq; /* clock frequency */ u_char sc_sel_timeout; /* select timeout */ u_char sc_id; /* initiator ID (default = 7) */ u_char sc_esptype; /* 100, 100A, 2xx (see below) */ u_char sc_ccf; /* clock conversion factor */ u_char sc_conf1; /* value for config reg 1 */ u_char sc_conf2; /* value for config reg 2 */ u_char sc_conf3; /* value for config reg 3 */ struct bootpath *sc_bp; /* esp bootpath so far */ /* * Information pertaining to the current transfer, * including sequencing. * * The size of sc_msg is the size of the ESP fifo, * since we do message-in simply by allowing the fifo to fill. */ char sc_probing; /* used during autoconf; see below */ char sc_iwant; /* true => icmd needs wakeup on idle */ char sc_state; /* SCSI protocol state; see below */ char sc_sentcmd; /* set once we get cmd out */ char sc_dmaactive; /* true => doing dma */ #ifdef notyet u_char sc_sync; /* synchronous transfer stuff (?) */ #endif u_char sc_stat[2]; /* status from last `status' phase */ u_char sc_msg[16]; /* message from device */ u_short sc_dmactl; /* control to load into dma csr */ u_long sc_dmaaddr; /* address for next xfer */ int sc_dmasize; /* size of current xfer */ int sc_resid; /* count of bytes not yet xferred */ int sc_targ; /* the target involved */ struct scsi_cdb *sc_curcdb; /* ptr to current command */ /* might cdbspace eventually be per-target? */ struct scsi_cdb sc_cdbspace; /* space for one command */ }; /* * Values for sc_esptype (used to control configuration reset, and for * workarounds for chip bugs). The order is important; see espreset(). */ #define ESP100 0 #define ESP100A 1 #define ESP2XX 2 /* * Probe state. 0 means not probing. While looking for each target * we set this to PROBE_TESTING and do a TEST UNIT READY on unit 0. * If selection fails, this is changed to PROBE_NO_TARGET; otherwise * we assume the target exists, regardless of the result of the test. */ #define PROBE_TESTING 1 #define PROBE_NO_TARGET 2 /* * States in sc_state. * * Note that S_SVC is rare: normally we load the SCSI command into the * ESP fifo and get interrupted only when the device has gone to data * or status phase. If the device wants to play games, though, we end * up doing things differently. */ char *espstates[] = { #define S_IDLE 0 /* not doing anything */ "idle", #define S_SEL 1 /* expecting select done interrupt */ "selecting", #define S_SVC 2 /* expecting service req interrupt */ "waiting for svc req", #define S_DI 3 /* expecting data-in done interrupt */ "receiving data", #define S_DO 4 /* expecting data-out done interrupt */ "sending data", #define S_STAT 5 /* expecting status done interrupt */ "receiving status", #define S_MI 6 /* expecting message-in done interrupt */ "receiving message", #define S_FI 7 /* expecting final disconnect interrupt */ "waiting for disconnect" }; /* * Hardware limits on transfer sizes (see comments at top). */ #define ESPMAX (64 * 1024) #define DMAMAX(a) (0x01000000 - ((a) & 0x00ffffff)) /* * Return values from espact(). */ #define ACT_CONT 0 /* espact() handled everything */ #define ACT_IO 1 /* espact() is xferring data */ #define ACT_DONE 2 /* handled everything, and op is now done */ #define ACT_ERROR 3 /* an error occurred, op has been trashed */ #define ACT_RESET 4 /* please reset ESP, then do ACT_ERROR */ #define ACT_QUICKINTR 5 /* another interrupt is expected immediately */ /* autoconfiguration driver */ void espattach(struct device *, struct device *, void *); struct cfdriver espcd = { NULL, "esp", matchbyname, espattach, DV_DULL, sizeof(struct esp_softc) }; /* Sbus driver */ void espsbreset(struct device *); /* interrupt interface */ int espintr(void *); /* SCSI HBA driver */ int espicmd(struct hba_softc *, int, struct scsi_cdb *, caddr_t, int, int); int espdump(struct hba_softc *, int, struct scsi_cdb *, caddr_t, int); void espstart(struct device *, struct sq *, struct buf *, scdgo_fn, struct device *); int espgo(struct device *, int, scintr_fn, struct device *, struct buf *, int); void esprel(struct device *); void esphbareset(struct hba_softc *, int); static struct hbadriver esphbadriver = { espicmd, espdump, espstart, espgo, esprel, esphbareset }; /* other prototypes */ static void espdoattach(int); static void dmareset(struct esp_softc *); static void espreset(struct esp_softc *, int); static void esperror(struct esp_softc *, const char *); static int espact(struct esp_softc *); void espselect(struct esp_softc *, int, struct scsi_cdb *); /* second arg to espreset() */ #define RESET_ESPCHIP 0x1 #define RESET_SCSIBUS 0x2 #define RESET_BOTH (RESET_ESPCHIP | RESET_SCSIBUS) /* * Attach a found DMA chip. * The second argument is really a pointer to an sbus_attach_args. */ void dmaattach(parent, dev, args) struct device *parent; struct device *dev; void *args; { register struct dma_softc *dc = (struct dma_softc *)dev; register struct sbus_attach_args *sa = args; register volatile struct dmareg *dma; register int rev; struct esp_softc *esc; if (sa->sa_ra.ra_vaddr) dma = (volatile struct dmareg *)sa->sa_ra.ra_vaddr; else dma = (volatile struct dmareg *) mapiodev(sa->sa_ra.ra_paddr, sizeof(struct dmareg)); dc->dc_dma = dma; switch (rev = DMA_REV(dma->dma_csr)) { case DMAREV_1: printf(": rev 1\n"); dc->dc_dmafmt = DMA_REV1_BITS; break; case DMAREV_2: printf(": rev 2\n"); dc->dc_dmafmt = DMA_REV2_BITS; break; case DMAREV_3: printf(": rev 3\n"); printf("WARNING: esp.c not yet updated for rev 3\n"); dc->dc_dmafmt = DMA_REV3_BITS; break; default: printf(": unknown revision code 0x%x\n", rev); dc->dc_dmafmt = DMA_REV3_BITS; /* cross fingers */ break; } dc->dc_dmarev = rev; espdoattach(dc->dc_dev.dv_unit); } /* * Attach a found ESP chip. Search for targets; attach each one found. * The latter must be deferred if the corresponding dma chip has not yet * been configured. */ void espattach(parent, self, args) struct device *parent; struct device *self; void *args; { register struct esp_softc *sc = (struct esp_softc *)self; register struct sbus_attach_args *sa = args; register volatile struct espreg *esp; register struct bootpath *bp; int node, pri, freq, t; if (sa->sa_ra.ra_nintr != 1) { printf(": expected 1 interrupt, got %d\n", sa->sa_ra.ra_nintr); return; } pri = sa->sa_ra.ra_intr[0].int_pri; printf(" pri %d", pri); if (sa->sa_ra.ra_vaddr) esp = (volatile struct espreg *)sa->sa_ra.ra_vaddr; else esp = (volatile struct espreg *) mapiodev(sa->sa_ra.ra_paddr, sizeof(struct espreg)); sc->sc_esp = esp; node = sa->sa_ra.ra_node; sc->sc_id = getpropint(node, "initiator-id", 7); freq = getpropint(node, "clock-frequency", -1); if (freq < 0) freq = ((struct sbus_softc *)sc->sc_dev.dv_parent)->sc_clockfreq; /* MIGHT NEED TO RESET ESP CHIP HERE ...? */ /* * Find out whether we have a -100, -100A, or -2xx, * and what speed it runs at. */ sc->sc_conf1 = sc->sc_id | ESPCONF1_PARENB; /* sc->sc_conf2 = 0; */ /* sc->sc_conf3 = 0; */ esp->esp_conf1 = sc->sc_conf1; esp->esp_conf2 = 0; esp->esp_conf2 = ESPCONF2_SCSI2 | ESPCONF2_RPE; if ((esp->esp_conf2 & ~ESPCONF2_RSVD) != (ESPCONF2_SCSI2 | ESPCONF2_RPE)) { printf(": ESP100"); sc->sc_esptype = ESP100; } else { esp->esp_conf2 = 0; esp->esp_conf3 = 0; esp->esp_conf3 = 5; if (esp->esp_conf3 != 5) { /* XXX def bits */ printf(": ESP100A"); sc->sc_esptype = ESP100A; } else { esp->esp_conf3 = 0; printf(": ESP2XX"); sc->sc_esptype = ESP2XX; } } printf(", clock = %s MHz, ID = %d\n", clockfreq(freq), sc->sc_id); /* * Set clock conversion factor and select timeout. * N.B.: clock frequency is not actually used in the rest * of the driver; I calculate it here for completeness only * (so I can see it when debugging). */ sc->sc_clockfreq = freq; freq = howmany(freq, 1000 * 1000); /* convert to MHz */ t = ESPCCF_FROMMHZ(freq); if (t < ESPCCF_MIN) t = ESPCCF_MIN; sc->sc_ccf = t; t = ESPTIMO_REGVAL(250, t, freq); /* timeout = 250 ms. */ if (t >= 256) t = 0; sc->sc_sel_timeout = t; /* * Link into sbus; set interrupt handler. */ sc->sc_sd.sd_reset = espsbreset; sbus_establish(&sc->sc_sd, &sc->sc_dev); sc->sc_ih.ih_fun = espintr; sc->sc_ih.ih_arg = sc; intr_establish(pri, &sc->sc_ih); evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt); #define SAME_ESP(bp, sa) \ ((bp->val[0] == sa->sa_slot && bp->val[1] == sa->sa_offset) || \ (bp->val[0] == -1 && bp->val[1] == sc->sc_dev.dv_unit)) bp = sa->sa_ra.ra_bp; if (bp != NULL && strcmp(bp->name, "esp") == 0 && SAME_ESP(bp, sa)) sc->sc_bp = bp + 1; espdoattach(sc->sc_dev.dv_unit); } /* * `Final' attach of esp occurs once esp and dma chips have been found * and assigned virtual addresses. Set up the ESP SCSI data structures * and probe the SCSI bus. */ static void espdoattach(unit) int unit; { register struct esp_softc *sc; register struct dma_softc *dc; register struct bootpath *bp; register struct targ *t; register int targ, u; /* make sure we have both */ if (espcd.cd_ndevs <= unit || dmacd.cd_ndevs <= unit || (sc = espcd.cd_devs[unit]) == NULL || (dc = dmacd.cd_devs[unit]) == NULL) return; sc->sc_dc = dc; sc->sc_dma = dc->dc_dma; sc->sc_hba.hba_driver = &esphbadriver; sc->sc_dma->dma_csr = 0; /* ??? */ espreset(sc, RESET_ESPCHIP); /* MAYBE THIS SHOULD BE MOVED TO scsi_subr.c? */ for (targ = 0; targ < 8; targ++) { if (targ == sc->sc_id) continue; sc->sc_probing = PROBE_TESTING; (void)scsi_test_unit_ready(&sc->sc_hba, targ, 0); if (sc->sc_probing != PROBE_NO_TARGET) { sc->sc_probing = 0; SCSI_FOUNDTARGET(&sc->sc_hba, targ); } } sc->sc_probing = 0; /* * See if we booted from a unit on this target. We could * compare bp->name against the unit's name but there's no * real need since a target and unit uniquely specify a * scsi device. */ if ((bp = sc->sc_bp) != NULL && (u_int)(targ = bp->val[0]) < 8 && (u_int)(u = bp->val[1]) < 8 && (t = sc->sc_hba.hba_targets[targ]) != NULL && t->t_units[u] != NULL) bootdv = t->t_units[u]->u_dev; } /* * We are not allowed to touch the DMA "flush" and "drain" bits * while it is still thinking about a request (DMA_RP). */ #define DMAWAIT(dma) while ((dma)->dma_csr & DMA_RP) DELAY(1) #define DMAWAIT1(dma) while ((dma)->dma_csr & DMA_PC) DELAY(1) /* * Reset the DMA chip. */ static void dmareset(sc) struct esp_softc *sc; { register volatile struct dmareg *dma = sc->sc_dma; DMAWAIT(dma); dma->dma_csr |= DMA_RESET; DELAY(200); dma->dma_csr &= ~DMA_RESET; /* ??? */ sc->sc_dmaactive = 0; if (sc->sc_dc->dc_dmarev == DMAREV_2 && sc->sc_esptype != ESP100) dma->dma_csr |= DMA_TURBO; dma->dma_csr |= DMA_IE; /* enable interrupts */ DELAY(200); } /* * Reset the chip and/or SCSI bus (always resets DMA). */ static void espreset(sc, how) register struct esp_softc *sc; int how; { register volatile struct espreg *esp = sc->sc_esp; dmareset(sc); if (how & RESET_ESPCHIP) { esp->esp_cmd = ESPCMD_RESET_CHIP; esp->esp_cmd = ESPCMD_NOP; /* * Reload configuration registers (cleared by * RESET_CHIP command). Reloading conf2 on an * ESP100 goofs it up, so out of paranoia we load * only the registers that exist. */ esp->esp_conf1 = sc->sc_conf1; if (sc->sc_esptype > ESP100) { /* 100A, 2XX */ esp->esp_conf2 = sc->sc_conf2; if (sc->sc_esptype > ESP100A) /* 2XX only */ esp->esp_conf3 = sc->sc_conf3; } esp->esp_ccf = sc->sc_ccf; esp->esp_timeout = sc->sc_sel_timeout; /* We set synch offset later. */ } if (how & RESET_SCSIBUS) { /* * The chip should retain most of its parameters * (including esp_ccf) across this kind of reset * (see section 3.5 of Emulex documentation). */ /* turn off scsi bus reset interrupts and reset scsi bus */ esp->esp_conf1 = sc->sc_conf1 | ESPCONF1_REPORT; esp->esp_cmd = ESPCMD_RESET_BUS; esp->esp_cmd = ESPCMD_NOP; DELAY(100000); /* ??? */ (void)esp->esp_intr; esp->esp_conf1 = sc->sc_conf1; } sc->sc_state = S_IDLE; } /* * Reset the SCSI bus and, optionally, all attached targets. */ void esphbareset(hba, resetunits) struct hba_softc *hba; int resetunits; { register struct esp_softc *sc = (struct esp_softc *)hba; espreset(sc, RESET_SCSIBUS); if (resetunits) scsi_reset_units(&sc->sc_hba); } /* * Reset the esp, after an Sbus reset. * Also resets corresponding dma chip. * * THIS ROUTINE MIGHT GO AWAY */ void espsbreset(dev) struct device *dev; { struct esp_softc *sc = (struct esp_softc *)dev; if (sc->sc_dc) { printf(" %s %s", sc->sc_dc->dc_dev.dv_xname, sc->sc_dev.dv_xname); esphbareset(&sc->sc_hba, 1); } } /* * Log an error. */ static void esperror(sc, err) register struct esp_softc *sc; const char *err; { int stat; stat = sc->sc_espstat; printf( "%s target %d cmd 0x%x (%s): %s:\n\ \tstat=%b (%s) step=%x dmacsr=%b fflags=%x intr=%b\n", sc->sc_dev.dv_xname, sc->sc_targ, sc->sc_curcdb->cdb_bytes[0], espstates[sc->sc_state], err, stat, ESPSTAT_BITS, espphases[stat & ESPSTAT_PHASE], sc->sc_espstep, sc->sc_dmacsr, sc->sc_dc->dc_dmafmt, sc->sc_espfflags, sc->sc_espintr, ESPINTR_BITS); } /* * Issue a select, loading command into the FIFO. * Return nonzero on error, 0 if OK. * Sets state to `selecting'; espact() will sequence state FSM. */ void espselect(sc, targ, cdb) register struct esp_softc *sc; register int targ; register struct scsi_cdb *cdb; { register volatile struct espreg *esp; register int i, cmdlen; sc->sc_targ = targ; sc->sc_state = S_SEL; sc->sc_curcdb = cdb; sc->sc_sentcmd = 0; sc->sc_stat[0] = 0xff; /* ??? */ sc->sc_msg[0] = 0xff; /* ??? */ /* * Try to talk to target. * Synch offset 0 => asynchronous transfer. */ esp = sc->sc_esp; esp->esp_id = targ; esp->esp_syncoff = 0; /* * Stuff the command bytes into the fifo. * Select without attention since we do not do disconnect yet. */ cmdlen = SCSICMDLEN(cdb->cdb_bytes[0]); for (i = 0; i < cmdlen; i++) esp->esp_fifo = cdb->cdb_bytes[i]; esp->esp_cmd = ESPCMD_SEL_NATN; /* the rest is done elsewhere */ } /* * Sequence through the SCSI state machine. Return the action to take. * * Most of the work happens here. * * There are three interrupt sources: * -- ESP interrupt request (typically, some device wants something). * -- DMA memory error. * -- DMA byte count has reached 0 (we do not often want this one but * can only turn it off in rev 2 DMA chips, it seems). * DOES THIS OCCUR AT ALL HERE? THERE IS NOTHING TO HANDLE IT! */ static int espact(sc) register struct esp_softc *sc; { register volatile struct espreg *esp; register volatile struct dmareg *dma; register int reg, i, resid, newstate; register struct scsi_cdb *cdb; dma = sc->sc_dma; /* check various error conditions, using as little code as possible */ if (sc->sc_dmacsr & DMA_EP) { esperror(sc, "DMA error"); DMAWAIT(dma); dma->dma_csr |= DMA_FLUSH; DMAWAIT1(dma); return (ACT_ERROR); } reg = sc->sc_espstat; if (reg & ESPSTAT_GE) { /* * This often occurs when there is no target. * (See DSC code below.) */ if (sc->sc_espintr & ESPINTR_DSC && sc->sc_state == S_SEL && sc->sc_probing) { sc->sc_probing = PROBE_NO_TARGET; return (ACT_RESET); } esperror(sc, "DIAG: gross error (ignored)"); } if (reg & ESPSTAT_PE) { esperror(sc, "parity error"); return (ACT_RESET); } reg = sc->sc_espintr; #define ERR (ESPINTR_SBR|ESPINTR_ILC|ESPINTR_RSL|ESPINTR_SAT|ESPINTR_SEL) if (reg & ERR) { if (reg & ESPINTR_SBR) esperror(sc, "scsi bus reset"); else if (reg & ESPINTR_ILC) esperror(sc, "illegal command (driver bug)"); else { printf("%s: target %d", sc->sc_dev.dv_xname, sc->sc_targ); if (reg & ESPINTR_RSL) printf(" tried to reselect;"); if (reg & ESPINTR_SAT) printf(" selected with ATN;"); if (reg & ESPINTR_SEL) printf(" selected us as target;"); printf("we do not allow this yet\n"); } return (ACT_ERROR); } #undef ERR esp = sc->sc_esp; /* * Disconnect currently only allowed in `final interrupt' states. */ if (reg & ESPINTR_DSC) { if (sc->sc_state == S_FI) return (ACT_DONE); /* * If we were doing a select just to test the existence * of the target, note that it did not respond; otherwise * gripe. */ if (sc->sc_state == S_SEL) { if (sc->sc_probing) { sc->sc_probing = PROBE_NO_TARGET; return (ACT_RESET); } } /* flush fifo, in case we were selecting or sending data */ esp->esp_cmd = ESPCMD_FLUSH_FIFO; DELAY(1); printf("%s: target %d not responding\n", sc->sc_dev.dv_xname, sc->sc_targ); return (ACT_ERROR); } /* * Okay, things are moving along. * What were we doing the last time we did something, * and did it complete normally? */ switch (sc->sc_state) { case S_SEL: /* * We were selecting. Arbitration and select are * complete (because ESPINTR_DSC was not set), but * there is no guarantee the command went out. */ if ((reg & (ESPINTR_SVC|ESPINTR_CMP)) != (ESPINTR_SVC|ESPINTR_CMP)) { esperror(sc, "selection failed"); return (ACT_RESET); } if (sc->sc_espstep == ESPSTEP_DONE) { sc->sc_sentcmd = 1; break; } if (sc->sc_espstep == 2) { /* * We got something other than command phase. * Just pretend things are normal; the * device will ask for the command later. */ esperror(sc, "DIAG: esp step 2"); } else if (sc->sc_espstep == 3) { /* * Device entered command phase and then exited it * before we finished handing out the command. * Do not know how to handle this. */ esperror(sc, "DIAG: esp step 3"); } else { printf("%s: mysterious esp step %d\n", sc->sc_dev.dv_xname, sc->sc_espstep); return (ACT_RESET); } /* * Part of the command may still be lodged in the FIFO. */ if (ESP_NFIFO(sc->sc_espfflags)) { esp->esp_cmd = ESPCMD_FLUSH_FIFO; DELAY(1); } break; case S_SVC: /* * We were waiting for phase change after stuffing the command * into the FIFO. Make sure it got out. */ if (ESP_NFIFO(sc->sc_espfflags)) { esperror(sc, "DIAG: CMDSVC, fifo not empty"); esp->esp_cmd = ESPCMD_FLUSH_FIFO; DELAY(1); } else sc->sc_sentcmd = 1; break; case S_DI: /* * We were doing DMA data in, and expecting a * transfer-count-zero interrupt or a phase change. * We got that; drain the pack register and handle * as for data out -- but ignore FIFO (it should be * empty, except for sync mode which we are not * using anyway). */ DMAWAIT(dma); dma->dma_csr |= DMA_DRAIN; DMAWAIT1(dma); resid = 0; goto dma_data_done; case S_DO: /* * We were doing DMA data out. If there is data in the * FIFO, it is stuff that got DMAed out but never made * it to the device, so it counts as residual. */ if ((resid = ESP_NFIFO(sc->sc_espfflags)) != 0) { esp->esp_cmd = ESPCMD_FLUSH_FIFO; DELAY(1); } dma_data_done: if (sc->sc_dmaactive == 0) { esperror(sc, "dma done w/o dmaactive"); panic("espact"); } sc->sc_dmaactive = 0; /* Finish computing residual count. */ reg = esp->esp_tcl | (esp->esp_tch << 8); if (reg == 0 && (sc->sc_espstat & ESPSTAT_TC) == 0) reg = 65536; resid += reg; /* Compute xfer count (requested - resid). */ i = sc->sc_dmasize - resid; if (i < 0) { printf("%s: xfer resid (%d) > xfer req (%d)\n", sc->sc_dev.dv_xname, resid, sc->sc_dmasize); i = sc->sc_dmasize; /* forgiving... */ } /* If data came in we must flush cache. */ if (sc->sc_state == S_DI) cache_flush(sc->sc_dmaaddr, i); sc->sc_dmaaddr += i; sc->sc_resid -= i; if ((sc->sc_espintr & ESPINTR_SVC) == 0) { esperror(sc, "no bus service req"); return (ACT_RESET); } break; case S_STAT: /* * The last thing we did was tell it `initiator complete' * and so we expect to have gotten both the status byte * and the final message byte. It is possible that we * got something else.... * * Apparently, BUS SERVICE is set if we got just status, * while FUNCTION COMPLETE is set if we got both. */ if ((reg & (ESPINTR_SVC|ESPINTR_CMP)) != ESPINTR_CMP) { esperror(sc, "bad status interrupt state"); return (ACT_RESET); } reg = ESP_NFIFO(sc->sc_espfflags); if (reg < 2) { printf( "%s: command done but fifo count = %d; must be >= 2\n", sc->sc_dev.dv_xname, reg); return (ACT_RESET); } /* * Read the status and the first msg byte. * It should be CMD_COMPLETE. Eventually we * may handle IDENTIFY, DISCONNECT, etc., as well. */ sc->sc_stat[0] = esp->esp_fifo; sc->sc_msg[0] = reg = esp->esp_fifo; esp->esp_cmd = ESPCMD_MSG_ACCEPT; if (reg == MSG_CMD_COMPLETE) { sc->sc_state = S_FI; return (ACT_CONT); } if (SCSIMSGLEN(reg) != 1) { printf("%s: target %d is naughty\n", sc->sc_dev.dv_xname, sc->sc_targ); return (ACT_RESET); } printf("%s: warning: target %d returned msg 0x%x\n", sc->sc_dev.dv_xname, sc->sc_targ, reg); sc->sc_state = S_FI; return (ACT_CONT); case S_MI: if ((reg & ESPINTR_SVC) == 0) { esperror(sc, "missing phase after msg in"); return (ACT_RESET); } reg = ESP_NFIFO(sc->sc_espfflags); for (i = 0; i < reg; i++) sc->sc_msg[i] = esp->esp_fifo; break; case S_FI: esperror(sc, "target did not disconnect"); return (ACT_RESET); } /* * Things are still moving along. The phase tells us * what the device wants next. Do it. */ switch (sc->sc_espstat & ESPSTAT_PHASE) { case ESPPHASE_DATA_OUT: if (!sc->sc_sentcmd) esperror(sc, "DIAG: data out without command"); if (sc->sc_dmactl & DMA_READ) { esperror(sc, "wrong phase (want to read)"); return (ACT_RESET); } newstate = S_DO; goto do_data_xfer; case ESPPHASE_DATA_IN: if (!sc->sc_sentcmd) esperror(sc, "DIAG: data in without command"); if (!(sc->sc_dmactl & DMA_READ)) { esperror(sc, "wrong phase (want to write)"); return (ACT_RESET); } newstate = S_DI; do_data_xfer: if (sc->sc_resid == 0) { esperror(sc, "data count error"); return (ACT_RESET); } /* * Compute DMA count based on chip limits. * Set DMA address and load transfer count into * ESP via DMA NOP, then set DMA control, and * then we can start the DMA. */ sc->sc_state = newstate; i = min(sc->sc_resid, ESPMAX); i = min(i, DMAMAX(sc->sc_dmaaddr)); sc->sc_dmasize = i; dma->dma_addr = sc->sc_dmaaddr; esp->esp_tch = i >> 8; esp->esp_tcl = i; esp->esp_cmd = ESPCMD_DMA | ESPCMD_NOP; dma->dma_csr = sc->sc_dmactl; sc->sc_dmaactive = 1; esp->esp_cmd = ESPCMD_DMA | ESPCMD_XFER_INFO; return (ACT_IO); case ESPPHASE_CMD: /* * Silly thing wants the command again. * Load it into the FIFO and go to SVC state. */ printf("%s: redoing command\n", sc->sc_dev.dv_xname); cdb = sc->sc_curcdb; reg = SCSICMDLEN(cdb->cdb_bytes[0]); for (i = 0; i < reg; i++) esp->esp_fifo = cdb->cdb_bytes[i]; sc->sc_state = S_SVC; esp->esp_cmd = ESPCMD_XFER_INFO; return (ACT_CONT); case ESPPHASE_STATUS: sc->sc_state = S_STAT; esp->esp_cmd = ESPCMD_INIT_COMP; return (ACT_CONT); case ESPPHASE_MSG_IN: printf("%s: accepting (& ignoring) msg from target %d\n", sc->sc_dev.dv_xname, sc->sc_targ); sc->sc_state = S_MI; esp->esp_cmd = ESPCMD_MSG_ACCEPT; return (ACT_CONT); default: esperror(sc, "bad phase"); return (ACT_RESET); } /* NOTREACHED */ } /* * THIS SHOULD BE ADJUSTABLE */ /* name howlong purpose */ #define SELECT_WAIT 300000 /* wait for select to complete */ #define CMD_WAIT 100000 /* wait for next phase, generic */ #define DATA_WAIT 100000 /* time to xfer data in/out */ /* * Send an `immediate' command, i.e., poll until the whole thing is done. * Return the status byte from the device, or -1 if we timed out. We use * DMA to transfer the data as the fifo only moves one byte at a time. */ int espicmd(hba, targ, cdb, buf, len, rw) struct hba_softc *hba; int targ; struct scsi_cdb *cdb; caddr_t buf; int len, rw; { register struct esp_softc *sc = (struct esp_softc *)hba; register volatile struct espreg *esp = sc->sc_esp; register volatile struct dmareg *dma = sc->sc_dma; register int r, s, wait; register struct sq *sq; /* * Wait for any ongoing operation to complete. */ s = splbio(); while (sc->sc_state != S_IDLE) { sc->sc_iwant = 1; tsleep((caddr_t)&sc->sc_iwant, PRIBIO, "espicmd", 0); } sc->sc_hba.hba_busy = 1; splx(s); /* * Set up DMA transfer control (leaving interrupts disabled). */ sc->sc_dmactl = rw & B_READ ? DMA_ENA | DMA_READ : DMA_ENA; sc->sc_dmaaddr = (u_long)buf; sc->sc_resid = len; /* * Disable hardware interrupts and start select sequence, * then loop, calling espact() after each ``interrupt''. */ DMAWAIT(dma); /* ??? */ dma->dma_csr = 0; espselect(sc, targ, cdb); wait = SELECT_WAIT; for (;;) { r = dma->dma_csr; if (!DMA_INTR(r)) { if (--wait < 0) { esperror(sc, "timeout"); goto reset; } DELAY(1); continue; } sc->sc_espstat = esp->esp_stat; sc->sc_espstep = esp->esp_step & ESPSTEP_MASK; sc->sc_espintr = esp->esp_intr; sc->sc_espfflags = esp->esp_fflags; sc->sc_dmacsr = r; switch (r = espact(sc)) { case ACT_CONT: case ACT_QUICKINTR: wait = CMD_WAIT; break; case ACT_IO: wait = DATA_WAIT; break; case ACT_RESET: goto reset; case ACT_DONE: r = sc->sc_stat[0]; goto done; case ACT_ERROR: r = -1; goto done; default: panic("espicmd action"); } } reset: espreset(sc, RESET_ESPCHIP); /* ??? */ r = -1; done: sc->sc_state = S_IDLE; s = splbio(); if (sc->sc_iwant) { sc->sc_iwant = 0; wakeup((caddr_t)&sc->sc_iwant); } else if ((sq = sc->sc_hba.hba_head) != NULL) { sc->sc_hba.hba_head = sq->sq_forw; (*sq->sq_dgo)(sq->sq_dev, &sc->sc_cdbspace); } else sc->sc_hba.hba_busy = 0; splx(s); return (r); } /* * Dump (write memory, possibly physmem). * SPARC higher-level dump code always provides virtual addresses, * so we need not do any I/O mapping here. */ int espdump(hba, targ, cdb, buf, len) register struct hba_softc *hba; int targ; struct scsi_cdb *cdb; caddr_t buf; register int len; { register struct esp_softc *sc = (struct esp_softc *)hba; /* * If we crashed in the middle of a bus transaction... */ if (sc->sc_state != S_IDLE) espreset(sc, RESET_BOTH); /* ??? */ return (espicmd(hba, targ, cdb, buf, len, B_WRITE)); } /* * Allocate resources (SCSI bus and DVMA space) for the given transfer. * Must be called at splbio(). * * THIS SHOULD RETURN SUCCESS/FAIL INDICATION */ void espstart(self, sq, bp, dgo, dev) struct device *self; register struct sq *sq; struct buf *bp; scdgo_fn dgo; struct device *dev; { register struct esp_softc *sc = (struct esp_softc *)self; if (sc->sc_hba.hba_busy == 0) { /* * Bus not busy, nothing to do here, just tell * this target or unit that it has the SCSI bus. */ sc->sc_hba.hba_busy = 1; (*dgo)(dev, &sc->sc_cdbspace); } else { /* * Bus is busy; just enqueue. */ sq->sq_dgo = dgo; sq->sq_dev = dev; sq->sq_forw = NULL; if (sc->sc_hba.hba_head == NULL) sc->sc_hba.hba_head = sq; else sc->sc_hba.hba_tail->sq_forw = sq; sc->sc_hba.hba_tail = sq; } } /* * Start buffered I/O. * Return 0 on success, 1 on failure. */ int espgo(self, targ, intr, dev, bp, pad) struct device *self; int targ; scintr_fn intr; struct device *dev; register struct buf *bp; int pad; { register struct esp_softc *sc = (struct esp_softc *)self; /* Set up dma control for espact(). */ sc->sc_dmactl = bp->b_flags & B_READ ? DMA_ENA | DMA_READ | DMA_IE : DMA_ENA | DMA_IE; sc->sc_dmaaddr = (u_long)bp->b_un.b_addr; sc->sc_resid = bp->b_bcount; /* * Enable interrupts and start selection. * The rest is done in espintr() and espact(). */ sc->sc_hba.hba_intr = intr; /* remember dev done function */ sc->sc_hba.hba_intrdev = dev; /* and its first arg */ sc->sc_dma->dma_csr = DMA_IE; espselect(sc, targ, &sc->sc_cdbspace); return (0); } /* * Handle interrupt. Return 1 if taken. */ int espintr(sc0) void *sc0; { register struct esp_softc *sc = (struct esp_softc *)sc0; register volatile struct espreg *esp = sc->sc_esp; register volatile struct dmareg *dma = sc->sc_dma; register int r, wait; register struct sq *sq; r = dma->dma_csr; if (!DMA_INTR(r)) return (0); /* not ours */ sc->sc_intrcnt.ev_count++; again: sc->sc_espstat = esp->esp_stat; sc->sc_espstep = esp->esp_step & ESPSTEP_MASK; sc->sc_espintr = esp->esp_intr; sc->sc_espfflags = esp->esp_fflags; sc->sc_dmacsr = r; if (sc->sc_state == S_IDLE) { printf("%s: stray interrupt\n", sc->sc_dev.dv_xname); dma->dma_csr &= ~DMA_IE; /* ??? */ return (1); } switch (r = espact(sc)) { case ACT_CONT: /* just return */ case ACT_IO: break; case ACT_RESET: /* please reset esp */ reset: espreset(sc, RESET_ESPCHIP); /* ??? */ /* FALLTHROUGH */ case ACT_DONE: /* this one is done, successfully */ case ACT_ERROR: /* this one is done due to `severe' error */ if (!sc->sc_hba.hba_busy) panic("espintr sq"); /* * This transaction is done. Call the driver's intr routine. * If an immediate command is pending, let it run in front * of us, otherwise start the next transation. Note that * the interrupt routine may run its own immediate commands * (`request sense' for errors, eg) before we get around to * the process waiting to do immediate command, but that * is OK; if we did not set S_IDLE here we could deadlock. */ sc->sc_state = S_IDLE; (*sc->sc_hba.hba_intr)(sc->sc_hba.hba_intrdev, r == ACT_DONE ? sc->sc_stat[0] : -1, sc->sc_resid); if (sc->sc_iwant) { wakeup((caddr_t)&sc->sc_iwant); sc->sc_iwant = 0; } else if ((sq = sc->sc_hba.hba_head) != NULL) { sc->sc_hba.hba_head = sq->sq_forw; (*sq->sq_dgo)(sq->sq_dev, &sc->sc_cdbspace); } else sc->sc_hba.hba_busy = 0; break; case ACT_QUICKINTR: /* wait a short while for another interrupt */ printf("%s: quickintr: ", sc->sc_dev.dv_xname); wait = 100; do { r = dma->dma_csr; if (DMA_INTR(r)) { printf("got one, wait=%d\n", wait); goto again; } } while (--wait > 0); printf("did not get one\n"); break; default: panic("espintr action"); } return (1); } /* * Target or unit decided to let go of the bus early. */ void esprel(self) struct device *self; { register struct esp_softc *sc = (struct esp_softc *)self; register struct sq *sq; /* if there is someone else waiting, give them a crack at it */ if (sc->sc_iwant) { wakeup((caddr_t)&sc->sc_iwant); sc->sc_iwant = 0; } else if ((sq = sc->sc_hba.hba_head) != NULL) { sc->sc_hba.hba_head = sq->sq_forw; (*sq->sq_dgo)(sq->sq_dev, &sc->sc_cdbspace); } else sc->sc_hba.hba_busy = 0; }