/* $NetBSD: neo.c,v 1.49 2012/10/27 17:18:35 chs Exp $ */ /* * Copyright (c) 1999 Cameron Grant * All rights reserved. * * Derived from the public domain Linux driver * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF * SUCH DAMAGE. * * FreeBSD: src/sys/dev/sound/pci/neomagic.c,v 1.8 2000/03/20 15:30:50 cg Exp * OpenBSD: neo.c,v 1.4 2000/07/19 09:04:37 csapuntz Exp */ #include __KERNEL_RCSID(0, "$NetBSD: neo.c,v 1.49 2012/10/27 17:18:35 chs Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* -------------------------------------------------------------------- */ /* * As of 04/13/00, public documentation on the Neomagic 256 is not available. * These comments were gleaned by looking at the driver carefully. * * The Neomagic 256 AV/ZX chips provide both video and audio capabilities * on one chip. About 2-6 megabytes of memory are associated with * the chip. Most of this goes to video frame buffers, but some is used for * audio buffering * * Unlike most PCI audio chips, the Neomagic chip does not rely on DMA. * Instead, the chip allows you to carve out two ring buffers out of its * memory. However you carve this and how much you can carve seems to be * voodoo. The algorithm is in nm_init. * * Most Neomagic audio chips use the AC-97 codec interface. However, there * seem to be a select few chips 256AV chips that do not support AC-97. * This driver does not support them but there are rumors that it * might work with wss isa drivers. This might require some playing around * with your BIOS. * * The Neomagic 256 AV/ZX have 2 PCI I/O region descriptors. Both of * them describe a memory region. The frame buffer is the first region * and the register set is the second region. * * The register manipulation logic is taken from the Linux driver, * which is in the public domain. * * The Neomagic is even nice enough to map the AC-97 codec registers into * the register space to allow direct manipulation. Watch out, accessing * AC-97 registers on the Neomagic requires great delicateness, otherwise * the thing will hang the PCI bus, rendering your system frozen. * * For one, it seems the Neomagic status register that reports AC-97 * readiness should NOT be polled more often than once each 1ms. * * Also, writes to the AC-97 register space may take order 40us to * complete. * * Unlike many sound engines, the Neomagic does not support (as far as * we know :) the notion of interrupting every n bytes transferred, * unlike many DMA engines. Instead, it allows you to specify one * location in each ring buffer (called the watermark). When the chip * passes that location while playing, it signals an interrupt. * * The ring buffer size is currently 16k. That is about 100ms of audio * at 44.1kHz/stero/16 bit. However, to keep the buffer full, interrupts * are generated more often than that, so 20-40 interrupts per second * should not be unexpected. Increasing BUFFSIZE should help minimize * of glitches due to drivers that spend to much time looping at high * privelege levels as well as the impact of badly written audio * interface clients. * * TO-DO list: * Figure out interaction with video stuff (look at Xfree86 driver?) * * Figure out how to shrink that huge table neo-coeff.h */ #define NM_BUFFSIZE 16384 /* device private data */ struct neo_softc { device_t dev; kmutex_t lock; kmutex_t intr_lock; bus_space_tag_t bufiot; bus_space_handle_t bufioh; bus_space_tag_t regiot; bus_space_handle_t regioh; uint32_t type; void *ih; void (*pintr)(void *); /* DMA completion intr handler */ void *parg; /* arg for intr() */ void (*rintr)(void *); /* DMA completion intr handler */ void *rarg; /* arg for intr() */ vaddr_t buf_vaddr; vaddr_t rbuf_vaddr; vaddr_t pbuf_vaddr; int pbuf_allocated; int rbuf_allocated; bus_addr_t buf_pciaddr; bus_addr_t rbuf_pciaddr; bus_addr_t pbuf_pciaddr; uint32_t ac97_base, ac97_status, ac97_busy; uint32_t buftop, pbuf, rbuf, cbuf, acbuf; uint32_t playint, recint, misc1int, misc2int; uint32_t irsz, badintr; uint32_t pbufsize; uint32_t rbufsize; uint32_t pblksize; uint32_t rblksize; uint32_t pwmark; uint32_t rwmark; struct ac97_codec_if *codec_if; struct ac97_host_if host_if; }; /* -------------------------------------------------------------------- */ /* * prototypes */ static int nm_waitcd(struct neo_softc *); static int nm_loadcoeff(struct neo_softc *, int, int); static int nm_init(struct neo_softc *); static int neo_match(device_t, cfdata_t, void *); static void neo_attach(device_t, device_t, void *); static int neo_intr(void *); static int neo_query_encoding(void *, struct audio_encoding *); static int neo_set_params(void *, int, int, audio_params_t *, audio_params_t *, stream_filter_list_t *, stream_filter_list_t *); static int neo_round_blocksize(void *, int, int, const audio_params_t *); static int neo_trigger_output(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static int neo_trigger_input(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static int neo_halt_output(void *); static int neo_halt_input(void *); static int neo_getdev(void *, struct audio_device *); static int neo_mixer_set_port(void *, mixer_ctrl_t *); static int neo_mixer_get_port(void *, mixer_ctrl_t *); static int neo_attach_codec(void *, struct ac97_codec_if *); static int neo_read_codec(void *, uint8_t, uint16_t *); static int neo_write_codec(void *, uint8_t, uint16_t); static int neo_reset_codec(void *); static enum ac97_host_flags neo_flags_codec(void *); static int neo_query_devinfo(void *, mixer_devinfo_t *); static void * neo_malloc(void *, int, size_t); static void neo_free(void *, void *, size_t); static size_t neo_round_buffersize(void *, int, size_t); static paddr_t neo_mappage(void *, void *, off_t, int); static int neo_get_props(void *); static void neo_get_locks(void *, kmutex_t **, kmutex_t **); CFATTACH_DECL_NEW(neo, sizeof(struct neo_softc), neo_match, neo_attach, NULL, NULL); static struct audio_device neo_device = { "NeoMagic 256", "", "neo" }; /* The actual rates supported by the card. */ static const int samplerates[9] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999 }; #define NEO_NFORMATS 4 static const struct audio_format neo_formats[NEO_NFORMATS] = { {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 2, AUFMT_STEREO, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}}, {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 1, AUFMT_MONAURAL, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}}, {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 2, AUFMT_STEREO, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}}, {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8, 1, AUFMT_MONAURAL, 8, {8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000}}, }; /* -------------------------------------------------------------------- */ static const struct audio_hw_if neo_hw_if = { NULL, /* open */ NULL, /* close */ NULL, /* drain */ neo_query_encoding, neo_set_params, neo_round_blocksize, NULL, /* commit_setting */ NULL, /* init_output */ NULL, /* init_input */ NULL, /* start_output */ NULL, /* start_input */ neo_halt_output, neo_halt_input, NULL, /* speaker_ctl */ neo_getdev, NULL, /* getfd */ neo_mixer_set_port, neo_mixer_get_port, neo_query_devinfo, neo_malloc, neo_free, neo_round_buffersize, neo_mappage, neo_get_props, neo_trigger_output, neo_trigger_input, NULL, neo_get_locks, }; /* -------------------------------------------------------------------- */ #define nm_rd_1(sc, regno) \ bus_space_read_1((sc)->regiot, (sc)->regioh, (regno)) #define nm_rd_2(sc, regno) \ bus_space_read_2((sc)->regiot, (sc)->regioh, (regno)) #define nm_rd_4(sc, regno) \ bus_space_read_4((sc)->regiot, (sc)->regioh, (regno)) #define nm_wr_1(sc, regno, val) \ bus_space_write_1((sc)->regiot, (sc)->regioh, (regno), (val)) #define nm_wr_2(sc, regno, val) \ bus_space_write_2((sc)->regiot, (sc)->regioh, (regno), (val)) #define nm_wr_4(sc, regno, val) \ bus_space_write_4((sc)->regiot, (sc)->regioh, (regno), (val)) #define nm_rdbuf_4(sc, regno) \ bus_space_read_4((sc)->bufiot, (sc)->bufioh, (regno)) #define nm_wrbuf_1(sc, regno, val) \ bus_space_write_1((sc)->bufiot, (sc)->bufioh, (regno), (val)) /* ac97 codec */ static int nm_waitcd(struct neo_softc *sc) { int cnt; int fail; cnt = 10; fail = 1; while (cnt-- > 0) { if (nm_rd_2(sc, sc->ac97_status) & sc->ac97_busy) DELAY(100); else { fail = 0; break; } } return fail; } static void nm_ackint(struct neo_softc *sc, uint32_t num) { switch (sc->type) { case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU: nm_wr_2(sc, NM_INT_REG, num << 1); break; case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU: nm_wr_4(sc, NM_INT_REG, num); break; } } static int nm_loadcoeff(struct neo_softc *sc, int dir, int num) { int ofs, sz, i; uint32_t addr; addr = (dir == AUMODE_PLAY)? 0x01c : 0x21c; if (dir == AUMODE_RECORD) num += 8; sz = coefficientSizes[num]; ofs = 0; while (num-- > 0) ofs+= coefficientSizes[num]; for (i = 0; i < sz; i++) nm_wrbuf_1(sc, sc->cbuf + i, coefficients[ofs + i]); nm_wr_4(sc, addr, sc->cbuf); if (dir == AUMODE_PLAY) sz--; nm_wr_4(sc, addr + 4, sc->cbuf + sz); return 0; } /* The interrupt handler */ static int neo_intr(void *p) { struct neo_softc *sc; int status, x; int rv; sc = (struct neo_softc *)p; mutex_spin_enter(&sc->intr_lock); rv = 0; status = (sc->irsz == 2) ? nm_rd_2(sc, NM_INT_REG) : nm_rd_4(sc, NM_INT_REG); if (status & sc->playint) { status &= ~sc->playint; sc->pwmark += sc->pblksize; sc->pwmark %= sc->pbufsize; nm_wr_4(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark); nm_ackint(sc, sc->playint); if (sc->pintr) (*sc->pintr)(sc->parg); rv = 1; } if (status & sc->recint) { status &= ~sc->recint; sc->rwmark += sc->rblksize; sc->rwmark %= sc->rbufsize; nm_wr_4(sc, NM_RBUFFER_WMARK, sc->rbuf + sc->rwmark); nm_ackint(sc, sc->recint); if (sc->rintr) (*sc->rintr)(sc->rarg); rv = 1; } if (status & sc->misc1int) { status &= ~sc->misc1int; nm_ackint(sc, sc->misc1int); x = nm_rd_1(sc, 0x400); nm_wr_1(sc, 0x400, x | 2); printf("%s: misc int 1\n", device_xname(sc->dev)); rv = 1; } if (status & sc->misc2int) { status &= ~sc->misc2int; nm_ackint(sc, sc->misc2int); x = nm_rd_1(sc, 0x400); nm_wr_1(sc, 0x400, x & ~2); printf("%s: misc int 2\n", device_xname(sc->dev)); rv = 1; } if (status) { status &= ~sc->misc2int; nm_ackint(sc, sc->misc2int); printf("%s: unknown int\n", device_xname(sc->dev)); rv = 1; } mutex_spin_exit(&sc->intr_lock); return rv; } /* -------------------------------------------------------------------- */ /* * Probe and attach the card */ static int nm_init(struct neo_softc *sc) { uint32_t ofs, i; switch (sc->type) { case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU: sc->ac97_base = NM_MIXER_OFFSET; sc->ac97_status = NM_MIXER_STATUS_OFFSET; sc->ac97_busy = NM_MIXER_READY_MASK; sc->buftop = 2560 * 1024; sc->irsz = 2; sc->playint = NM_PLAYBACK_INT; sc->recint = NM_RECORD_INT; sc->misc1int = NM_MISC_INT_1; sc->misc2int = NM_MISC_INT_2; break; case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU: sc->ac97_base = NM_MIXER_OFFSET; sc->ac97_status = NM2_MIXER_STATUS_OFFSET; sc->ac97_busy = NM2_MIXER_READY_MASK; sc->buftop = (nm_rd_2(sc, 0xa0b) ? 6144 : 4096) * 1024; sc->irsz = 4; sc->playint = NM2_PLAYBACK_INT; sc->recint = NM2_RECORD_INT; sc->misc1int = NM2_MISC_INT_1; sc->misc2int = NM2_MISC_INT_2; break; #ifdef DIAGNOSTIC default: panic("nm_init: impossible"); #endif } sc->badintr = 0; ofs = sc->buftop - 0x0400; sc->buftop -= 0x1400; if ((nm_rdbuf_4(sc, ofs) & NM_SIG_MASK) == NM_SIGNATURE) { i = nm_rdbuf_4(sc, ofs + 4); if (i != 0 && i != 0xffffffff) sc->buftop = i; } sc->cbuf = sc->buftop - NM_MAX_COEFFICIENT; sc->rbuf = sc->cbuf - NM_BUFFSIZE; sc->pbuf = sc->rbuf - NM_BUFFSIZE; sc->acbuf = sc->pbuf - (NM_TOTAL_COEFF_COUNT * 4); sc->buf_vaddr = (vaddr_t) bus_space_vaddr(sc->bufiot, sc->bufioh); sc->rbuf_vaddr = sc->buf_vaddr + sc->rbuf; sc->pbuf_vaddr = sc->buf_vaddr + sc->pbuf; sc->rbuf_pciaddr = sc->buf_pciaddr + sc->rbuf; sc->pbuf_pciaddr = sc->buf_pciaddr + sc->pbuf; nm_wr_1(sc, 0, 0x11); nm_wr_1(sc, NM_RECORD_ENABLE_REG, 0); nm_wr_2(sc, 0x214, 0); return 0; } static int neo_match(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa; pcireg_t subdev; pa = aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_NEOMAGIC) return 0; subdev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU: /* * We have to weed-out the non-AC'97 versions of * the chip (i.e. the ones that are known to work * in WSS emulation mode), as they won't work with * this driver. */ switch (PCI_VENDOR(subdev)) { case PCI_VENDOR_DELL: switch (PCI_PRODUCT(subdev)) { case 0x008f: return 0; } break; case PCI_VENDOR_HP: switch (PCI_PRODUCT(subdev)) { case 0x0007: return 0; } break; case PCI_VENDOR_IBM: switch (PCI_PRODUCT(subdev)) { case 0x00dd: return 0; } break; } return 1; case PCI_PRODUCT_NEOMAGIC_NMMM256ZX_AU: return 1; } return 0; } static bool neo_resume(device_t dv, const pmf_qual_t *qual) { struct neo_softc *sc = device_private(dv); mutex_enter(&sc->lock); mutex_spin_enter(&sc->intr_lock); nm_init(sc); mutex_spin_exit(&sc->intr_lock); sc->codec_if->vtbl->restore_ports(sc->codec_if); mutex_exit(&sc->lock); return true; } static void neo_attach(device_t parent, device_t self, void *aux) { struct neo_softc *sc; struct pci_attach_args *pa; pci_chipset_tag_t pc; char const *intrstr; pci_intr_handle_t ih; pcireg_t csr; int error; sc = device_private(self); pa = aux; pc = pa->pa_pc; sc->type = PCI_PRODUCT(pa->pa_id); printf(": NeoMagic 256%s audio\n", sc->type == PCI_PRODUCT_NEOMAGIC_NMMM256AV_AU ? "AV" : "ZX"); /* Map I/O register */ if (pci_mapreg_map(pa, PCI_MAPREG_START, PCI_MAPREG_TYPE_MEM, 0, &sc->bufiot, &sc->bufioh, &sc->buf_pciaddr, NULL)) { aprint_error_dev(self, "can't map buffer\n"); return; } if (pci_mapreg_map(pa, PCI_MAPREG_START + 4, PCI_MAPREG_TYPE_MEM, BUS_SPACE_MAP_LINEAR, &sc->regiot, &sc->regioh, NULL, NULL)) { aprint_error_dev(self, "can't map registers\n"); return; } /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } mutex_init(&sc->lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->intr_lock, MUTEX_DEFAULT, IPL_AUDIO); intrstr = pci_intr_string(pc, ih); sc->ih = pci_intr_establish(pc, ih, IPL_AUDIO, neo_intr, sc); if (sc->ih == NULL) { aprint_error_dev(self, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); mutex_destroy(&sc->lock); mutex_destroy(&sc->intr_lock); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); mutex_spin_enter(&sc->intr_lock); error = nm_init(sc); mutex_spin_exit(&sc->intr_lock); if (error != 0) { mutex_destroy(&sc->lock); mutex_destroy(&sc->intr_lock); return; } /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); sc->host_if.arg = sc; sc->host_if.attach = neo_attach_codec; sc->host_if.read = neo_read_codec; sc->host_if.write = neo_write_codec; sc->host_if.reset = neo_reset_codec; sc->host_if.flags = neo_flags_codec; if (ac97_attach(&sc->host_if, self, &sc->lock) != 0) { mutex_destroy(&sc->lock); mutex_destroy(&sc->intr_lock); return; } if (!pmf_device_register(self, NULL, neo_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); audio_attach_mi(&neo_hw_if, sc, self); } static int neo_read_codec(void *v, uint8_t a, uint16_t *d) { struct neo_softc *sc; sc = v; if (!nm_waitcd(sc)) { *d = nm_rd_2(sc, sc->ac97_base + a); DELAY(1000); return 0; } return ENXIO; } static int neo_write_codec(void *v, u_int8_t a, u_int16_t d) { struct neo_softc *sc; int cnt; sc = v; cnt = 3; if (!nm_waitcd(sc)) { while (cnt-- > 0) { nm_wr_2(sc, sc->ac97_base + a, d); if (!nm_waitcd(sc)) { DELAY(1000); return 0; } } } return ENXIO; } static int neo_attach_codec(void *v, struct ac97_codec_if *codec_if) { struct neo_softc *sc; sc = v; sc->codec_if = codec_if; return 0; } static int neo_reset_codec(void *v) { struct neo_softc *sc; sc = v; nm_wr_1(sc, 0x6c0, 0x01); nm_wr_1(sc, 0x6cc, 0x87); nm_wr_1(sc, 0x6cc, 0x80); nm_wr_1(sc, 0x6cc, 0x00); return 0; } static enum ac97_host_flags neo_flags_codec(void *v) { return AC97_HOST_DONT_READ; } static int neo_query_encoding(void *addr, struct audio_encoding *fp) { switch (fp->index) { case 0: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; return 0; case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return 0; case 2: strcpy(fp->name, AudioEalaw); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return 0; case 3: strcpy(fp->name, AudioEslinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strcpy(fp->name, AudioEslinear_le); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return 0; case 5: strcpy(fp->name, AudioEulinear_le); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return 0; case 6: strcpy(fp->name, AudioEslinear_be); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return 0; case 7: strcpy(fp->name, AudioEulinear_be); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return 0; default: return EINVAL; } } /* Todo: don't commit settings to card until we've verified all parameters */ static int neo_set_params(void *addr, int setmode, int usemode, audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) { struct neo_softc *sc; audio_params_t *p; stream_filter_list_t *fil; uint32_t base; uint8_t x; int mode, i; sc = addr; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p == NULL) continue; for (x = 0; x < 8; x++) { if (p->sample_rate < (samplerates[x] + samplerates[x + 1]) / 2) break; } if (x == 8) return EINVAL; p->sample_rate = samplerates[x]; nm_loadcoeff(sc, mode, x); x <<= 4; x &= NM_RATE_MASK; if (p->precision == 16) x |= NM_RATE_BITS_16; if (p->channels == 2) x |= NM_RATE_STEREO; base = (mode == AUMODE_PLAY)? NM_PLAYBACK_REG_OFFSET : NM_RECORD_REG_OFFSET; nm_wr_1(sc, base + NM_RATE_REG_OFFSET, x); fil = mode == AUMODE_PLAY ? pfil : rfil; i = auconv_set_converter(neo_formats, NEO_NFORMATS, mode, p, FALSE, fil); if (i < 0) return EINVAL; } return 0; } static int neo_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param) { return NM_BUFFSIZE / 2; } static int neo_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct neo_softc *sc; int ssz; sc = addr; sc->pintr = intr; sc->parg = arg; ssz = (param->precision == 16) ? 2 : 1; if (param->channels == 2) ssz <<= 1; sc->pbufsize = ((char*)end - (char *)start); sc->pblksize = blksize; sc->pwmark = blksize; nm_wr_4(sc, NM_PBUFFER_START, sc->pbuf); nm_wr_4(sc, NM_PBUFFER_END, sc->pbuf + sc->pbufsize - ssz); nm_wr_4(sc, NM_PBUFFER_CURRP, sc->pbuf); nm_wr_4(sc, NM_PBUFFER_WMARK, sc->pbuf + sc->pwmark); nm_wr_1(sc, NM_PLAYBACK_ENABLE_REG, NM_PLAYBACK_FREERUN | NM_PLAYBACK_ENABLE_FLAG); nm_wr_2(sc, NM_AUDIO_MUTE_REG, 0); return 0; } static int neo_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct neo_softc *sc; int ssz; sc = addr; sc->rintr = intr; sc->rarg = arg; ssz = (param->precision == 16) ? 2 : 1; if (param->channels == 2) ssz <<= 1; sc->rbufsize = ((char*)end - (char *)start); sc->rblksize = blksize; sc->rwmark = blksize; nm_wr_4(sc, NM_RBUFFER_START, sc->rbuf); nm_wr_4(sc, NM_RBUFFER_END, sc->rbuf + sc->rbufsize); nm_wr_4(sc, NM_RBUFFER_CURRP, sc->rbuf); nm_wr_4(sc, NM_RBUFFER_WMARK, sc->rbuf + sc->rwmark); nm_wr_1(sc, NM_RECORD_ENABLE_REG, NM_RECORD_FREERUN | NM_RECORD_ENABLE_FLAG); return 0; } static int neo_halt_output(void *addr) { struct neo_softc *sc; sc = (struct neo_softc *)addr; nm_wr_1(sc, NM_PLAYBACK_ENABLE_REG, 0); nm_wr_2(sc, NM_AUDIO_MUTE_REG, NM_AUDIO_MUTE_BOTH); sc->pintr = 0; return 0; } static int neo_halt_input(void *addr) { struct neo_softc *sc; sc = (struct neo_softc *)addr; nm_wr_1(sc, NM_RECORD_ENABLE_REG, 0); sc->rintr = 0; return 0; } static int neo_getdev(void *addr, struct audio_device *retp) { *retp = neo_device; return 0; } static int neo_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct neo_softc *sc; sc = addr; return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp); } static int neo_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct neo_softc *sc; sc = addr; return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp); } static int neo_query_devinfo(void *addr, mixer_devinfo_t *dip) { struct neo_softc *sc; sc = addr; return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dip); } static void * neo_malloc(void *addr, int direction, size_t size) { struct neo_softc *sc; void *rv; sc = addr; rv = NULL; switch (direction) { case AUMODE_PLAY: if (sc->pbuf_allocated == 0) { rv = (void *) sc->pbuf_vaddr; sc->pbuf_allocated = 1; } break; case AUMODE_RECORD: if (sc->rbuf_allocated == 0) { rv = (void *) sc->rbuf_vaddr; sc->rbuf_allocated = 1; } break; } return rv; } static void neo_free(void *addr, void *ptr, size_t size) { struct neo_softc *sc; vaddr_t v; sc = addr; v = (vaddr_t)ptr; if (v == sc->pbuf_vaddr) sc->pbuf_allocated = 0; else if (v == sc->rbuf_vaddr) sc->rbuf_allocated = 0; else printf("neo_free: bad address %p\n", ptr); } static size_t neo_round_buffersize(void *addr, int direction, size_t size) { return NM_BUFFSIZE; } static paddr_t neo_mappage(void *addr, void *mem, off_t off, int prot) { struct neo_softc *sc; vaddr_t v; bus_addr_t pciaddr; sc = addr; v = (vaddr_t)mem; if (v == sc->pbuf_vaddr) pciaddr = sc->pbuf_pciaddr; else if (v == sc->rbuf_vaddr) pciaddr = sc->rbuf_pciaddr; else return -1; return bus_space_mmap(sc->bufiot, pciaddr, off, prot, BUS_SPACE_MAP_LINEAR); } static int neo_get_props(void *addr) { return AUDIO_PROP_INDEPENDENT | AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX; } static void neo_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) { struct neo_softc *sc; sc = addr; *intr = &sc->intr_lock; *thread = &sc->lock; }