/* $NetBSD: subr_kmem.c,v 1.50 2013/04/22 13:22:25 yamt Exp $ */ /*- * Copyright (c) 2009 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c)2006 YAMAMOTO Takashi, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * allocator of kernel wired memory. */ /* * This allocator has some debug features enabled with "option DEBUG". * * KMEM_POISON * Try to detect modify-after-free bugs. * * Fill freed (in the sense of kmem_free) memory with a garbage pattern. * Check the pattern on allocation. * * KMEM_REDZONE * Try to detect overrun bugs. * * Allocate some more bytes for each allocation. * The extra bytes are checked by KMEM_POISON on kmem_free. * * KMEM_SIZE * Try to detect alloc/free size mismatch bugs. * * Prefix each allocations with a fixed-sized header and record * the exact user-requested allocation size in it. * When freeing, compare it with kmem_free's "size" argument. * * KMEM_GUARD * See the below "kmguard" section. */ /* * kmguard * * A kernel with "option DEBUG" has "kmguard" debugging feature compiled in. * See the comment in uvm/uvm_kmguard.c for what kind of bugs it tries to * detect. Even if compiled in, it's disabled by default because it's very * expensive. You can enable it on boot by: * * boot -d * db> w kmem_guard_depth 0t30000 * db> c * * The default value of kmem_guard_depth is 0, which means disabled. * It can be changed by KMEM_GUARD_DEPTH kernel config option. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.50 2013/04/22 13:22:25 yamt Exp $"); #include #include #include #include #include #include #include #include #include #include #include struct kmem_cache_info { size_t kc_size; const char * kc_name; }; static const struct kmem_cache_info kmem_cache_sizes[] = { { 8, "kmem-8" }, { 16, "kmem-16" }, { 24, "kmem-24" }, { 32, "kmem-32" }, { 40, "kmem-40" }, { 48, "kmem-48" }, { 56, "kmem-56" }, { 64, "kmem-64" }, { 80, "kmem-80" }, { 96, "kmem-96" }, { 112, "kmem-112" }, { 128, "kmem-128" }, { 160, "kmem-160" }, { 192, "kmem-192" }, { 224, "kmem-224" }, { 256, "kmem-256" }, { 320, "kmem-320" }, { 384, "kmem-384" }, { 448, "kmem-448" }, { 512, "kmem-512" }, { 768, "kmem-768" }, { 1024, "kmem-1024" }, { 0, NULL } }; static const struct kmem_cache_info kmem_cache_big_sizes[] = { { 2048, "kmem-2048" }, { 4096, "kmem-4096" }, { 8192, "kmem-8192" }, { 16384, "kmem-16384" }, { 0, NULL } }; /* * KMEM_ALIGN is the smallest guaranteed alignment and also the * smallest allocateable quantum. * Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment. */ #define KMEM_ALIGN 8 #define KMEM_SHIFT 3 #define KMEM_MAXSIZE 1024 #define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT) static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned; static size_t kmem_cache_maxidx __read_mostly; #define KMEM_BIG_ALIGN 2048 #define KMEM_BIG_SHIFT 11 #define KMEM_BIG_MAXSIZE 16384 #define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT) static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned; static size_t kmem_cache_big_maxidx __read_mostly; #if defined(DEBUG) && defined(_HARDKERNEL) #ifndef KMEM_GUARD_DEPTH #define KMEM_GUARD_DEPTH 0 #endif int kmem_guard_depth = KMEM_GUARD_DEPTH; size_t kmem_guard_size; static struct uvm_kmguard kmem_guard; static void *kmem_freecheck; #define KMEM_POISON #define KMEM_REDZONE #define KMEM_SIZE #define KMEM_GUARD #endif /* defined(DEBUG) */ #if defined(KMEM_POISON) static int kmem_poison_ctor(void *, void *, int); static void kmem_poison_fill(void *, size_t); static void kmem_poison_check(void *, size_t); #else /* defined(KMEM_POISON) */ #define kmem_poison_fill(p, sz) /* nothing */ #define kmem_poison_check(p, sz) /* nothing */ #endif /* defined(KMEM_POISON) */ #if defined(KMEM_REDZONE) #define REDZONE_SIZE 1 #else /* defined(KMEM_REDZONE) */ #define REDZONE_SIZE 0 #endif /* defined(KMEM_REDZONE) */ #if defined(KMEM_SIZE) #define SIZE_SIZE (MAX(KMEM_ALIGN, sizeof(size_t))) static void kmem_size_set(void *, size_t); static void kmem_size_check(void *, size_t); #else #define SIZE_SIZE 0 #define kmem_size_set(p, sz) /* nothing */ #define kmem_size_check(p, sz) /* nothing */ #endif CTASSERT(KM_SLEEP == PR_WAITOK); CTASSERT(KM_NOSLEEP == PR_NOWAIT); /* * kmem_intr_alloc: allocate wired memory. */ void * kmem_intr_alloc(size_t requested_size, km_flag_t kmflags) { size_t allocsz, index; size_t size; pool_cache_t pc; uint8_t *p; KASSERT(requested_size > 0); #ifdef KMEM_GUARD if (requested_size <= kmem_guard_size) { return uvm_kmguard_alloc(&kmem_guard, requested_size, (kmflags & KM_SLEEP) != 0); } #endif size = kmem_roundup_size(requested_size); allocsz = size + REDZONE_SIZE + SIZE_SIZE; if ((index = ((allocsz -1) >> KMEM_SHIFT)) < kmem_cache_maxidx) { pc = kmem_cache[index]; } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) < kmem_cache_big_maxidx) { pc = kmem_cache_big[index]; } else { int ret = uvm_km_kmem_alloc(kmem_va_arena, (vsize_t)round_page(size), ((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP) | VM_INSTANTFIT, (vmem_addr_t *)&p); if (ret) { return NULL; } FREECHECK_OUT(&kmem_freecheck, p); return p; } p = pool_cache_get(pc, kmflags); if (__predict_true(p != NULL)) { kmem_poison_check(p, size); FREECHECK_OUT(&kmem_freecheck, p); kmem_size_set(p, requested_size); return p + SIZE_SIZE; } return p; } /* * kmem_intr_zalloc: allocate zeroed wired memory. */ void * kmem_intr_zalloc(size_t size, km_flag_t kmflags) { void *p; p = kmem_intr_alloc(size, kmflags); if (p != NULL) { memset(p, 0, size); } return p; } /* * kmem_intr_free: free wired memory allocated by kmem_alloc. */ void kmem_intr_free(void *p, size_t requested_size) { size_t allocsz, index; size_t size; pool_cache_t pc; KASSERT(p != NULL); KASSERT(requested_size > 0); #ifdef KMEM_GUARD if (requested_size <= kmem_guard_size) { uvm_kmguard_free(&kmem_guard, requested_size, p); return; } #endif size = kmem_roundup_size(requested_size); allocsz = size + REDZONE_SIZE + SIZE_SIZE; if ((index = ((allocsz -1) >> KMEM_SHIFT)) < kmem_cache_maxidx) { pc = kmem_cache[index]; } else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT)) < kmem_cache_big_maxidx) { pc = kmem_cache_big[index]; } else { FREECHECK_IN(&kmem_freecheck, p); uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p, round_page(size)); return; } p = (uint8_t *)p - SIZE_SIZE; kmem_size_check(p, requested_size); FREECHECK_IN(&kmem_freecheck, p); LOCKDEBUG_MEM_CHECK(p, size); kmem_poison_check((uint8_t *)p + SIZE_SIZE + size, allocsz - (SIZE_SIZE + size)); kmem_poison_fill(p, allocsz); pool_cache_put(pc, p); } /* ---- kmem API */ /* * kmem_alloc: allocate wired memory. * => must not be called from interrupt context. */ void * kmem_alloc(size_t size, km_flag_t kmflags) { KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), "kmem(9) should not be used from the interrupt context"); return kmem_intr_alloc(size, kmflags); } /* * kmem_zalloc: allocate zeroed wired memory. * => must not be called from interrupt context. */ void * kmem_zalloc(size_t size, km_flag_t kmflags) { KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()), "kmem(9) should not be used from the interrupt context"); return kmem_intr_zalloc(size, kmflags); } /* * kmem_free: free wired memory allocated by kmem_alloc. * => must not be called from interrupt context. */ void kmem_free(void *p, size_t size) { KASSERT(!cpu_intr_p()); KASSERT(!cpu_softintr_p()); kmem_intr_free(p, size); } static size_t kmem_create_caches(const struct kmem_cache_info *array, pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl) { size_t maxidx = 0; size_t table_unit = (1 << shift); size_t size = table_unit; int i; for (i = 0; array[i].kc_size != 0 ; i++) { const char *name = array[i].kc_name; size_t cache_size = array[i].kc_size; struct pool_allocator *pa; int flags = PR_NOALIGN; pool_cache_t pc; size_t align; if ((cache_size & (CACHE_LINE_SIZE - 1)) == 0) align = CACHE_LINE_SIZE; else if ((cache_size & (PAGE_SIZE - 1)) == 0) align = PAGE_SIZE; else align = KMEM_ALIGN; if (cache_size < CACHE_LINE_SIZE) flags |= PR_NOTOUCH; /* check if we reached the requested size */ if (cache_size > maxsize || cache_size > PAGE_SIZE) { break; } if ((cache_size >> shift) > maxidx) { maxidx = cache_size >> shift; } if ((cache_size >> shift) > maxidx) { maxidx = cache_size >> shift; } pa = &pool_allocator_kmem; #if defined(KMEM_POISON) pc = pool_cache_init(cache_size, align, 0, flags, name, pa, ipl, kmem_poison_ctor, NULL, (void *)cache_size); #else /* defined(KMEM_POISON) */ pc = pool_cache_init(cache_size, align, 0, flags, name, pa, ipl, NULL, NULL, NULL); #endif /* defined(KMEM_POISON) */ while (size <= cache_size) { alloc_table[(size - 1) >> shift] = pc; size += table_unit; } } return maxidx; } void kmem_init(void) { #ifdef KMEM_GUARD uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size, kmem_va_arena); #endif kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes, kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM); kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes, kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM); } size_t kmem_roundup_size(size_t size) { return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1); } /* ---- debug */ #if defined(KMEM_POISON) #if defined(_LP64) #define PRIME 0x9e37fffffffc0000UL #else /* defined(_LP64) */ #define PRIME 0x9e3779b1 #endif /* defined(_LP64) */ static inline uint8_t kmem_poison_pattern(const void *p) { return (uint8_t)(((uintptr_t)p) * PRIME >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); } static int kmem_poison_ctor(void *arg, void *obj, int flag) { size_t sz = (size_t)arg; kmem_poison_fill(obj, sz); return 0; } static void kmem_poison_fill(void *p, size_t sz) { uint8_t *cp; const uint8_t *ep; cp = p; ep = cp + sz; while (cp < ep) { *cp = kmem_poison_pattern(cp); cp++; } } static void kmem_poison_check(void *p, size_t sz) { uint8_t *cp; const uint8_t *ep; cp = p; ep = cp + sz; while (cp < ep) { const uint8_t expected = kmem_poison_pattern(cp); if (*cp != expected) { panic("%s: %p: 0x%02x != 0x%02x\n", __func__, cp, *cp, expected); } cp++; } } #endif /* defined(KMEM_POISON) */ #if defined(KMEM_SIZE) static void kmem_size_set(void *p, size_t sz) { memcpy(p, &sz, sizeof(sz)); } static void kmem_size_check(void *p, size_t sz) { size_t psz; memcpy(&psz, p, sizeof(psz)); if (psz != sz) { panic("kmem_free(%p, %zu) != allocated size %zu", (const uint8_t *)p + SIZE_SIZE, sz, psz); } } #endif /* defined(KMEM_SIZE) */ /* * Used to dynamically allocate string with kmem accordingly to format. */ char * kmem_asprintf(const char *fmt, ...) { int size, len; va_list va; char *str; va_start(va, fmt); len = vsnprintf(NULL, 0, fmt, va); va_end(va); str = kmem_alloc(len + 1, KM_SLEEP); va_start(va, fmt); size = vsnprintf(str, len + 1, fmt, va); va_end(va); KASSERT(size == len); return str; }