/* Low level Alpha interface, for GDB when running native. Copyright 1993, 1995 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "defs.h" #include "inferior.h" #include "gdbcore.h" #include "target.h" #include #include #include #include #include #include #include #include #include static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0}; /* Size of elements in jmpbuf */ #define JB_ELEMENT_SIZE 8 /* The definition for JB_PC in machine/reg.h is wrong. And we can't get at the correct definition in setjmp.h as it is not always available (eg. if _POSIX_SOURCE is defined which is the default). As the defintion is unlikely to change (see comment in , define the correct value here. */ #undef JB_PC #define JB_PC 2 /* Figure out where the longjmp will land. We expect the first arg to be a pointer to the jmp_buf structure from which we extract the pc (JB_PC) that we will land at. The pc is copied into PC. This routine returns true on success. */ int get_longjmp_target (pc) CORE_ADDR *pc; { CORE_ADDR jb_addr; char raw_buffer[MAX_REGISTER_RAW_SIZE]; jb_addr = read_register(A0_REGNUM); if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer, sizeof(CORE_ADDR))) return 0; *pc = extract_address (raw_buffer, sizeof(CORE_ADDR)); return 1; } /* Extract the register values out of the core file and store them where `read_register' will find them. CORE_REG_SECT points to the register values themselves, read into memory. CORE_REG_SIZE is the size of that area. WHICH says which set of registers we are handling (0 = int, 2 = float on machines where they are discontiguous). REG_ADDR is the offset from u.u_ar0 to the register values relative to core_reg_sect. This is used with old-fashioned core files to locate the registers in a large upage-plus-stack ".reg" section. Original upage address X is at location core_reg_sect+x+reg_addr. */ #define oi(name) \ offsetof(struct md_coredump, md_tf.tf_regs[__CONCAT(FRAME_,name)]) #define of(num) \ offsetof(struct md_coredump, md_fpstate.fpr_regs[num]) void fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) char *core_reg_sect; unsigned core_reg_size; int which; unsigned reg_addr; { register int regno; register int addr; int bad_reg = -1; int regoff[NUM_REGS] = { oi(V0), oi(T0), oi(T1), oi(T2), oi(T3), oi(T4), oi(T5), oi(T6), oi(T7), oi(S0), oi(S1), oi(S2), oi(S3), oi(S4), oi(S5), oi(S6), oi(A0), oi(A1), oi(A2), oi(A3), oi(A4), oi(A5), oi(T8), oi(T9), oi(T10), oi(T11), oi(RA), oi(T12), oi(AT), oi(GP), oi(SP), -1, of(0), of(1), of(2), of(3), of(4), of(5), of(6), of(7), of(8), of(9), of(10), of(11), of(12), of(13), of(14), of(15), of(16), of(17), of(18), of(19), of(20), of(21), of(22), of(23), of(24), of(25), of(26), of(27), of(28), of(29), of(30), of(31), oi(PC), -1, }; for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_FETCH_REGISTER (regno)) { supply_register (regno, zerobuf); continue; } addr = regoff[regno]; if (addr < 0 || addr >= core_reg_size) { if (bad_reg < 0) bad_reg = regno; } else { supply_register (regno, core_reg_sect + addr); } } if (bad_reg >= 0) { error ("Register %s not found in core file.", reg_names[bad_reg]); } } register_t rrf_to_register(regno, reg, fpreg) int regno; struct reg *reg; struct fpreg *fpreg; { if (regno < 0) abort(); else if (regno < FP0_REGNUM) return (reg->r_regs[regno]); else if (regno == PC_REGNUM) return (reg->r_regs[R_ZERO]); else if (regno >= FP0_REGNUM) return (fpreg->fpr_regs[regno - FP0_REGNUM]); else abort(); } void fetch_inferior_registers (regno) int regno; { struct reg reg; struct fpreg fpreg; register_t regval; char *rp; ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0); ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0); if (regno < 0) { for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_FETCH_REGISTER (regno)) rp = zerobuf; else { regval = rrf_to_register(regno, ®, &fpreg); rp = (char *)®val; } supply_register(regno, rp); } } else { if (CANNOT_FETCH_REGISTER (regno)) rp = zerobuf; else { regval = rrf_to_register(regno, ®, &fpreg); rp = (char *)®val; } supply_register(regno, rp); } } void register_into_rrf(val, regno, reg, fpreg) register_t val; int regno; struct reg *reg; struct fpreg *fpreg; { if (regno < 0) abort(); else if (regno < FP0_REGNUM) reg->r_regs[regno] = val; else if (regno == PC_REGNUM) reg->r_regs[R_ZERO] = val; else if (regno >= FP0_REGNUM) fpreg->fpr_regs[regno - FP0_REGNUM] = val; else abort(); } void store_inferior_registers (regno) int regno; { struct reg reg; struct fpreg fpreg; register_t regval; if (regno < 0) { for (regno = 0; regno < NUM_REGS; regno++) { if (CANNOT_STORE_REGISTER (regno)) continue; if (REGISTER_RAW_SIZE (regno) != sizeof regval) abort(); memcpy(®val, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno)); register_into_rrf(regval, regno, ®, &fpreg); } } else { ptrace(PT_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0); ptrace(PT_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0); memcpy(®val, ®isters[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno)); register_into_rrf(regval, regno, ®, &fpreg); } ptrace(PT_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE)®, 0); ptrace(PT_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE)&fpreg, 0); } void child_resume (pid, step, signal) int pid; int step; enum target_signal signal; { errno = 0; if (pid == -1) /* Resume all threads. */ /* I think this only gets used in the non-threaded case, where "resume all threads" and "resume inferior_pid" are the same. */ pid = inferior_pid; /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where it was. (If GDB wanted it to start some other way, we have already written a new PC value to the child.) If this system does not support PT_STEP, a higher level function will have called single_step() to transmute the step request into a continue request (by setting breakpoints on all possible successor instructions), so we don't have to worry about that here. */ if (step) abort(); else ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal)); if (errno) perror_with_name ("ptrace"); } #define kread(addr, p, l) \ (target_read_memory((CORE_ADDR)(addr), (char *)(p), (l))) fetch_kcore_registers (pcbp) struct pcb *pcbp; { int regno; for (regno = 0; regno < NUM_REGS; regno++) { switch (regno) { case SP_REGNUM: supply_register (regno, (char *)&pcbp->pcb_hw.apcb_ksp); break; case PC_REGNUM: supply_register (regno, (char *)&pcbp->pcb_context[7]); break; case S0_REGNUM: case S0_REGNUM+1: case S0_REGNUM+2: case S0_REGNUM+3: case S0_REGNUM+4: case S0_REGNUM+5: case S0_REGNUM+6: supply_register (regno, (char *)&pcbp->pcb_context[regno - S0_REGNUM]); break; default: supply_register (regno, zerobuf); break; } } } void clear_regs() { int regno; for (regno = 0; regno < NUM_REGS; regno++) supply_register(regno, zerobuf); } static struct core_fns alphanbsd_core_fns = { bfd_target_ecoff_flavour, fetch_core_registers, NULL }; static struct core_fns alphanbsd_elf_core_fns = { bfd_target_elf_flavour, fetch_core_registers, NULL }; void _initialize_core_alphanbsd () { add_core_fns (&alphanbsd_core_fns); add_core_fns (&alphanbsd_elf_core_fns); }