/* $NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $ */ /*- * Copyright (c) 2004, 2005, 2006, 2007 David Young. All rights * reserved. * * Programmed for NetBSD by David Young. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of David Young may not be used to endorse or promote * products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David * Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. */ /* * Device driver for the Realtek RTL8180 802.11 MAC/BBP. */ #include __KERNEL_RCSID(0, "$NetBSD: rtw.c,v 1.109 2009/09/16 16:34:50 dyoung Exp $"); #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include /* splnet */ #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include static int rtw_rfprog_fallback = 0; static int rtw_host_rfio = 0; #ifdef RTW_DEBUG int rtw_debug = 0; static int rtw_rxbufs_limit = RTW_RXQLEN; #endif /* RTW_DEBUG */ #define NEXT_ATTACH_STATE(sc, state) do { \ DPRINTF(sc, RTW_DEBUG_ATTACH, \ ("%s: attach state %s\n", __func__, #state)); \ sc->sc_attach_state = state; \ } while (0) int rtw_dwelltime = 200; /* milliseconds */ static struct ieee80211_cipher rtw_cipher_wep; static void rtw_disable_interrupts(struct rtw_regs *); static void rtw_enable_interrupts(struct rtw_softc *); static int rtw_init(struct ifnet *); static void rtw_start(struct ifnet *); static void rtw_reset_oactive(struct rtw_softc *); static struct mbuf *rtw_beacon_alloc(struct rtw_softc *, struct ieee80211_node *); static u_int rtw_txring_next(struct rtw_regs *, struct rtw_txdesc_blk *); static void rtw_io_enable(struct rtw_softc *, uint8_t, int); static int rtw_key_delete(struct ieee80211com *, const struct ieee80211_key *); static int rtw_key_set(struct ieee80211com *, const struct ieee80211_key *, const u_int8_t[IEEE80211_ADDR_LEN]); static void rtw_key_update_end(struct ieee80211com *); static void rtw_key_update_begin(struct ieee80211com *); static int rtw_wep_decap(struct ieee80211_key *, struct mbuf *, int); static void rtw_wep_setkeys(struct rtw_softc *, struct ieee80211_key *, int); static void rtw_led_attach(struct rtw_led_state *, void *); static void rtw_led_detach(struct rtw_led_state *); static void rtw_led_init(struct rtw_regs *); static void rtw_led_slowblink(void *); static void rtw_led_fastblink(void *); static void rtw_led_set(struct rtw_led_state *, struct rtw_regs *, int); static int rtw_sysctl_verify_rfio(SYSCTLFN_PROTO); static int rtw_sysctl_verify_rfprog(SYSCTLFN_PROTO); #ifdef RTW_DEBUG static void rtw_dump_rings(struct rtw_softc *sc); static void rtw_print_txdesc(struct rtw_softc *, const char *, struct rtw_txsoft *, struct rtw_txdesc_blk *, int); static int rtw_sysctl_verify_debug(SYSCTLFN_PROTO); static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_PROTO); #endif /* RTW_DEBUG */ #ifdef RTW_DIAG static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln); #endif /* RTW_DIAG */ /* * Setup sysctl(3) MIB, hw.rtw.* * * TBD condition CTLFLAG_PERMANENT on being a module or not */ SYSCTL_SETUP(sysctl_rtw, "sysctl rtw(4) subtree setup") { int rc; const struct sysctlnode *cnode, *rnode; if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) goto err; if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "rtw", "Realtek RTL818x 802.11 controls", NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; #ifdef RTW_DEBUG /* control debugging printfs */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable RTL818x debugging output"), rtw_sysctl_verify_debug, 0, &rtw_debug, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; /* Limit rx buffers, for simulating resource exhaustion. */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rxbufs_limit", SYSCTL_DESCR("Set rx buffers limit"), rtw_sysctl_verify_rxbufs_limit, 0, &rtw_rxbufs_limit, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; #endif /* RTW_DEBUG */ /* set fallback RF programming method */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "rfprog_fallback", SYSCTL_DESCR("Set fallback RF programming method"), rtw_sysctl_verify_rfprog, 0, &rtw_rfprog_fallback, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; /* force host to control RF I/O bus */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "host_rfio", SYSCTL_DESCR("Enable host control of RF I/O"), rtw_sysctl_verify_rfio, 0, &rtw_host_rfio, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; return; err: printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } static int rtw_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) { int error, t; struct sysctlnode node; node = *rnode; t = *(int*)rnode->sysctl_data; node.sysctl_data = &t; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (t < lower || t > upper) return (EINVAL); *(int*)rnode->sysctl_data = t; return (0); } static int rtw_sysctl_verify_rfprog(SYSCTLFN_ARGS) { return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, __SHIFTOUT(RTW_CONFIG4_RFTYPE_MASK, RTW_CONFIG4_RFTYPE_MASK)); } static int rtw_sysctl_verify_rfio(SYSCTLFN_ARGS) { return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, 1); } #ifdef RTW_DEBUG static int rtw_sysctl_verify_debug(SYSCTLFN_ARGS) { return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, RTW_DEBUG_MAX); } static int rtw_sysctl_verify_rxbufs_limit(SYSCTLFN_ARGS) { return rtw_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, RTW_RXQLEN); } static void rtw_print_regs(struct rtw_regs *regs, const char *dvname, const char *where) { #define PRINTREG32(sc, reg) \ RTW_DPRINTF(RTW_DEBUG_REGDUMP, \ ("%s: reg[ " #reg " / %03x ] = %08x\n", \ dvname, reg, RTW_READ(regs, reg))) #define PRINTREG16(sc, reg) \ RTW_DPRINTF(RTW_DEBUG_REGDUMP, \ ("%s: reg[ " #reg " / %03x ] = %04x\n", \ dvname, reg, RTW_READ16(regs, reg))) #define PRINTREG8(sc, reg) \ RTW_DPRINTF(RTW_DEBUG_REGDUMP, \ ("%s: reg[ " #reg " / %03x ] = %02x\n", \ dvname, reg, RTW_READ8(regs, reg))) RTW_DPRINTF(RTW_DEBUG_REGDUMP, ("%s: %s\n", dvname, where)); PRINTREG32(regs, RTW_IDR0); PRINTREG32(regs, RTW_IDR1); PRINTREG32(regs, RTW_MAR0); PRINTREG32(regs, RTW_MAR1); PRINTREG32(regs, RTW_TSFTRL); PRINTREG32(regs, RTW_TSFTRH); PRINTREG32(regs, RTW_TLPDA); PRINTREG32(regs, RTW_TNPDA); PRINTREG32(regs, RTW_THPDA); PRINTREG32(regs, RTW_TCR); PRINTREG32(regs, RTW_RCR); PRINTREG32(regs, RTW_TINT); PRINTREG32(regs, RTW_TBDA); PRINTREG32(regs, RTW_ANAPARM); PRINTREG32(regs, RTW_BB); PRINTREG32(regs, RTW_PHYCFG); PRINTREG32(regs, RTW_WAKEUP0L); PRINTREG32(regs, RTW_WAKEUP0H); PRINTREG32(regs, RTW_WAKEUP1L); PRINTREG32(regs, RTW_WAKEUP1H); PRINTREG32(regs, RTW_WAKEUP2LL); PRINTREG32(regs, RTW_WAKEUP2LH); PRINTREG32(regs, RTW_WAKEUP2HL); PRINTREG32(regs, RTW_WAKEUP2HH); PRINTREG32(regs, RTW_WAKEUP3LL); PRINTREG32(regs, RTW_WAKEUP3LH); PRINTREG32(regs, RTW_WAKEUP3HL); PRINTREG32(regs, RTW_WAKEUP3HH); PRINTREG32(regs, RTW_WAKEUP4LL); PRINTREG32(regs, RTW_WAKEUP4LH); PRINTREG32(regs, RTW_WAKEUP4HL); PRINTREG32(regs, RTW_WAKEUP4HH); PRINTREG32(regs, RTW_DK0); PRINTREG32(regs, RTW_DK1); PRINTREG32(regs, RTW_DK2); PRINTREG32(regs, RTW_DK3); PRINTREG32(regs, RTW_RETRYCTR); PRINTREG32(regs, RTW_RDSAR); PRINTREG32(regs, RTW_FER); PRINTREG32(regs, RTW_FEMR); PRINTREG32(regs, RTW_FPSR); PRINTREG32(regs, RTW_FFER); /* 16-bit registers */ PRINTREG16(regs, RTW_BRSR); PRINTREG16(regs, RTW_IMR); PRINTREG16(regs, RTW_ISR); PRINTREG16(regs, RTW_BCNITV); PRINTREG16(regs, RTW_ATIMWND); PRINTREG16(regs, RTW_BINTRITV); PRINTREG16(regs, RTW_ATIMTRITV); PRINTREG16(regs, RTW_CRC16ERR); PRINTREG16(regs, RTW_CRC0); PRINTREG16(regs, RTW_CRC1); PRINTREG16(regs, RTW_CRC2); PRINTREG16(regs, RTW_CRC3); PRINTREG16(regs, RTW_CRC4); PRINTREG16(regs, RTW_CWR); /* 8-bit registers */ PRINTREG8(regs, RTW_CR); PRINTREG8(regs, RTW_9346CR); PRINTREG8(regs, RTW_CONFIG0); PRINTREG8(regs, RTW_CONFIG1); PRINTREG8(regs, RTW_CONFIG2); PRINTREG8(regs, RTW_MSR); PRINTREG8(regs, RTW_CONFIG3); PRINTREG8(regs, RTW_CONFIG4); PRINTREG8(regs, RTW_TESTR); PRINTREG8(regs, RTW_PSR); PRINTREG8(regs, RTW_SCR); PRINTREG8(regs, RTW_PHYDELAY); PRINTREG8(regs, RTW_CRCOUNT); PRINTREG8(regs, RTW_PHYADDR); PRINTREG8(regs, RTW_PHYDATAW); PRINTREG8(regs, RTW_PHYDATAR); PRINTREG8(regs, RTW_CONFIG5); PRINTREG8(regs, RTW_TPPOLL); PRINTREG16(regs, RTW_BSSID16); PRINTREG32(regs, RTW_BSSID32); #undef PRINTREG32 #undef PRINTREG16 #undef PRINTREG8 } #endif /* RTW_DEBUG */ void rtw_continuous_tx_enable(struct rtw_softc *sc, int enable) { struct rtw_regs *regs = &sc->sc_regs; uint32_t tcr; tcr = RTW_READ(regs, RTW_TCR); tcr &= ~RTW_TCR_LBK_MASK; if (enable) tcr |= RTW_TCR_LBK_CONT; else tcr |= RTW_TCR_LBK_NORMAL; RTW_WRITE(regs, RTW_TCR, tcr); RTW_SYNC(regs, RTW_TCR, RTW_TCR); rtw_set_access(regs, RTW_ACCESS_ANAPARM); rtw_txdac_enable(sc, !enable); rtw_set_access(regs, RTW_ACCESS_ANAPARM);/* XXX Voodoo from Linux. */ rtw_set_access(regs, RTW_ACCESS_NONE); } #ifdef RTW_DEBUG static const char * rtw_access_string(enum rtw_access access) { switch (access) { case RTW_ACCESS_NONE: return "none"; case RTW_ACCESS_CONFIG: return "config"; case RTW_ACCESS_ANAPARM: return "anaparm"; default: return "unknown"; } } #endif /* RTW_DEBUG */ static void rtw_set_access1(struct rtw_regs *regs, enum rtw_access naccess) { KASSERT(/* naccess >= RTW_ACCESS_NONE && */ naccess <= RTW_ACCESS_ANAPARM); KASSERT(/* regs->r_access >= RTW_ACCESS_NONE && */ regs->r_access <= RTW_ACCESS_ANAPARM); if (naccess == regs->r_access) return; switch (naccess) { case RTW_ACCESS_NONE: switch (regs->r_access) { case RTW_ACCESS_ANAPARM: rtw_anaparm_enable(regs, 0); /*FALLTHROUGH*/ case RTW_ACCESS_CONFIG: rtw_config0123_enable(regs, 0); /*FALLTHROUGH*/ case RTW_ACCESS_NONE: break; } break; case RTW_ACCESS_CONFIG: switch (regs->r_access) { case RTW_ACCESS_NONE: rtw_config0123_enable(regs, 1); /*FALLTHROUGH*/ case RTW_ACCESS_CONFIG: break; case RTW_ACCESS_ANAPARM: rtw_anaparm_enable(regs, 0); break; } break; case RTW_ACCESS_ANAPARM: switch (regs->r_access) { case RTW_ACCESS_NONE: rtw_config0123_enable(regs, 1); /*FALLTHROUGH*/ case RTW_ACCESS_CONFIG: rtw_anaparm_enable(regs, 1); /*FALLTHROUGH*/ case RTW_ACCESS_ANAPARM: break; } break; } } void rtw_set_access(struct rtw_regs *regs, enum rtw_access access) { rtw_set_access1(regs, access); RTW_DPRINTF(RTW_DEBUG_ACCESS, ("%s: access %s -> %s\n", __func__, rtw_access_string(regs->r_access), rtw_access_string(access))); regs->r_access = access; } /* * Enable registers, switch register banks. */ void rtw_config0123_enable(struct rtw_regs *regs, int enable) { uint8_t ecr; ecr = RTW_READ8(regs, RTW_9346CR); ecr &= ~(RTW_9346CR_EEM_MASK | RTW_9346CR_EECS | RTW_9346CR_EESK); if (enable) ecr |= RTW_9346CR_EEM_CONFIG; else { RTW_WBW(regs, RTW_9346CR, MAX(RTW_CONFIG0, RTW_CONFIG3)); ecr |= RTW_9346CR_EEM_NORMAL; } RTW_WRITE8(regs, RTW_9346CR, ecr); RTW_SYNC(regs, RTW_9346CR, RTW_9346CR); } /* requires rtw_config0123_enable(, 1) */ void rtw_anaparm_enable(struct rtw_regs *regs, int enable) { uint8_t cfg3; cfg3 = RTW_READ8(regs, RTW_CONFIG3); cfg3 |= RTW_CONFIG3_CLKRUNEN; if (enable) cfg3 |= RTW_CONFIG3_PARMEN; else cfg3 &= ~RTW_CONFIG3_PARMEN; RTW_WRITE8(regs, RTW_CONFIG3, cfg3); RTW_SYNC(regs, RTW_CONFIG3, RTW_CONFIG3); } /* requires rtw_anaparm_enable(, 1) */ void rtw_txdac_enable(struct rtw_softc *sc, int enable) { uint32_t anaparm; struct rtw_regs *regs = &sc->sc_regs; anaparm = RTW_READ(regs, RTW_ANAPARM); if (enable) anaparm &= ~RTW_ANAPARM_TXDACOFF; else anaparm |= RTW_ANAPARM_TXDACOFF; RTW_WRITE(regs, RTW_ANAPARM, anaparm); RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM); } static inline int rtw_chip_reset1(struct rtw_regs *regs, device_t dev) { uint8_t cr; int i; RTW_WRITE8(regs, RTW_CR, RTW_CR_RST); RTW_WBR(regs, RTW_CR, RTW_CR); for (i = 0; i < 1000; i++) { if ((cr = RTW_READ8(regs, RTW_CR) & RTW_CR_RST) == 0) { RTW_DPRINTF(RTW_DEBUG_RESET, ("%s: reset in %dus\n", device_xname(dev), i)); return 0; } RTW_RBR(regs, RTW_CR, RTW_CR); DELAY(10); /* 10us */ } aprint_error_dev(dev, "reset failed\n"); return ETIMEDOUT; } static inline int rtw_chip_reset(struct rtw_regs *regs, device_t dev) { uint32_t tcr; /* from Linux driver */ tcr = RTW_TCR_CWMIN | RTW_TCR_MXDMA_2048 | __SHIFTIN(7, RTW_TCR_SRL_MASK) | __SHIFTIN(7, RTW_TCR_LRL_MASK); RTW_WRITE(regs, RTW_TCR, tcr); RTW_WBW(regs, RTW_CR, RTW_TCR); return rtw_chip_reset1(regs, dev); } static int rtw_wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen) { struct ieee80211_key keycopy; RTW_DPRINTF(RTW_DEBUG_KEY, ("%s:\n", __func__)); keycopy = *k; keycopy.wk_flags &= ~IEEE80211_KEY_SWCRYPT; return (*ieee80211_cipher_wep.ic_decap)(&keycopy, m, hdrlen); } static int rtw_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) { struct rtw_softc *sc = ic->ic_ifp->if_softc; DPRINTF(sc, RTW_DEBUG_KEY, ("%s: delete key %u\n", __func__, k->wk_keyix)); KASSERT(k->wk_keyix < IEEE80211_WEP_NKID); if (k->wk_keylen != 0 && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) sc->sc_flags &= ~RTW_F_DK_VALID; return 1; } static int rtw_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, const u_int8_t mac[IEEE80211_ADDR_LEN]) { struct rtw_softc *sc = ic->ic_ifp->if_softc; DPRINTF(sc, RTW_DEBUG_KEY, ("%s: set key %u\n", __func__, k->wk_keyix)); KASSERT(k->wk_keyix < IEEE80211_WEP_NKID); sc->sc_flags &= ~RTW_F_DK_VALID; return 1; } static void rtw_key_update_begin(struct ieee80211com *ic) { #ifdef RTW_DEBUG struct ifnet *ifp = ic->ic_ifp; struct rtw_softc *sc = ifp->if_softc; #endif DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__)); } static void rtw_tx_kick(struct rtw_regs *regs, uint8_t ringsel) { uint8_t tppoll; tppoll = RTW_READ8(regs, RTW_TPPOLL); tppoll &= ~RTW_TPPOLL_SALL; tppoll |= ringsel & RTW_TPPOLL_ALL; RTW_WRITE8(regs, RTW_TPPOLL, tppoll); RTW_SYNC(regs, RTW_TPPOLL, RTW_TPPOLL); } static void rtw_key_update_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct rtw_softc *sc = ifp->if_softc; DPRINTF(sc, RTW_DEBUG_KEY, ("%s:\n", __func__)); if ((sc->sc_flags & RTW_F_DK_VALID) != 0 || !device_is_active(sc->sc_dev)) return; rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0); rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, (ifp->if_flags & IFF_RUNNING) != 0); } static bool rtw_key_hwsupp(uint32_t flags, const struct ieee80211_key *k) { if (k->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) return false; return ((flags & RTW_C_RXWEP_40) != 0 && k->wk_keylen == 5) || ((flags & RTW_C_RXWEP_104) != 0 && k->wk_keylen == 13); } static void rtw_wep_setkeys(struct rtw_softc *sc, struct ieee80211_key *wk, int txkey) { uint8_t psr, scr; int i, keylen = 0; struct rtw_regs *regs; union rtw_keys *rk; regs = &sc->sc_regs; rk = &sc->sc_keys; (void)memset(rk, 0, sizeof(rk)); /* Temporarily use software crypto for all keys. */ for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (wk[i].wk_cipher == &rtw_cipher_wep) wk[i].wk_cipher = &ieee80211_cipher_wep; } rtw_set_access(regs, RTW_ACCESS_CONFIG); psr = RTW_READ8(regs, RTW_PSR); scr = RTW_READ8(regs, RTW_SCR); scr &= ~(RTW_SCR_KM_MASK | RTW_SCR_TXSECON | RTW_SCR_RXSECON); if ((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) == 0) goto out; for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (!rtw_key_hwsupp(sc->sc_flags, &wk[i])) continue; if (i == txkey) { keylen = wk[i].wk_keylen; break; } keylen = MAX(keylen, wk[i].wk_keylen); } if (keylen == 5) scr |= RTW_SCR_KM_WEP40 | RTW_SCR_RXSECON; else if (keylen == 13) scr |= RTW_SCR_KM_WEP104 | RTW_SCR_RXSECON; for (i = 0; i < IEEE80211_WEP_NKID; i++) { if (wk[i].wk_keylen != keylen || wk[i].wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) continue; /* h/w will decrypt, s/w still strips headers */ wk[i].wk_cipher = &rtw_cipher_wep; (void)memcpy(rk->rk_keys[i], wk[i].wk_key, wk[i].wk_keylen); } out: RTW_WRITE8(regs, RTW_PSR, psr & ~RTW_PSR_PSEN); bus_space_write_region_stream_4(regs->r_bt, regs->r_bh, RTW_DK0, rk->rk_words, __arraycount(rk->rk_words)); bus_space_barrier(regs->r_bt, regs->r_bh, RTW_DK0, sizeof(rk->rk_words), BUS_SPACE_BARRIER_SYNC); RTW_DPRINTF(RTW_DEBUG_KEY, ("%s.%d: scr %02" PRIx8 ", keylen %d\n", __func__, __LINE__, scr, keylen)); RTW_WBW(regs, RTW_DK0, RTW_PSR); RTW_WRITE8(regs, RTW_PSR, psr); RTW_WBW(regs, RTW_PSR, RTW_SCR); RTW_WRITE8(regs, RTW_SCR, scr); RTW_SYNC(regs, RTW_SCR, RTW_SCR); rtw_set_access(regs, RTW_ACCESS_NONE); sc->sc_flags |= RTW_F_DK_VALID; } static inline int rtw_recall_eeprom(struct rtw_regs *regs, device_t dev) { int i; uint8_t ecr; ecr = RTW_READ8(regs, RTW_9346CR); ecr = (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_AUTOLOAD; RTW_WRITE8(regs, RTW_9346CR, ecr); RTW_WBR(regs, RTW_9346CR, RTW_9346CR); /* wait 25ms for completion */ for (i = 0; i < 250; i++) { ecr = RTW_READ8(regs, RTW_9346CR); if ((ecr & RTW_9346CR_EEM_MASK) == RTW_9346CR_EEM_NORMAL) { RTW_DPRINTF(RTW_DEBUG_RESET, ("%s: recall EEPROM in %dus\n", device_xname(dev), i * 100)); return 0; } RTW_RBR(regs, RTW_9346CR, RTW_9346CR); DELAY(100); } aprint_error_dev(dev, "recall EEPROM failed\n"); return ETIMEDOUT; } static inline int rtw_reset(struct rtw_softc *sc) { int rc; uint8_t config1; sc->sc_flags &= ~RTW_F_DK_VALID; if ((rc = rtw_chip_reset(&sc->sc_regs, sc->sc_dev)) != 0) return rc; rc = rtw_recall_eeprom(&sc->sc_regs, sc->sc_dev); config1 = RTW_READ8(&sc->sc_regs, RTW_CONFIG1); RTW_WRITE8(&sc->sc_regs, RTW_CONFIG1, config1 & ~RTW_CONFIG1_PMEN); /* TBD turn off maximum power saving? */ return 0; } static inline int rtw_txdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_txsoft *descs, u_int ndescs) { int i, rc = 0; for (i = 0; i < ndescs; i++) { rc = bus_dmamap_create(dmat, MCLBYTES, RTW_MAXPKTSEGS, MCLBYTES, 0, 0, &descs[i].ts_dmamap); if (rc != 0) break; } return rc; } static inline int rtw_rxdesc_dmamaps_create(bus_dma_tag_t dmat, struct rtw_rxsoft *descs, u_int ndescs) { int i, rc = 0; for (i = 0; i < ndescs; i++) { rc = bus_dmamap_create(dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &descs[i].rs_dmamap); if (rc != 0) break; } return rc; } static inline void rtw_rxdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_rxsoft *descs, u_int ndescs) { int i; for (i = 0; i < ndescs; i++) { if (descs[i].rs_dmamap != NULL) bus_dmamap_destroy(dmat, descs[i].rs_dmamap); } } static inline void rtw_txdesc_dmamaps_destroy(bus_dma_tag_t dmat, struct rtw_txsoft *descs, u_int ndescs) { int i; for (i = 0; i < ndescs; i++) { if (descs[i].ts_dmamap != NULL) bus_dmamap_destroy(dmat, descs[i].ts_dmamap); } } static inline void rtw_srom_free(struct rtw_srom *sr) { sr->sr_size = 0; if (sr->sr_content == NULL) return; free(sr->sr_content, M_DEVBUF); sr->sr_content = NULL; } static void rtw_srom_defaults(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr) { *flags |= (RTW_F_DIGPHY|RTW_F_ANTDIV); *cs_threshold = RTW_SR_ENERGYDETTHR_DEFAULT; *rcr |= RTW_RCR_ENCS1; *rfchipid = RTW_RFCHIPID_PHILIPS; } static int rtw_srom_parse(struct rtw_srom *sr, uint32_t *flags, uint8_t *cs_threshold, enum rtw_rfchipid *rfchipid, uint32_t *rcr, enum rtw_locale *locale, device_t dev) { int i; const char *rfname, *paname; char scratch[sizeof("unknown 0xXX")]; uint16_t srom_version; uint8_t mac[IEEE80211_ADDR_LEN]; *flags &= ~(RTW_F_DIGPHY|RTW_F_DFLANTB|RTW_F_ANTDIV); *rcr &= ~(RTW_RCR_ENCS1 | RTW_RCR_ENCS2); srom_version = RTW_SR_GET16(sr, RTW_SR_VERSION); if (srom_version <= 0x0101) { aprint_error_dev(dev, "SROM version %d.%d is not understood, " "limping along with defaults\n", srom_version >> 8, srom_version & 0xff); rtw_srom_defaults(sr, flags, cs_threshold, rfchipid, rcr); return 0; } else { aprint_verbose_dev(dev, "SROM version %d.%d", srom_version >> 8, srom_version & 0xff); } for (i = 0; i < IEEE80211_ADDR_LEN; i++) mac[i] = RTW_SR_GET(sr, RTW_SR_MAC + i); RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: EEPROM MAC %s\n", device_xname(dev), ether_sprintf(mac))); *cs_threshold = RTW_SR_GET(sr, RTW_SR_ENERGYDETTHR); if ((RTW_SR_GET(sr, RTW_SR_CONFIG2) & RTW_CONFIG2_ANT) != 0) *flags |= RTW_F_ANTDIV; /* Note well: the sense of the RTW_SR_RFPARM_DIGPHY bit seems * to be reversed. */ if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DIGPHY) == 0) *flags |= RTW_F_DIGPHY; if ((RTW_SR_GET(sr, RTW_SR_RFPARM) & RTW_SR_RFPARM_DFLANTB) != 0) *flags |= RTW_F_DFLANTB; *rcr |= __SHIFTIN(__SHIFTOUT(RTW_SR_GET(sr, RTW_SR_RFPARM), RTW_SR_RFPARM_CS_MASK), RTW_RCR_ENCS1); if ((RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_WEP104) != 0) *flags |= RTW_C_RXWEP_104; *flags |= RTW_C_RXWEP_40; /* XXX */ *rfchipid = RTW_SR_GET(sr, RTW_SR_RFCHIPID); switch (*rfchipid) { case RTW_RFCHIPID_GCT: /* this combo seen in the wild */ rfname = "GCT GRF5101"; paname = "Winspring WS9901"; break; case RTW_RFCHIPID_MAXIM: rfname = "Maxim MAX2820"; /* guess */ paname = "Maxim MAX2422"; /* guess */ break; case RTW_RFCHIPID_INTERSIL: rfname = "Intersil HFA3873"; /* guess */ paname = "Intersil "; break; case RTW_RFCHIPID_PHILIPS: /* this combo seen in the wild */ rfname = "Philips SA2400A"; paname = "Philips SA2411"; break; case RTW_RFCHIPID_RFMD: /* this is the same front-end as an atw(4)! */ rfname = "RFMD RF2948B, " /* mentioned in Realtek docs */ "LNA: RFMD RF2494, " /* mentioned in Realtek docs */ "SYN: Silicon Labs Si4126"; /* inferred from * reference driver */ paname = "RFMD RF2189"; /* mentioned in Realtek docs */ break; case RTW_RFCHIPID_RESERVED: rfname = paname = "reserved"; break; default: snprintf(scratch, sizeof(scratch), "unknown 0x%02x", *rfchipid); rfname = paname = scratch; } aprint_normal_dev(dev, "RF: %s, PA: %s\n", rfname, paname); switch (RTW_SR_GET(sr, RTW_SR_CONFIG0) & RTW_CONFIG0_GL_MASK) { case RTW_CONFIG0_GL_USA: case _RTW_CONFIG0_GL_USA: *locale = RTW_LOCALE_USA; break; case RTW_CONFIG0_GL_EUROPE: *locale = RTW_LOCALE_EUROPE; break; case RTW_CONFIG0_GL_JAPAN: *locale = RTW_LOCALE_JAPAN; break; default: *locale = RTW_LOCALE_UNKNOWN; break; } return 0; } /* Returns -1 on failure. */ static int rtw_srom_read(struct rtw_regs *regs, uint32_t flags, struct rtw_srom *sr, device_t dev) { int rc; struct seeprom_descriptor sd; uint8_t ecr; (void)memset(&sd, 0, sizeof(sd)); ecr = RTW_READ8(regs, RTW_9346CR); if ((flags & RTW_F_9356SROM) != 0) { RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c56 SROM\n", device_xname(dev))); sr->sr_size = 256; sd.sd_chip = C56_66; } else { RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: 93c46 SROM\n", device_xname(dev))); sr->sr_size = 128; sd.sd_chip = C46; } ecr &= ~(RTW_9346CR_EEDI | RTW_9346CR_EEDO | RTW_9346CR_EESK | RTW_9346CR_EEM_MASK | RTW_9346CR_EECS); ecr |= RTW_9346CR_EEM_PROGRAM; RTW_WRITE8(regs, RTW_9346CR, ecr); sr->sr_content = malloc(sr->sr_size, M_DEVBUF, M_NOWAIT); if (sr->sr_content == NULL) { aprint_error_dev(dev, "unable to allocate SROM buffer\n"); return ENOMEM; } (void)memset(sr->sr_content, 0, sr->sr_size); /* RTL8180 has a single 8-bit register for controlling the * 93cx6 SROM. There is no "ready" bit. The RTL8180 * input/output sense is the reverse of read_seeprom's. */ sd.sd_tag = regs->r_bt; sd.sd_bsh = regs->r_bh; sd.sd_regsize = 1; sd.sd_control_offset = RTW_9346CR; sd.sd_status_offset = RTW_9346CR; sd.sd_dataout_offset = RTW_9346CR; sd.sd_CK = RTW_9346CR_EESK; sd.sd_CS = RTW_9346CR_EECS; sd.sd_DI = RTW_9346CR_EEDO; sd.sd_DO = RTW_9346CR_EEDI; /* make read_seeprom enter EEPROM read/write mode */ sd.sd_MS = ecr; sd.sd_RDY = 0; /* TBD bus barriers */ if (!read_seeprom(&sd, sr->sr_content, 0, sr->sr_size/2)) { aprint_error_dev(dev, "could not read SROM\n"); free(sr->sr_content, M_DEVBUF); sr->sr_content = NULL; return -1; /* XXX */ } /* end EEPROM read/write mode */ RTW_WRITE8(regs, RTW_9346CR, (ecr & ~RTW_9346CR_EEM_MASK) | RTW_9346CR_EEM_NORMAL); RTW_WBRW(regs, RTW_9346CR, RTW_9346CR); if ((rc = rtw_recall_eeprom(regs, dev)) != 0) return rc; #ifdef RTW_DEBUG { int i; RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n%s: serial ROM:\n\t", device_xname(dev))); for (i = 0; i < sr->sr_size/2; i++) { if (((i % 8) == 0) && (i != 0)) RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n\t")); RTW_DPRINTF(RTW_DEBUG_ATTACH, (" %04x", sr->sr_content[i])); } RTW_DPRINTF(RTW_DEBUG_ATTACH, ("\n")); } #endif /* RTW_DEBUG */ return 0; } static void rtw_set_rfprog(struct rtw_regs *regs, enum rtw_rfchipid rfchipid, device_t dev) { uint8_t cfg4; const char *method; cfg4 = RTW_READ8(regs, RTW_CONFIG4) & ~RTW_CONFIG4_RFTYPE_MASK; switch (rfchipid) { default: cfg4 |= __SHIFTIN(rtw_rfprog_fallback, RTW_CONFIG4_RFTYPE_MASK); method = "fallback"; break; case RTW_RFCHIPID_INTERSIL: cfg4 |= RTW_CONFIG4_RFTYPE_INTERSIL; method = "Intersil"; break; case RTW_RFCHIPID_PHILIPS: cfg4 |= RTW_CONFIG4_RFTYPE_PHILIPS; method = "Philips"; break; case RTW_RFCHIPID_GCT: /* XXX a guess */ case RTW_RFCHIPID_RFMD: cfg4 |= RTW_CONFIG4_RFTYPE_RFMD; method = "RFMD"; break; } RTW_WRITE8(regs, RTW_CONFIG4, cfg4); RTW_WBR(regs, RTW_CONFIG4, RTW_CONFIG4); RTW_DPRINTF(RTW_DEBUG_INIT, ("%s: %s RF programming method, %#02x\n", device_xname(dev), method, RTW_READ8(regs, RTW_CONFIG4))); } static inline void rtw_init_channels(enum rtw_locale locale, struct ieee80211_channel (*chans)[IEEE80211_CHAN_MAX+1], device_t dev) { int i; const char *name = NULL; #define ADD_CHANNEL(_chans, _chan) do { \ (*_chans)[_chan].ic_flags = IEEE80211_CHAN_B; \ (*_chans)[_chan].ic_freq = \ ieee80211_ieee2mhz(_chan, (*_chans)[_chan].ic_flags);\ } while (0) switch (locale) { case RTW_LOCALE_USA: /* 1-11 */ name = "USA"; for (i = 1; i <= 11; i++) ADD_CHANNEL(chans, i); break; case RTW_LOCALE_JAPAN: /* 1-14 */ name = "Japan"; ADD_CHANNEL(chans, 14); for (i = 1; i <= 14; i++) ADD_CHANNEL(chans, i); break; case RTW_LOCALE_EUROPE: /* 1-13 */ name = "Europe"; for (i = 1; i <= 13; i++) ADD_CHANNEL(chans, i); break; default: /* 10-11 allowed by most countries */ name = ""; for (i = 10; i <= 11; i++) ADD_CHANNEL(chans, i); break; } aprint_normal_dev(dev, "Geographic Location %s\n", name); #undef ADD_CHANNEL } static inline void rtw_identify_country(struct rtw_regs *regs, enum rtw_locale *locale) { uint8_t cfg0 = RTW_READ8(regs, RTW_CONFIG0); switch (cfg0 & RTW_CONFIG0_GL_MASK) { case RTW_CONFIG0_GL_USA: case _RTW_CONFIG0_GL_USA: *locale = RTW_LOCALE_USA; break; case RTW_CONFIG0_GL_JAPAN: *locale = RTW_LOCALE_JAPAN; break; case RTW_CONFIG0_GL_EUROPE: *locale = RTW_LOCALE_EUROPE; break; default: *locale = RTW_LOCALE_UNKNOWN; break; } } static inline int rtw_identify_sta(struct rtw_regs *regs, uint8_t (*addr)[IEEE80211_ADDR_LEN], device_t dev) { static const uint8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint32_t idr0 = RTW_READ(regs, RTW_IDR0), idr1 = RTW_READ(regs, RTW_IDR1); (*addr)[0] = __SHIFTOUT(idr0, __BITS(0, 7)); (*addr)[1] = __SHIFTOUT(idr0, __BITS(8, 15)); (*addr)[2] = __SHIFTOUT(idr0, __BITS(16, 23)); (*addr)[3] = __SHIFTOUT(idr0, __BITS(24 ,31)); (*addr)[4] = __SHIFTOUT(idr1, __BITS(0, 7)); (*addr)[5] = __SHIFTOUT(idr1, __BITS(8, 15)); if (IEEE80211_ADDR_EQ(addr, empty_macaddr)) { aprint_error_dev(dev, "could not get mac address, attach failed\n"); return ENXIO; } aprint_normal_dev(dev, "802.11 address %s\n", ether_sprintf(*addr)); return 0; } static uint8_t rtw_chan2txpower(struct rtw_srom *sr, struct ieee80211com *ic, struct ieee80211_channel *chan) { u_int idx = RTW_SR_TXPOWER1 + ieee80211_chan2ieee(ic, chan) - 1; KASSERT(idx >= RTW_SR_TXPOWER1 && idx <= RTW_SR_TXPOWER14); return RTW_SR_GET(sr, idx); } static void rtw_txdesc_blk_init_all(struct rtw_txdesc_blk *tdb) { int pri; /* nfree: the number of free descriptors in each ring. * The beacon ring is a special case: I do not let the * driver use all of the descriptors on the beacon ring. * The reasons are two-fold: * * (1) A BEACON descriptor's OWN bit is (apparently) not * updated, so the driver cannot easily know if the descriptor * belongs to it, or if it is racing the NIC. If the NIC * does not OWN every descriptor, then the driver can safely * update the descriptors when RTW_TBDA points at tdb_next. * * (2) I hope that the NIC will process more than one BEACON * descriptor in a single beacon interval, since that will * enable multiple-BSS support. Since the NIC does not * clear the OWN bit, there is no natural place for it to * stop processing BEACON desciptors. Maybe it will *not* * stop processing them! I do not want to chance the NIC * looping around and around a saturated beacon ring, so * I will leave one descriptor unOWNed at all times. */ u_int nfree[RTW_NTXPRI] = {RTW_NTXDESCLO, RTW_NTXDESCMD, RTW_NTXDESCHI, RTW_NTXDESCBCN - 1}; for (pri = 0; pri < RTW_NTXPRI; pri++) { tdb[pri].tdb_nfree = nfree[pri]; tdb[pri].tdb_next = 0; } } static int rtw_txsoft_blk_init(struct rtw_txsoft_blk *tsb) { int i; struct rtw_txsoft *ts; SIMPLEQ_INIT(&tsb->tsb_dirtyq); SIMPLEQ_INIT(&tsb->tsb_freeq); for (i = 0; i < tsb->tsb_ndesc; i++) { ts = &tsb->tsb_desc[i]; ts->ts_mbuf = NULL; SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q); } tsb->tsb_tx_timer = 0; return 0; } static void rtw_txsoft_blk_init_all(struct rtw_txsoft_blk *tsb) { int pri; for (pri = 0; pri < RTW_NTXPRI; pri++) rtw_txsoft_blk_init(&tsb[pri]); } static inline void rtw_rxdescs_sync(struct rtw_rxdesc_blk *rdb, int desc0, int nsync, int ops) { KASSERT(nsync <= rdb->rdb_ndesc); /* sync to end of ring */ if (desc0 + nsync > rdb->rdb_ndesc) { bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap, offsetof(struct rtw_descs, hd_rx[desc0]), sizeof(struct rtw_rxdesc) * (rdb->rdb_ndesc - desc0), ops); nsync -= (rdb->rdb_ndesc - desc0); desc0 = 0; } KASSERT(desc0 < rdb->rdb_ndesc); KASSERT(nsync <= rdb->rdb_ndesc); KASSERT(desc0 + nsync <= rdb->rdb_ndesc); /* sync what remains */ bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap, offsetof(struct rtw_descs, hd_rx[desc0]), sizeof(struct rtw_rxdesc) * nsync, ops); } static void rtw_txdescs_sync(struct rtw_txdesc_blk *tdb, u_int desc0, u_int nsync, int ops) { /* sync to end of ring */ if (desc0 + nsync > tdb->tdb_ndesc) { bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap, tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0, sizeof(struct rtw_txdesc) * (tdb->tdb_ndesc - desc0), ops); nsync -= (tdb->tdb_ndesc - desc0); desc0 = 0; } /* sync what remains */ bus_dmamap_sync(tdb->tdb_dmat, tdb->tdb_dmamap, tdb->tdb_ofs + sizeof(struct rtw_txdesc) * desc0, sizeof(struct rtw_txdesc) * nsync, ops); } static void rtw_txdescs_sync_all(struct rtw_txdesc_blk *tdb) { int pri; for (pri = 0; pri < RTW_NTXPRI; pri++) { rtw_txdescs_sync(&tdb[pri], 0, tdb[pri].tdb_ndesc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } } static void rtw_rxbufs_release(bus_dma_tag_t dmat, struct rtw_rxsoft *desc) { int i; struct rtw_rxsoft *rs; for (i = 0; i < RTW_RXQLEN; i++) { rs = &desc[i]; if (rs->rs_mbuf == NULL) continue; bus_dmamap_sync(dmat, rs->rs_dmamap, 0, rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(dmat, rs->rs_dmamap); m_freem(rs->rs_mbuf); rs->rs_mbuf = NULL; } } static inline int rtw_rxsoft_alloc(bus_dma_tag_t dmat, struct rtw_rxsoft *rs) { int rc; struct mbuf *m; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; if (rs->rs_mbuf != NULL) bus_dmamap_unload(dmat, rs->rs_dmamap); rs->rs_mbuf = NULL; rc = bus_dmamap_load_mbuf(dmat, rs->rs_dmamap, m, BUS_DMA_NOWAIT); if (rc != 0) { m_freem(m); return -1; } rs->rs_mbuf = m; return 0; } static int rtw_rxsoft_init_all(bus_dma_tag_t dmat, struct rtw_rxsoft *desc, int *ndesc, device_t dev) { int i, rc = 0; struct rtw_rxsoft *rs; for (i = 0; i < RTW_RXQLEN; i++) { rs = &desc[i]; /* we're in rtw_init, so there should be no mbufs allocated */ KASSERT(rs->rs_mbuf == NULL); #ifdef RTW_DEBUG if (i == rtw_rxbufs_limit) { aprint_error_dev(dev, "TEST hit %d-buffer limit\n", i); rc = ENOBUFS; break; } #endif /* RTW_DEBUG */ if ((rc = rtw_rxsoft_alloc(dmat, rs)) != 0) { aprint_error_dev(dev, "rtw_rxsoft_alloc failed, %d buffers, rc %d\n", i, rc); break; } } *ndesc = i; return rc; } static inline void rtw_rxdesc_init(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *rs, int idx, int kick) { int is_last = (idx == rdb->rdb_ndesc - 1); uint32_t ctl, octl, obuf; struct rtw_rxdesc *rd = &rdb->rdb_desc[idx]; /* sync the mbuf before the descriptor */ bus_dmamap_sync(rdb->rdb_dmat, rs->rs_dmamap, 0, rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); obuf = rd->rd_buf; rd->rd_buf = htole32(rs->rs_dmamap->dm_segs[0].ds_addr); ctl = __SHIFTIN(rs->rs_mbuf->m_len, RTW_RXCTL_LENGTH_MASK) | RTW_RXCTL_OWN | RTW_RXCTL_FS | RTW_RXCTL_LS; if (is_last) ctl |= RTW_RXCTL_EOR; octl = rd->rd_ctl; rd->rd_ctl = htole32(ctl); RTW_DPRINTF( kick ? (RTW_DEBUG_RECV_DESC | RTW_DEBUG_IO_KICK) : RTW_DEBUG_RECV_DESC, ("%s: rd %p buf %08x -> %08x ctl %08x -> %08x\n", __func__, rd, le32toh(obuf), le32toh(rd->rd_buf), le32toh(octl), le32toh(rd->rd_ctl))); /* sync the descriptor */ bus_dmamap_sync(rdb->rdb_dmat, rdb->rdb_dmamap, RTW_DESC_OFFSET(hd_rx, idx), sizeof(struct rtw_rxdesc), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } static void rtw_rxdesc_init_all(struct rtw_rxdesc_blk *rdb, struct rtw_rxsoft *ctl, int kick) { int i; struct rtw_rxdesc *rd; struct rtw_rxsoft *rs; for (i = 0; i < rdb->rdb_ndesc; i++) { rd = &rdb->rdb_desc[i]; rs = &ctl[i]; rtw_rxdesc_init(rdb, rs, i, kick); } } static void rtw_io_enable(struct rtw_softc *sc, uint8_t flags, int enable) { struct rtw_regs *regs = &sc->sc_regs; uint8_t cr; RTW_DPRINTF(RTW_DEBUG_IOSTATE, ("%s: %s 0x%02x\n", __func__, enable ? "enable" : "disable", flags)); cr = RTW_READ8(regs, RTW_CR); /* XXX reference source does not enable MULRW */ /* enable PCI Read/Write Multiple */ cr |= RTW_CR_MULRW; /* The receive engine will always start at RDSAR. */ if (enable && (flags & ~cr & RTW_CR_RE)) { struct rtw_rxdesc_blk *rdb; rdb = &sc->sc_rxdesc_blk; rdb->rdb_next = 0; } RTW_RBW(regs, RTW_CR, RTW_CR); /* XXX paranoia? */ if (enable) cr |= flags; else cr &= ~flags; RTW_WRITE8(regs, RTW_CR, cr); RTW_SYNC(regs, RTW_CR, RTW_CR); #ifdef RTW_DIAG if (cr & RTW_CR_TE) rtw_txring_fixup(sc, __func__, __LINE__); #endif if (cr & RTW_CR_TE) { rtw_tx_kick(&sc->sc_regs, RTW_TPPOLL_HPQ | RTW_TPPOLL_NPQ | RTW_TPPOLL_LPQ); } } static void rtw_intr_rx(struct rtw_softc *sc, uint16_t isr) { #define IS_BEACON(__fc0) \ ((__fc0 & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==\ (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON)) static const int ratetbl[4] = {2, 4, 11, 22}; /* convert rates: * hardware -> net80211 */ u_int next, nproc = 0; int hwrate, len, rate, rssi, sq; uint32_t hrssi, hstat, htsfth, htsftl; struct rtw_rxdesc *rd; struct rtw_rxsoft *rs; struct rtw_rxdesc_blk *rdb; struct mbuf *m; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; struct ieee80211_frame_min *wh; rdb = &sc->sc_rxdesc_blk; for (next = rdb->rdb_next; ; next = rdb->rdb_next) { KASSERT(next < rdb->rdb_ndesc); rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rd = &rdb->rdb_desc[next]; rs = &sc->sc_rxsoft[next]; hstat = le32toh(rd->rd_stat); hrssi = le32toh(rd->rd_rssi); htsfth = le32toh(rd->rd_tsfth); htsftl = le32toh(rd->rd_tsftl); RTW_DPRINTF(RTW_DEBUG_RECV_DESC, ("%s: rxdesc[%d] hstat %08x hrssi %08x htsft %08x%08x\n", __func__, next, hstat, hrssi, htsfth, htsftl)); ++nproc; /* still belongs to NIC */ if ((hstat & RTW_RXSTAT_OWN) != 0) { rtw_rxdescs_sync(rdb, next, 1, BUS_DMASYNC_PREREAD); break; } /* ieee80211_input() might reset the receive engine * (e.g. by indirectly calling rtw_tune()), so save * the next pointer here and retrieve it again on * the next round. */ rdb->rdb_next = (next + 1) % rdb->rdb_ndesc; #ifdef RTW_DEBUG #define PRINTSTAT(flag) do { \ if ((hstat & flag) != 0) { \ printf("%s" #flag, delim); \ delim = ","; \ } \ } while (0) if ((rtw_debug & RTW_DEBUG_RECV_DESC) != 0) { const char *delim = "<"; printf("%s: ", device_xname(sc->sc_dev)); if ((hstat & RTW_RXSTAT_DEBUG) != 0) { printf("status %08x", hstat); PRINTSTAT(RTW_RXSTAT_SPLCP); PRINTSTAT(RTW_RXSTAT_MAR); PRINTSTAT(RTW_RXSTAT_PAR); PRINTSTAT(RTW_RXSTAT_BAR); PRINTSTAT(RTW_RXSTAT_PWRMGT); PRINTSTAT(RTW_RXSTAT_CRC32); PRINTSTAT(RTW_RXSTAT_ICV); printf(">, "); } } #endif /* RTW_DEBUG */ if ((hstat & RTW_RXSTAT_IOERROR) != 0) { aprint_error_dev(sc->sc_dev, "DMA error/FIFO overflow %08" PRIx32 ", " "rx descriptor %d\n", hstat, next); ifp->if_ierrors++; goto next; } len = __SHIFTOUT(hstat, RTW_RXSTAT_LENGTH_MASK); if (len < IEEE80211_MIN_LEN) { sc->sc_ic.ic_stats.is_rx_tooshort++; goto next; } if (len > rs->rs_mbuf->m_len) { aprint_error_dev(sc->sc_dev, "rx frame too long, %d > %d, %08" PRIx32 ", desc %d\n", len, rs->rs_mbuf->m_len, hstat, next); ifp->if_ierrors++; goto next; } hwrate = __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK); if (hwrate >= __arraycount(ratetbl)) { aprint_error_dev(sc->sc_dev, "unknown rate #%" __PRIuBITS "\n", __SHIFTOUT(hstat, RTW_RXSTAT_RATE_MASK)); ifp->if_ierrors++; goto next; } rate = ratetbl[hwrate]; #ifdef RTW_DEBUG RTW_DPRINTF(RTW_DEBUG_RECV_DESC, ("rate %d.%d Mb/s, time %08x%08x\n", (rate * 5) / 10, (rate * 5) % 10, htsfth, htsftl)); #endif /* RTW_DEBUG */ /* if bad flags, skip descriptor */ if ((hstat & RTW_RXSTAT_ONESEG) != RTW_RXSTAT_ONESEG) { aprint_error_dev(sc->sc_dev, "too many rx segments, " "next=%d, %08" PRIx32 "\n", next, hstat); goto next; } bus_dmamap_sync(sc->sc_dmat, rs->rs_dmamap, 0, rs->rs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); m = rs->rs_mbuf; /* if temporarily out of memory, re-use mbuf */ switch (rtw_rxsoft_alloc(sc->sc_dmat, rs)) { case 0: break; case ENOBUFS: aprint_error_dev(sc->sc_dev, "rtw_rxsoft_alloc(, %d) failed, dropping packet\n", next); goto next; default: /* XXX shorten rx ring, instead? */ aprint_error_dev(sc->sc_dev, "could not load DMA map\n"); } sq = __SHIFTOUT(hrssi, RTW_RXRSSI_SQ); if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS) rssi = UINT8_MAX - sq; else { rssi = __SHIFTOUT(hrssi, RTW_RXRSSI_IMR_RSSI); /* TBD find out each front-end's LNA gain in the * front-end's units */ if ((hrssi & RTW_RXRSSI_IMR_LNA) == 0) rssi |= 0x80; } /* Note well: now we cannot recycle the rs_mbuf unless * we restore its original length. */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = len; wh = mtod(m, struct ieee80211_frame_min *); if (!IS_BEACON(wh->i_fc[0])) sc->sc_led_state.ls_event |= RTW_LED_S_RX; sc->sc_tsfth = htsfth; #ifdef RTW_DEBUG if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) { ieee80211_dump_pkt(mtod(m, uint8_t *), m->m_pkthdr.len, rate, rssi); } #endif /* RTW_DEBUG */ #if NBPFILTER > 0 if (sc->sc_radiobpf != NULL) { struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap; rr->rr_tsft = htole64(((uint64_t)htsfth << 32) | htsftl); rr->rr_flags = IEEE80211_RADIOTAP_F_FCS; if ((hstat & RTW_RXSTAT_SPLCP) != 0) rr->rr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; if ((hstat & RTW_RXSTAT_CRC32) != 0) rr->rr_flags |= IEEE80211_RADIOTAP_F_BADFCS; rr->rr_rate = rate; if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS) rr->rr_u.u_philips.p_antsignal = rssi; else { rr->rr_u.u_other.o_antsignal = rssi; rr->rr_u.u_other.o_barker_lock = htole16(UINT8_MAX - sq); } bpf_mtap2(sc->sc_radiobpf, rr, sizeof(sc->sc_rxtapu), m); } #endif /* NBPFILTER > 0 */ if ((hstat & RTW_RXSTAT_RES) != 0) { m_freem(m); goto next; } /* CRC is included with the packet; trim it off. */ m_adj(m, -IEEE80211_CRC_LEN); /* TBD use _MAR, _BAR, _PAR flags as hints to _find_rxnode? */ ni = ieee80211_find_rxnode(&sc->sc_ic, wh); ieee80211_input(&sc->sc_ic, m, ni, rssi, htsftl); ieee80211_free_node(ni); next: rtw_rxdesc_init(rdb, rs, next, 0); } #undef IS_BEACON } static void rtw_txsoft_release(bus_dma_tag_t dmat, struct ieee80211com *ic, struct rtw_txsoft *ts) { struct mbuf *m; struct ieee80211_node *ni; m = ts->ts_mbuf; ni = ts->ts_ni; KASSERT(m != NULL); KASSERT(ni != NULL); ts->ts_mbuf = NULL; ts->ts_ni = NULL; bus_dmamap_sync(dmat, ts->ts_dmamap, 0, ts->ts_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dmat, ts->ts_dmamap); m_freem(m); ieee80211_free_node(ni); } static void rtw_txsofts_release(bus_dma_tag_t dmat, struct ieee80211com *ic, struct rtw_txsoft_blk *tsb) { struct rtw_txsoft *ts; while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) { rtw_txsoft_release(dmat, ic, ts); SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q); SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q); } tsb->tsb_tx_timer = 0; } static inline void rtw_collect_txpkt(struct rtw_softc *sc, struct rtw_txdesc_blk *tdb, struct rtw_txsoft *ts, int ndesc) { uint32_t hstat; int data_retry, rts_retry; struct rtw_txdesc *tdn; const char *condstring; struct ifnet *ifp = &sc->sc_if; rtw_txsoft_release(sc->sc_dmat, &sc->sc_ic, ts); tdb->tdb_nfree += ndesc; tdn = &tdb->tdb_desc[ts->ts_last]; hstat = le32toh(tdn->td_stat); rts_retry = __SHIFTOUT(hstat, RTW_TXSTAT_RTSRETRY_MASK); data_retry = __SHIFTOUT(hstat, RTW_TXSTAT_DRC_MASK); ifp->if_collisions += rts_retry + data_retry; if ((hstat & RTW_TXSTAT_TOK) != 0) condstring = "ok"; else { ifp->if_oerrors++; condstring = "error"; } DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: ts %p txdesc[%d, %d] %s tries rts %u data %u\n", device_xname(sc->sc_dev), ts, ts->ts_first, ts->ts_last, condstring, rts_retry, data_retry)); } static void rtw_reset_oactive(struct rtw_softc *sc) { short oflags; int pri; struct rtw_txsoft_blk *tsb; struct rtw_txdesc_blk *tdb; oflags = sc->sc_if.if_flags; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; tdb = &sc->sc_txdesc_blk[pri]; if (!SIMPLEQ_EMPTY(&tsb->tsb_freeq) && tdb->tdb_nfree > 0) sc->sc_if.if_flags &= ~IFF_OACTIVE; } if (oflags != sc->sc_if.if_flags) { DPRINTF(sc, RTW_DEBUG_OACTIVE, ("%s: reset OACTIVE\n", __func__)); } } /* Collect transmitted packets. */ static bool rtw_collect_txring(struct rtw_softc *sc, struct rtw_txsoft_blk *tsb, struct rtw_txdesc_blk *tdb, int force) { bool collected = false; int ndesc; struct rtw_txsoft *ts; #ifdef RTW_DEBUG rtw_dump_rings(sc); #endif while ((ts = SIMPLEQ_FIRST(&tsb->tsb_dirtyq)) != NULL) { /* If we're clearing a failed transmission, only clear up to the last packet the hardware has processed. */ if (ts->ts_first == rtw_txring_next(&sc->sc_regs, tdb)) break; ndesc = 1 + ts->ts_last - ts->ts_first; if (ts->ts_last < ts->ts_first) ndesc += tdb->tdb_ndesc; KASSERT(ndesc > 0); rtw_txdescs_sync(tdb, ts->ts_first, ndesc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); if (force) { int next; #ifdef RTW_DIAG printf("%s: clearing packet, stats", __func__); #endif for (next = ts->ts_first; ; next = RTW_NEXT_IDX(tdb, next)) { #ifdef RTW_DIAG printf(" %" PRIx32 "/%" PRIx32 "/%" PRIx32 "/%" PRIu32 "/%" PRIx32, le32toh(tdb->tdb_desc[next].td_stat), le32toh(tdb->tdb_desc[next].td_ctl1), le32toh(tdb->tdb_desc[next].td_buf), le32toh(tdb->tdb_desc[next].td_len), le32toh(tdb->tdb_desc[next].td_next)); #endif tdb->tdb_desc[next].td_stat &= ~htole32(RTW_TXSTAT_OWN); if (next == ts->ts_last) break; } rtw_txdescs_sync(tdb, ts->ts_first, ndesc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); #ifdef RTW_DIAG next = RTW_NEXT_IDX(tdb, next); printf(" -> end %u stat %" PRIx32 ", was %u\n", next, le32toh(tdb->tdb_desc[next].td_stat), rtw_txring_next(&sc->sc_regs, tdb)); #endif } else if ((tdb->tdb_desc[ts->ts_last].td_stat & htole32(RTW_TXSTAT_OWN)) != 0) { rtw_txdescs_sync(tdb, ts->ts_last, 1, BUS_DMASYNC_PREREAD); break; } collected = true; rtw_collect_txpkt(sc, tdb, ts, ndesc); SIMPLEQ_REMOVE_HEAD(&tsb->tsb_dirtyq, ts_q); SIMPLEQ_INSERT_TAIL(&tsb->tsb_freeq, ts, ts_q); } /* no more pending transmissions, cancel watchdog */ if (ts == NULL) tsb->tsb_tx_timer = 0; rtw_reset_oactive(sc); return collected; } static void rtw_intr_tx(struct rtw_softc *sc, uint16_t isr) { int pri; struct rtw_txsoft_blk *tsb; struct rtw_txdesc_blk *tdb; struct ifnet *ifp = &sc->sc_if; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; tdb = &sc->sc_txdesc_blk[pri]; rtw_collect_txring(sc, tsb, tdb, 0); } if ((isr & RTW_INTR_TX) != 0) rtw_start(ifp); return; } static void rtw_intr_beacon(struct rtw_softc *sc, uint16_t isr) { u_int next; uint32_t tsfth, tsftl; struct ieee80211com *ic; struct rtw_txdesc_blk *tdb = &sc->sc_txdesc_blk[RTW_TXPRIBCN]; struct rtw_txsoft_blk *tsb = &sc->sc_txsoft_blk[RTW_TXPRIBCN]; struct mbuf *m; tsfth = RTW_READ(&sc->sc_regs, RTW_TSFTRH); tsftl = RTW_READ(&sc->sc_regs, RTW_TSFTRL); if ((isr & (RTW_INTR_TBDOK|RTW_INTR_TBDER)) != 0) { next = rtw_txring_next(&sc->sc_regs, tdb); RTW_DPRINTF(RTW_DEBUG_BEACON, ("%s: beacon ring %sprocessed, isr = %#04" PRIx16 ", next %u expected %u, %" PRIu64 "\n", __func__, (next == tdb->tdb_next) ? "" : "un", isr, next, tdb->tdb_next, (uint64_t)tsfth << 32 | tsftl)); if ((RTW_READ8(&sc->sc_regs, RTW_TPPOLL) & RTW_TPPOLL_BQ) == 0) rtw_collect_txring(sc, tsb, tdb, 1); } /* Start beacon transmission. */ if ((isr & RTW_INTR_BCNINT) != 0 && sc->sc_ic.ic_state == IEEE80211_S_RUN && SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) { RTW_DPRINTF(RTW_DEBUG_BEACON, ("%s: beacon prep. time, isr = %#04" PRIx16 ", %16" PRIu64 "\n", __func__, isr, (uint64_t)tsfth << 32 | tsftl)); ic = &sc->sc_ic; m = rtw_beacon_alloc(sc, ic->ic_bss); if (m == NULL) { aprint_error_dev(sc->sc_dev, "could not allocate beacon\n"); return; } m->m_pkthdr.rcvif = (void *)ieee80211_ref_node(ic->ic_bss); IF_ENQUEUE(&sc->sc_beaconq, m); rtw_start(&sc->sc_if); } } static void rtw_intr_atim(struct rtw_softc *sc) { /* TBD */ return; } #ifdef RTW_DEBUG static void rtw_dump_rings(struct rtw_softc *sc) { struct rtw_txdesc_blk *tdb; struct rtw_rxdesc *rd; struct rtw_rxdesc_blk *rdb; int desc, pri; if ((rtw_debug & RTW_DEBUG_IO_KICK) == 0) return; for (pri = 0; pri < RTW_NTXPRI; pri++) { tdb = &sc->sc_txdesc_blk[pri]; printf("%s: txpri %d ndesc %d nfree %d\n", __func__, pri, tdb->tdb_ndesc, tdb->tdb_nfree); for (desc = 0; desc < tdb->tdb_ndesc; desc++) rtw_print_txdesc(sc, ".", NULL, tdb, desc); } rdb = &sc->sc_rxdesc_blk; for (desc = 0; desc < RTW_RXQLEN; desc++) { rd = &rdb->rdb_desc[desc]; printf("%s: %sctl %08x rsvd0/rssi %08x buf/tsftl %08x " "rsvd1/tsfth %08x\n", __func__, (desc >= rdb->rdb_ndesc) ? "UNUSED " : "", le32toh(rd->rd_ctl), le32toh(rd->rd_rssi), le32toh(rd->rd_buf), le32toh(rd->rd_tsfth)); } } #endif /* RTW_DEBUG */ static void rtw_hwring_setup(struct rtw_softc *sc) { int pri; struct rtw_regs *regs = &sc->sc_regs; struct rtw_txdesc_blk *tdb; sc->sc_txdesc_blk[RTW_TXPRILO].tdb_basereg = RTW_TLPDA; sc->sc_txdesc_blk[RTW_TXPRILO].tdb_base = RTW_RING_BASE(sc, hd_txlo); sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_basereg = RTW_TNPDA; sc->sc_txdesc_blk[RTW_TXPRIMD].tdb_base = RTW_RING_BASE(sc, hd_txmd); sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_basereg = RTW_THPDA; sc->sc_txdesc_blk[RTW_TXPRIHI].tdb_base = RTW_RING_BASE(sc, hd_txhi); sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_basereg = RTW_TBDA; sc->sc_txdesc_blk[RTW_TXPRIBCN].tdb_base = RTW_RING_BASE(sc, hd_bcn); for (pri = 0; pri < RTW_NTXPRI; pri++) { tdb = &sc->sc_txdesc_blk[pri]; RTW_WRITE(regs, tdb->tdb_basereg, tdb->tdb_base); RTW_DPRINTF(RTW_DEBUG_XMIT_DESC, ("%s: reg[tdb->tdb_basereg] <- %" PRIxPTR "\n", __func__, (uintptr_t)tdb->tdb_base)); } RTW_WRITE(regs, RTW_RDSAR, RTW_RING_BASE(sc, hd_rx)); RTW_DPRINTF(RTW_DEBUG_RECV_DESC, ("%s: reg[RDSAR] <- %" PRIxPTR "\n", __func__, (uintptr_t)RTW_RING_BASE(sc, hd_rx))); RTW_SYNC(regs, RTW_TLPDA, RTW_RDSAR); } static int rtw_swring_setup(struct rtw_softc *sc) { int rc; struct rtw_rxdesc_blk *rdb; rtw_txdesc_blk_init_all(&sc->sc_txdesc_blk[0]); rtw_txsoft_blk_init_all(&sc->sc_txsoft_blk[0]); rdb = &sc->sc_rxdesc_blk; if ((rc = rtw_rxsoft_init_all(sc->sc_dmat, sc->sc_rxsoft, &rdb->rdb_ndesc, sc->sc_dev)) != 0 && rdb->rdb_ndesc == 0) { aprint_error_dev(sc->sc_dev, "could not allocate rx buffers\n"); return rc; } rdb = &sc->sc_rxdesc_blk; rtw_rxdescs_sync(rdb, 0, rdb->rdb_ndesc, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); rtw_rxdesc_init_all(rdb, sc->sc_rxsoft, 1); rdb->rdb_next = 0; rtw_txdescs_sync_all(&sc->sc_txdesc_blk[0]); return 0; } static void rtw_txdesc_blk_init(struct rtw_txdesc_blk *tdb) { int i; (void)memset(tdb->tdb_desc, 0, sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc); for (i = 0; i < tdb->tdb_ndesc; i++) tdb->tdb_desc[i].td_next = htole32(RTW_NEXT_DESC(tdb, i)); } static u_int rtw_txring_next(struct rtw_regs *regs, struct rtw_txdesc_blk *tdb) { return (le32toh(RTW_READ(regs, tdb->tdb_basereg)) - tdb->tdb_base) / sizeof(struct rtw_txdesc); } #ifdef RTW_DIAG static void rtw_txring_fixup(struct rtw_softc *sc, const char *fn, int ln) { int pri; u_int next; struct rtw_txdesc_blk *tdb; struct rtw_regs *regs = &sc->sc_regs; for (pri = 0; pri < RTW_NTXPRI; pri++) { int i; tdb = &sc->sc_txdesc_blk[pri]; next = rtw_txring_next(regs, tdb); if (tdb->tdb_next == next) continue; for (i = 0; next != tdb->tdb_next; next = RTW_NEXT_IDX(tdb, next), i++) { if ((tdb->tdb_desc[next].td_stat & htole32(RTW_TXSTAT_OWN)) == 0) break; } printf("%s:%d: tx-ring %d expected next %u, read %u+%d -> %s\n", fn, ln, pri, tdb->tdb_next, next, i, tdb->tdb_next == next ? "okay" : "BAD"); if (tdb->tdb_next == next) continue; tdb->tdb_next = MIN(next, tdb->tdb_ndesc - 1); } } #endif static void rtw_txdescs_reset(struct rtw_softc *sc) { int pri; struct rtw_txsoft_blk *tsb; struct rtw_txdesc_blk *tdb; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; tdb = &sc->sc_txdesc_blk[pri]; rtw_collect_txring(sc, tsb, tdb, 1); #ifdef RTW_DIAG if (!SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) printf("%s: packets left in ring %d\n", __func__, pri); #endif } } static void rtw_intr_ioerror(struct rtw_softc *sc, uint16_t isr) { aprint_error_dev(sc->sc_dev, "tx fifo underflow\n"); RTW_DPRINTF(RTW_DEBUG_BUGS, ("%s: cleaning up xmit, isr %" PRIx16 "\n", device_xname(sc->sc_dev), isr)); #ifdef RTW_DEBUG rtw_dump_rings(sc); #endif /* RTW_DEBUG */ /* Collect tx'd packets. XXX let's hope this stops the transmit * timeouts. */ rtw_txdescs_reset(sc); #ifdef RTW_DEBUG rtw_dump_rings(sc); #endif /* RTW_DEBUG */ } static inline void rtw_suspend_ticks(struct rtw_softc *sc) { RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: suspending ticks\n", device_xname(sc->sc_dev))); sc->sc_do_tick = 0; } static inline void rtw_resume_ticks(struct rtw_softc *sc) { uint32_t tsftrl0, tsftrl1, next_tick; tsftrl0 = RTW_READ(&sc->sc_regs, RTW_TSFTRL); tsftrl1 = RTW_READ(&sc->sc_regs, RTW_TSFTRL); next_tick = tsftrl1 + 1000000; RTW_WRITE(&sc->sc_regs, RTW_TINT, next_tick); sc->sc_do_tick = 1; RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: resume ticks delta %#08x now %#08x next %#08x\n", device_xname(sc->sc_dev), tsftrl1 - tsftrl0, tsftrl1, next_tick)); } static void rtw_intr_timeout(struct rtw_softc *sc) { RTW_DPRINTF(RTW_DEBUG_TIMEOUT, ("%s: timeout\n", device_xname(sc->sc_dev))); if (sc->sc_do_tick) rtw_resume_ticks(sc); return; } int rtw_intr(void *arg) { int i; struct rtw_softc *sc = arg; struct rtw_regs *regs = &sc->sc_regs; uint16_t isr; struct ifnet *ifp = &sc->sc_if; /* * If the interface isn't running, the interrupt couldn't * possibly have come from us. */ if ((ifp->if_flags & IFF_RUNNING) == 0 || !device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) { RTW_DPRINTF(RTW_DEBUG_INTR, ("%s: stray interrupt\n", device_xname(sc->sc_dev))); return (0); } for (i = 0; i < 10; i++) { isr = RTW_READ16(regs, RTW_ISR); RTW_WRITE16(regs, RTW_ISR, isr); RTW_WBR(regs, RTW_ISR, RTW_ISR); if (sc->sc_intr_ack != NULL) (*sc->sc_intr_ack)(regs); if (isr == 0) break; #ifdef RTW_DEBUG #define PRINTINTR(flag) do { \ if ((isr & flag) != 0) { \ printf("%s" #flag, delim); \ delim = ","; \ } \ } while (0) if ((rtw_debug & RTW_DEBUG_INTR) != 0 && isr != 0) { const char *delim = "<"; printf("%s: reg[ISR] = %x", device_xname(sc->sc_dev), isr); PRINTINTR(RTW_INTR_TXFOVW); PRINTINTR(RTW_INTR_TIMEOUT); PRINTINTR(RTW_INTR_BCNINT); PRINTINTR(RTW_INTR_ATIMINT); PRINTINTR(RTW_INTR_TBDER); PRINTINTR(RTW_INTR_TBDOK); PRINTINTR(RTW_INTR_THPDER); PRINTINTR(RTW_INTR_THPDOK); PRINTINTR(RTW_INTR_TNPDER); PRINTINTR(RTW_INTR_TNPDOK); PRINTINTR(RTW_INTR_RXFOVW); PRINTINTR(RTW_INTR_RDU); PRINTINTR(RTW_INTR_TLPDER); PRINTINTR(RTW_INTR_TLPDOK); PRINTINTR(RTW_INTR_RER); PRINTINTR(RTW_INTR_ROK); printf(">\n"); } #undef PRINTINTR #endif /* RTW_DEBUG */ if ((isr & RTW_INTR_RX) != 0) rtw_intr_rx(sc, isr); if ((isr & RTW_INTR_TX) != 0) rtw_intr_tx(sc, isr); if ((isr & RTW_INTR_BEACON) != 0) rtw_intr_beacon(sc, isr); if ((isr & RTW_INTR_ATIMINT) != 0) rtw_intr_atim(sc); if ((isr & RTW_INTR_IOERROR) != 0) rtw_intr_ioerror(sc, isr); if ((isr & RTW_INTR_TIMEOUT) != 0) rtw_intr_timeout(sc); } return 1; } /* Must be called at splnet. */ static void rtw_stop(struct ifnet *ifp, int disable) { int pri; struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct rtw_regs *regs = &sc->sc_regs; rtw_suspend_ticks(sc); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); if (device_has_power(sc->sc_dev)) { /* Disable interrupts. */ RTW_WRITE16(regs, RTW_IMR, 0); RTW_WBW(regs, RTW_TPPOLL, RTW_IMR); /* Stop the transmit and receive processes. First stop DMA, * then disable receiver and transmitter. */ RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL); RTW_SYNC(regs, RTW_TPPOLL, RTW_IMR); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0); } for (pri = 0; pri < RTW_NTXPRI; pri++) { rtw_txsofts_release(sc->sc_dmat, &sc->sc_ic, &sc->sc_txsoft_blk[pri]); } rtw_rxbufs_release(sc->sc_dmat, &sc->sc_rxsoft[0]); /* Mark the interface as not running. Cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; if (disable) pmf_device_suspend(sc->sc_dev, &sc->sc_qual); return; } const char * rtw_pwrstate_string(enum rtw_pwrstate power) { switch (power) { case RTW_ON: return "on"; case RTW_SLEEP: return "sleep"; case RTW_OFF: return "off"; default: return "unknown"; } } /* XXX For Maxim, I am using the RFMD settings gleaned from the * reference driver, plus a magic Maxim "ON" value that comes from * the Realtek document "Windows PG for Rtl8180." */ static void rtw_maxim_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power, int before_rf, int digphy) { uint32_t anaparm; anaparm = RTW_READ(regs, RTW_ANAPARM); anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF); switch (power) { case RTW_OFF: if (before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_MAXIM_OFF; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_SLEEP: if (!before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_MAXIM_SLEEP; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_ON: if (!before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_MAXIM_ON; break; } RTW_DPRINTF(RTW_DEBUG_PWR, ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n", __func__, rtw_pwrstate_string(power), (before_rf) ? "before" : "after", anaparm)); RTW_WRITE(regs, RTW_ANAPARM, anaparm); RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM); } /* XXX I am using the RFMD settings gleaned from the reference * driver. They agree */ static void rtw_rfmd_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power, int before_rf, int digphy) { uint32_t anaparm; anaparm = RTW_READ(regs, RTW_ANAPARM); anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF); switch (power) { case RTW_OFF: if (before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_RFMD_OFF; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_SLEEP: if (!before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_RFMD_SLEEP; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_ON: if (!before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_RFMD_ON; break; } RTW_DPRINTF(RTW_DEBUG_PWR, ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n", __func__, rtw_pwrstate_string(power), (before_rf) ? "before" : "after", anaparm)); RTW_WRITE(regs, RTW_ANAPARM, anaparm); RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM); } static void rtw_philips_pwrstate(struct rtw_regs *regs, enum rtw_pwrstate power, int before_rf, int digphy) { uint32_t anaparm; anaparm = RTW_READ(regs, RTW_ANAPARM); anaparm &= ~(RTW_ANAPARM_RFPOW_MASK | RTW_ANAPARM_TXDACOFF); switch (power) { case RTW_OFF: if (before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_OFF; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_SLEEP: if (!before_rf) return; anaparm |= RTW_ANAPARM_RFPOW_PHILIPS_SLEEP; anaparm |= RTW_ANAPARM_TXDACOFF; break; case RTW_ON: if (!before_rf) return; if (digphy) { anaparm |= RTW_ANAPARM_RFPOW_DIG_PHILIPS_ON; /* XXX guess */ anaparm |= RTW_ANAPARM_TXDACOFF; } else anaparm |= RTW_ANAPARM_RFPOW_ANA_PHILIPS_ON; break; } RTW_DPRINTF(RTW_DEBUG_PWR, ("%s: power state %s, %s RF, reg[ANAPARM] <- %08x\n", __func__, rtw_pwrstate_string(power), (before_rf) ? "before" : "after", anaparm)); RTW_WRITE(regs, RTW_ANAPARM, anaparm); RTW_SYNC(regs, RTW_ANAPARM, RTW_ANAPARM); } static void rtw_pwrstate0(struct rtw_softc *sc, enum rtw_pwrstate power, int before_rf, int digphy) { struct rtw_regs *regs = &sc->sc_regs; rtw_set_access(regs, RTW_ACCESS_ANAPARM); (*sc->sc_pwrstate_cb)(regs, power, before_rf, digphy); rtw_set_access(regs, RTW_ACCESS_NONE); return; } static int rtw_pwrstate(struct rtw_softc *sc, enum rtw_pwrstate power) { int rc; RTW_DPRINTF(RTW_DEBUG_PWR, ("%s: %s->%s\n", __func__, rtw_pwrstate_string(sc->sc_pwrstate), rtw_pwrstate_string(power))); if (sc->sc_pwrstate == power) return 0; rtw_pwrstate0(sc, power, 1, sc->sc_flags & RTW_F_DIGPHY); rc = rtw_rf_pwrstate(sc->sc_rf, power); rtw_pwrstate0(sc, power, 0, sc->sc_flags & RTW_F_DIGPHY); switch (power) { case RTW_ON: /* TBD set LEDs */ break; case RTW_SLEEP: /* TBD */ break; case RTW_OFF: /* TBD */ break; } if (rc == 0) sc->sc_pwrstate = power; else sc->sc_pwrstate = RTW_OFF; return rc; } static int rtw_tune(struct rtw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct rtw_tx_radiotap_header *rt = &sc->sc_txtap; struct rtw_rx_radiotap_header *rr = &sc->sc_rxtap; u_int chan; int rc; int antdiv = sc->sc_flags & RTW_F_ANTDIV, dflantb = sc->sc_flags & RTW_F_DFLANTB; chan = ieee80211_chan2ieee(ic, ic->ic_curchan); KASSERT(chan != IEEE80211_CHAN_ANY); rt->rt_chan_freq = htole16(ic->ic_curchan->ic_freq); rt->rt_chan_flags = htole16(ic->ic_curchan->ic_flags); rr->rr_chan_freq = htole16(ic->ic_curchan->ic_freq); rr->rr_chan_flags = htole16(ic->ic_curchan->ic_flags); if (chan == sc->sc_cur_chan) { RTW_DPRINTF(RTW_DEBUG_TUNE, ("%s: already tuned chan #%d\n", __func__, chan)); return 0; } rtw_suspend_ticks(sc); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0); /* TBD wait for Tx to complete */ KASSERT(device_has_power(sc->sc_dev)); if ((rc = rtw_phy_init(&sc->sc_regs, sc->sc_rf, rtw_chan2txpower(&sc->sc_srom, ic, ic->ic_curchan), sc->sc_csthr, ic->ic_curchan->ic_freq, antdiv, dflantb, RTW_ON)) != 0) { /* XXX condition on powersaving */ aprint_error_dev(sc->sc_dev, "phy init failed\n"); } sc->sc_cur_chan = chan; rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1); rtw_resume_ticks(sc); return rc; } bool rtw_suspend(device_t self PMF_FN_ARGS) { int rc; struct rtw_softc *sc = device_private(self); sc->sc_flags &= ~RTW_F_DK_VALID; if (!device_has_power(self)) return false; /* turn off PHY */ if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) { aprint_error_dev(self, "failed to turn off PHY (%d)\n", rc); return false; } rtw_disable_interrupts(&sc->sc_regs); return true; } bool rtw_resume(device_t self PMF_FN_ARGS) { struct rtw_softc *sc = device_private(self); /* Power may have been removed, resetting WEP keys. */ sc->sc_flags &= ~RTW_F_DK_VALID; rtw_enable_interrupts(sc); return true; } static void rtw_transmit_config(struct rtw_regs *regs) { uint32_t tcr; tcr = RTW_READ(regs, RTW_TCR); tcr |= RTW_TCR_CWMIN; tcr &= ~RTW_TCR_MXDMA_MASK; tcr |= RTW_TCR_MXDMA_256; tcr |= RTW_TCR_SAT; /* send ACK as fast as possible */ tcr &= ~RTW_TCR_LBK_MASK; tcr |= RTW_TCR_LBK_NORMAL; /* normal operating mode */ /* set short/long retry limits */ tcr &= ~(RTW_TCR_SRL_MASK|RTW_TCR_LRL_MASK); tcr |= __SHIFTIN(4, RTW_TCR_SRL_MASK) | __SHIFTIN(4, RTW_TCR_LRL_MASK); tcr &= ~RTW_TCR_CRC; /* NIC appends CRC32 */ RTW_WRITE(regs, RTW_TCR, tcr); RTW_SYNC(regs, RTW_TCR, RTW_TCR); } static void rtw_disable_interrupts(struct rtw_regs *regs) { RTW_WRITE16(regs, RTW_IMR, 0); RTW_WBW(regs, RTW_IMR, RTW_ISR); RTW_WRITE16(regs, RTW_ISR, 0xffff); RTW_SYNC(regs, RTW_IMR, RTW_ISR); } static void rtw_enable_interrupts(struct rtw_softc *sc) { struct rtw_regs *regs = &sc->sc_regs; sc->sc_inten = RTW_INTR_RX|RTW_INTR_TX|RTW_INTR_BEACON|RTW_INTR_ATIMINT; sc->sc_inten |= RTW_INTR_IOERROR|RTW_INTR_TIMEOUT; RTW_WRITE16(regs, RTW_IMR, sc->sc_inten); RTW_WBW(regs, RTW_IMR, RTW_ISR); RTW_WRITE16(regs, RTW_ISR, 0xffff); RTW_SYNC(regs, RTW_IMR, RTW_ISR); /* XXX necessary? */ if (sc->sc_intr_ack != NULL) (*sc->sc_intr_ack)(regs); } static void rtw_set_nettype(struct rtw_softc *sc, enum ieee80211_opmode opmode) { uint8_t msr; /* I'm guessing that MSR is protected as CONFIG[0123] are. */ rtw_set_access(&sc->sc_regs, RTW_ACCESS_CONFIG); msr = RTW_READ8(&sc->sc_regs, RTW_MSR) & ~RTW_MSR_NETYPE_MASK; switch (opmode) { case IEEE80211_M_AHDEMO: case IEEE80211_M_IBSS: msr |= RTW_MSR_NETYPE_ADHOC_OK; break; case IEEE80211_M_HOSTAP: msr |= RTW_MSR_NETYPE_AP_OK; break; case IEEE80211_M_MONITOR: /* XXX */ msr |= RTW_MSR_NETYPE_NOLINK; break; case IEEE80211_M_STA: msr |= RTW_MSR_NETYPE_INFRA_OK; break; } RTW_WRITE8(&sc->sc_regs, RTW_MSR, msr); rtw_set_access(&sc->sc_regs, RTW_ACCESS_NONE); } #define rtw_calchash(addr) \ (ether_crc32_be((addr), IEEE80211_ADDR_LEN) >> 26) static void rtw_pktfilt_load(struct rtw_softc *sc) { struct rtw_regs *regs = &sc->sc_regs; struct ieee80211com *ic = &sc->sc_ic; struct ethercom *ec = &sc->sc_ec; struct ifnet *ifp = &sc->sc_if; int hash; uint32_t hashes[2] = { 0, 0 }; struct ether_multi *enm; struct ether_multistep step; /* XXX might be necessary to stop Rx/Tx engines while setting filters */ sc->sc_rcr &= ~RTW_RCR_PKTFILTER_MASK; sc->sc_rcr &= ~(RTW_RCR_MXDMA_MASK | RTW_RCR_RXFTH_MASK); sc->sc_rcr |= RTW_RCR_PKTFILTER_DEFAULT; /* MAC auto-reset PHY (huh?) */ sc->sc_rcr |= RTW_RCR_ENMARP; /* DMA whole Rx packets, only. Set Tx DMA burst size to 1024 bytes. */ sc->sc_rcr |= RTW_RCR_MXDMA_1024 | RTW_RCR_RXFTH_WHOLE; switch (ic->ic_opmode) { case IEEE80211_M_MONITOR: sc->sc_rcr |= RTW_RCR_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_IBSS: /* receive broadcasts in our BSS */ sc->sc_rcr |= RTW_RCR_ADD3; break; default: break; } ifp->if_flags &= ~IFF_ALLMULTI; /* * Program the 64-bit multicast hash filter. */ ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { /* XXX */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ifp->if_flags |= IFF_ALLMULTI; break; } hash = rtw_calchash(enm->enm_addrlo); hashes[hash >> 5] |= (1 << (hash & 0x1f)); ETHER_NEXT_MULTI(step, enm); } /* XXX accept all broadcast if scanning */ if ((ifp->if_flags & IFF_BROADCAST) != 0) sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */ if (ifp->if_flags & IFF_PROMISC) { sc->sc_rcr |= RTW_RCR_AB; /* accept all broadcast */ sc->sc_rcr |= RTW_RCR_ACRC32; /* accept frames failing CRC */ sc->sc_rcr |= RTW_RCR_AICV; /* accept frames failing ICV */ ifp->if_flags |= IFF_ALLMULTI; } if (ifp->if_flags & IFF_ALLMULTI) hashes[0] = hashes[1] = 0xffffffff; if ((hashes[0] | hashes[1]) != 0) sc->sc_rcr |= RTW_RCR_AM; /* accept multicast */ RTW_WRITE(regs, RTW_MAR0, hashes[0]); RTW_WRITE(regs, RTW_MAR1, hashes[1]); RTW_WRITE(regs, RTW_RCR, sc->sc_rcr); RTW_SYNC(regs, RTW_MAR0, RTW_RCR); /* RTW_MAR0 < RTW_MAR1 < RTW_RCR */ DPRINTF(sc, RTW_DEBUG_PKTFILT, ("%s: RTW_MAR0 %08x RTW_MAR1 %08x RTW_RCR %08x\n", device_xname(sc->sc_dev), RTW_READ(regs, RTW_MAR0), RTW_READ(regs, RTW_MAR1), RTW_READ(regs, RTW_RCR))); } static struct mbuf * rtw_beacon_alloc(struct rtw_softc *sc, struct ieee80211_node *ni) { struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m; struct ieee80211_beacon_offsets boff; if ((m = ieee80211_beacon_alloc(ic, ni, &boff)) != NULL) { RTW_DPRINTF(RTW_DEBUG_BEACON, ("%s: m %p len %u\n", __func__, m, m->m_len)); } return m; } /* Must be called at splnet. */ static int rtw_init(struct ifnet *ifp) { struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct rtw_regs *regs = &sc->sc_regs; int rc; if (device_is_active(sc->sc_dev)) { /* Cancel pending I/O and reset. */ rtw_stop(ifp, 0); } else if (!pmf_device_resume(sc->sc_dev, &sc->sc_qual) || !device_is_active(sc->sc_dev)) return 0; DPRINTF(sc, RTW_DEBUG_TUNE, ("%s: channel %d freq %d flags 0x%04x\n", __func__, ieee80211_chan2ieee(ic, ic->ic_curchan), ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags)); if ((rc = rtw_pwrstate(sc, RTW_OFF)) != 0) goto out; if ((rc = rtw_swring_setup(sc)) != 0) goto out; rtw_transmit_config(regs); rtw_set_access(regs, RTW_ACCESS_CONFIG); RTW_WRITE8(regs, RTW_MSR, 0x0); /* no link */ RTW_WBW(regs, RTW_MSR, RTW_BRSR); /* long PLCP header, 1Mb/2Mb basic rate */ RTW_WRITE16(regs, RTW_BRSR, RTW_BRSR_MBR8180_2MBPS); RTW_SYNC(regs, RTW_BRSR, RTW_BRSR); rtw_set_access(regs, RTW_ACCESS_ANAPARM); rtw_set_access(regs, RTW_ACCESS_NONE); /* XXX from reference sources */ RTW_WRITE(regs, RTW_FEMR, 0xffff); RTW_SYNC(regs, RTW_FEMR, RTW_FEMR); rtw_set_rfprog(regs, sc->sc_rfchipid, sc->sc_dev); RTW_WRITE8(regs, RTW_PHYDELAY, sc->sc_phydelay); /* from Linux driver */ RTW_WRITE8(regs, RTW_CRCOUNT, RTW_CRCOUNT_MAGIC); RTW_SYNC(regs, RTW_PHYDELAY, RTW_CRCOUNT); rtw_enable_interrupts(sc); rtw_pktfilt_load(sc); rtw_hwring_setup(sc); rtw_wep_setkeys(sc, ic->ic_nw_keys, ic->ic_def_txkey); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1); ifp->if_flags |= IFF_RUNNING; ic->ic_state = IEEE80211_S_INIT; RTW_WRITE16(regs, RTW_BSSID16, 0x0); RTW_WRITE(regs, RTW_BSSID32, 0x0); rtw_resume_ticks(sc); rtw_set_nettype(sc, IEEE80211_M_MONITOR); if (ic->ic_opmode == IEEE80211_M_MONITOR) return ieee80211_new_state(ic, IEEE80211_S_RUN, -1); else return ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); out: aprint_error_dev(sc->sc_dev, "interface not running\n"); return rc; } static inline void rtw_led_init(struct rtw_regs *regs) { uint8_t cfg0, cfg1; rtw_set_access(regs, RTW_ACCESS_CONFIG); cfg0 = RTW_READ8(regs, RTW_CONFIG0); cfg0 |= RTW_CONFIG0_LEDGPOEN; RTW_WRITE8(regs, RTW_CONFIG0, cfg0); cfg1 = RTW_READ8(regs, RTW_CONFIG1); RTW_DPRINTF(RTW_DEBUG_LED, ("%s: read %" PRIx8 " from reg[CONFIG1]\n", __func__, cfg1)); cfg1 &= ~RTW_CONFIG1_LEDS_MASK; cfg1 |= RTW_CONFIG1_LEDS_TX_RX; RTW_WRITE8(regs, RTW_CONFIG1, cfg1); rtw_set_access(regs, RTW_ACCESS_NONE); } /* * IEEE80211_S_INIT: LED1 off * * IEEE80211_S_AUTH, * IEEE80211_S_ASSOC, * IEEE80211_S_SCAN: LED1 blinks @ 1 Hz, blinks at 5Hz for tx/rx * * IEEE80211_S_RUN: LED1 on, blinks @ 5Hz for tx/rx */ static void rtw_led_newstate(struct rtw_softc *sc, enum ieee80211_state nstate) { struct rtw_led_state *ls; ls = &sc->sc_led_state; switch (nstate) { case IEEE80211_S_INIT: rtw_led_init(&sc->sc_regs); aprint_debug_dev(sc->sc_dev, "stopping blink\n"); callout_stop(&ls->ls_slow_ch); callout_stop(&ls->ls_fast_ch); ls->ls_slowblink = 0; ls->ls_actblink = 0; ls->ls_default = 0; break; case IEEE80211_S_SCAN: aprint_debug_dev(sc->sc_dev, "scheduling blink\n"); callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS); callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS); /*FALLTHROUGH*/ case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: ls->ls_default = RTW_LED1; ls->ls_actblink = RTW_LED1; ls->ls_slowblink = RTW_LED1; break; case IEEE80211_S_RUN: ls->ls_slowblink = 0; break; } rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid); } static void rtw_led_set(struct rtw_led_state *ls, struct rtw_regs *regs, int hwverid) { uint8_t led_condition; bus_size_t ofs; uint8_t mask, newval, val; led_condition = ls->ls_default; if (ls->ls_state & RTW_LED_S_SLOW) led_condition ^= ls->ls_slowblink; if (ls->ls_state & (RTW_LED_S_RX|RTW_LED_S_TX)) led_condition ^= ls->ls_actblink; RTW_DPRINTF(RTW_DEBUG_LED, ("%s: LED condition %" PRIx8 "\n", __func__, led_condition)); switch (hwverid) { default: case 'F': ofs = RTW_PSR; newval = mask = RTW_PSR_LEDGPO0 | RTW_PSR_LEDGPO1; if (led_condition & RTW_LED0) newval &= ~RTW_PSR_LEDGPO0; if (led_condition & RTW_LED1) newval &= ~RTW_PSR_LEDGPO1; break; case 'D': ofs = RTW_9346CR; mask = RTW_9346CR_EEM_MASK | RTW_9346CR_EEDI | RTW_9346CR_EECS; newval = RTW_9346CR_EEM_PROGRAM; if (led_condition & RTW_LED0) newval |= RTW_9346CR_EEDI; if (led_condition & RTW_LED1) newval |= RTW_9346CR_EECS; break; } val = RTW_READ8(regs, ofs); RTW_DPRINTF(RTW_DEBUG_LED, ("%s: read %" PRIx8 " from reg[%#02" PRIxPTR "]\n", __func__, val, (uintptr_t)ofs)); val &= ~mask; val |= newval; RTW_WRITE8(regs, ofs, val); RTW_DPRINTF(RTW_DEBUG_LED, ("%s: wrote %" PRIx8 " to reg[%#02" PRIxPTR "]\n", __func__, val, (uintptr_t)ofs)); RTW_SYNC(regs, ofs, ofs); } static void rtw_led_fastblink(void *arg) { int ostate, s; struct rtw_softc *sc = (struct rtw_softc *)arg; struct rtw_led_state *ls = &sc->sc_led_state; s = splnet(); ostate = ls->ls_state; ls->ls_state ^= ls->ls_event; if ((ls->ls_event & RTW_LED_S_TX) == 0) ls->ls_state &= ~RTW_LED_S_TX; if ((ls->ls_event & RTW_LED_S_RX) == 0) ls->ls_state &= ~RTW_LED_S_RX; ls->ls_event = 0; if (ostate != ls->ls_state) rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid); splx(s); aprint_debug_dev(sc->sc_dev, "scheduling fast blink\n"); callout_schedule(&ls->ls_fast_ch, RTW_LED_FAST_TICKS); } static void rtw_led_slowblink(void *arg) { int s; struct rtw_softc *sc = (struct rtw_softc *)arg; struct rtw_led_state *ls = &sc->sc_led_state; s = splnet(); ls->ls_state ^= RTW_LED_S_SLOW; rtw_led_set(ls, &sc->sc_regs, sc->sc_hwverid); splx(s); aprint_debug_dev(sc->sc_dev, "scheduling slow blink\n"); callout_schedule(&ls->ls_slow_ch, RTW_LED_SLOW_TICKS); } static void rtw_led_detach(struct rtw_led_state *ls) { callout_destroy(&ls->ls_fast_ch); callout_destroy(&ls->ls_slow_ch); } static void rtw_led_attach(struct rtw_led_state *ls, void *arg) { callout_init(&ls->ls_fast_ch, 0); callout_init(&ls->ls_slow_ch, 0); callout_setfunc(&ls->ls_fast_ch, rtw_led_fastblink, arg); callout_setfunc(&ls->ls_slow_ch, rtw_led_slowblink, arg); } static int rtw_ioctl(struct ifnet *ifp, u_long cmd, void *data) { int rc = 0, s; struct rtw_softc *sc = ifp->if_softc; s = splnet(); if (cmd == SIOCSIFFLAGS) { if ((rc = ifioctl_common(ifp, cmd, data)) != 0) ; else switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { case IFF_UP: rc = rtw_init(ifp); RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__); break; case IFF_UP|IFF_RUNNING: if (device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER)) rtw_pktfilt_load(sc); RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__); break; case IFF_RUNNING: RTW_PRINT_REGS(&sc->sc_regs, ifp->if_xname, __func__); rtw_stop(ifp, 1); break; default: break; } } else if ((rc = ieee80211_ioctl(&sc->sc_ic, cmd, data)) != ENETRESET) ; /* nothing to do */ else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) { /* reload packet filter if running */ if (ifp->if_flags & IFF_RUNNING) rtw_pktfilt_load(sc); rc = 0; } else if ((ifp->if_flags & IFF_UP) != 0) rc = rtw_init(ifp); else rc = 0; splx(s); return rc; } /* Select a transmit ring with at least one h/w and s/w descriptor free. * Return 0 on success, -1 on failure. */ static inline int rtw_txring_choose(struct rtw_softc *sc, struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp, int pri) { struct rtw_txsoft_blk *tsb; struct rtw_txdesc_blk *tdb; KASSERT(pri >= 0 && pri < RTW_NTXPRI); tsb = &sc->sc_txsoft_blk[pri]; tdb = &sc->sc_txdesc_blk[pri]; if (SIMPLEQ_EMPTY(&tsb->tsb_freeq) || tdb->tdb_nfree == 0) { if (tsb->tsb_tx_timer == 0) tsb->tsb_tx_timer = 5; *tsbp = NULL; *tdbp = NULL; return -1; } *tsbp = tsb; *tdbp = tdb; return 0; } static inline struct mbuf * rtw_80211_dequeue(struct rtw_softc *sc, struct ifqueue *ifq, int pri, struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp, struct ieee80211_node **nip, short *if_flagsp) { struct mbuf *m; if (IF_IS_EMPTY(ifq)) return NULL; if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) { DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n", __func__, pri)); *if_flagsp |= IFF_OACTIVE; sc->sc_if.if_timer = 1; return NULL; } IF_DEQUEUE(ifq, m); *nip = (struct ieee80211_node *)m->m_pkthdr.rcvif; m->m_pkthdr.rcvif = NULL; KASSERT(*nip != NULL); return m; } /* Point *mp at the next 802.11 frame to transmit. Point *tsbp * at the driver's selection of transmit control block for the packet. */ static inline int rtw_dequeue(struct ifnet *ifp, struct rtw_txsoft_blk **tsbp, struct rtw_txdesc_blk **tdbp, struct mbuf **mp, struct ieee80211_node **nip) { int pri; struct ether_header *eh; struct mbuf *m0; struct rtw_softc *sc; short *if_flagsp; *mp = NULL; sc = (struct rtw_softc *)ifp->if_softc; DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: enter %s\n", device_xname(sc->sc_dev), __func__)); if_flagsp = &ifp->if_flags; if (sc->sc_ic.ic_state == IEEE80211_S_RUN && (*mp = rtw_80211_dequeue(sc, &sc->sc_beaconq, RTW_TXPRIBCN, tsbp, tdbp, nip, if_flagsp)) != NULL) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue beacon frame\n", __func__)); return 0; } if ((*mp = rtw_80211_dequeue(sc, &sc->sc_ic.ic_mgtq, RTW_TXPRIMD, tsbp, tdbp, nip, if_flagsp)) != NULL) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue mgt frame\n", __func__)); return 0; } if (sc->sc_ic.ic_state != IEEE80211_S_RUN) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: not running\n", __func__)); return 0; } IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n", __func__)); return 0; } pri = ((m0->m_flags & M_PWR_SAV) != 0) ? RTW_TXPRIHI : RTW_TXPRIMD; if (rtw_txring_choose(sc, tsbp, tdbp, pri) == -1) { DPRINTF(sc, RTW_DEBUG_XMIT_RSRC, ("%s: no ring %d descriptor\n", __func__, pri)); *if_flagsp |= IFF_OACTIVE; sc->sc_if.if_timer = 1; return 0; } IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: no frame ready\n", __func__)); return 0; } DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: dequeue data frame\n", __func__)); ifp->if_opackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif eh = mtod(m0, struct ether_header *); *nip = ieee80211_find_txnode(&sc->sc_ic, eh->ether_dhost); if (*nip == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ m_freem(m0); return -1; } if ((m0 = ieee80211_encap(&sc->sc_ic, m0, *nip)) == NULL) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: encap error\n", __func__)); ifp->if_oerrors++; return -1; } DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__)); *mp = m0; return 0; } static int rtw_seg_too_short(bus_dmamap_t dmamap) { int i; for (i = 0; i < dmamap->dm_nsegs; i++) { if (dmamap->dm_segs[i].ds_len < 4) return 1; } return 0; } /* TBD factor with atw_start */ static struct mbuf * rtw_dmamap_load_txbuf(bus_dma_tag_t dmat, bus_dmamap_t dmam, struct mbuf *chain, u_int ndescfree, device_t dev) { int first, rc; struct mbuf *m, *m0; m0 = chain; /* * Load the DMA map. Copy and try (once) again if the packet * didn't fit in the alloted number of segments. */ for (first = 1; ((rc = bus_dmamap_load_mbuf(dmat, dmam, m0, BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 || dmam->dm_nsegs > ndescfree || rtw_seg_too_short(dmam)) && first; first = 0) { if (rc == 0) { #ifdef RTW_DIAGxxx if (rtw_seg_too_short(dmam)) { printf("%s: short segment, mbuf lengths:", __func__); for (m = m0; m; m = m->m_next) printf(" %d", m->m_len); printf("\n"); } #endif bus_dmamap_unload(dmat, dmam); } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { aprint_error_dev(dev, "unable to allocate Tx mbuf\n"); break; } if (m0->m_pkthdr.len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { aprint_error_dev(dev, "cannot allocate Tx cluster\n"); m_freem(m); break; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; m_freem(m0); m0 = m; m = NULL; } if (rc != 0) { aprint_error_dev(dev, "cannot load Tx buffer, rc = %d\n", rc); m_freem(m0); return NULL; } else if (rtw_seg_too_short(dmam)) { aprint_error_dev(dev, "cannot load Tx buffer, segment too short\n"); bus_dmamap_unload(dmat, dmam); m_freem(m0); return NULL; } else if (dmam->dm_nsegs > ndescfree) { aprint_error_dev(dev, "too many tx segments\n"); bus_dmamap_unload(dmat, dmam); m_freem(m0); return NULL; } return m0; } #ifdef RTW_DEBUG static void rtw_print_txdesc(struct rtw_softc *sc, const char *action, struct rtw_txsoft *ts, struct rtw_txdesc_blk *tdb, int desc) { struct rtw_txdesc *td = &tdb->tdb_desc[desc]; DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: %p %s txdesc[%d] next %#08x " "buf %#08x ctl0 %#08x ctl1 %#08x len %#08x\n", device_xname(sc->sc_dev), ts, action, desc, le32toh(td->td_buf), le32toh(td->td_next), le32toh(td->td_ctl0), le32toh(td->td_ctl1), le32toh(td->td_len))); } #endif /* RTW_DEBUG */ static void rtw_start(struct ifnet *ifp) { int desc, i, lastdesc, npkt, rate; uint32_t proto_ctl0, ctl0, ctl1; bus_dmamap_t dmamap; struct ieee80211com *ic; struct ieee80211_duration *d0; struct ieee80211_frame_min *wh; struct ieee80211_node *ni = NULL; /* XXX: GCC */ struct mbuf *m0; struct rtw_softc *sc; struct rtw_txsoft_blk *tsb = NULL; /* XXX: GCC */ struct rtw_txdesc_blk *tdb = NULL; /* XXX: GCC */ struct rtw_txsoft *ts; struct rtw_txdesc *td; struct ieee80211_key *k; sc = (struct rtw_softc *)ifp->if_softc; ic = &sc->sc_ic; DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: enter %s\n", device_xname(sc->sc_dev), __func__)); if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) goto out; /* XXX do real rate control */ proto_ctl0 = RTW_TXCTL0_RTSRATE_1MBPS; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0) proto_ctl0 |= RTW_TXCTL0_SPLCP; for (;;) { if (rtw_dequeue(ifp, &tsb, &tdb, &m0, &ni) == -1) continue; if (m0 == NULL) break; wh = mtod(m0, struct ieee80211_frame_min *); if ((wh->i_fc[1] & IEEE80211_FC1_WEP) != 0 && (k = ieee80211_crypto_encap(ic, ni, m0)) == NULL) { m_freem(m0); break; } else k = NULL; ts = SIMPLEQ_FIRST(&tsb->tsb_freeq); dmamap = ts->ts_dmamap; m0 = rtw_dmamap_load_txbuf(sc->sc_dmat, dmamap, m0, tdb->tdb_nfree, sc->sc_dev); if (m0 == NULL || dmamap->dm_nsegs == 0) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: fail dmamap load\n", __func__)); goto post_dequeue_err; } /* Note well: rtw_dmamap_load_txbuf may have created * a new chain, so we must find the header once * more. */ wh = mtod(m0, struct ieee80211_frame_min *); /* XXX do real rate control */ if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) rate = 2; else rate = MAX(2, ieee80211_get_rate(ni)); #ifdef RTW_DEBUG if ((ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) { ieee80211_dump_pkt(mtod(m0, uint8_t *), (dmamap->dm_nsegs == 1) ? m0->m_pkthdr.len : sizeof(wh), rate, 0); } #endif /* RTW_DEBUG */ ctl0 = proto_ctl0 | __SHIFTIN(m0->m_pkthdr.len, RTW_TXCTL0_TPKTSIZE_MASK); switch (rate) { default: case 2: ctl0 |= RTW_TXCTL0_RATE_1MBPS; break; case 4: ctl0 |= RTW_TXCTL0_RATE_2MBPS; break; case 11: ctl0 |= RTW_TXCTL0_RATE_5MBPS; break; case 22: ctl0 |= RTW_TXCTL0_RATE_11MBPS; break; } /* XXX >= ? Compare after fragmentation? */ if (m0->m_pkthdr.len > ic->ic_rtsthreshold) ctl0 |= RTW_TXCTL0_RTSEN; /* XXX Sometimes writes a bogus keyid; h/w doesn't * seem to care, since we don't activate h/w Tx * encryption. */ if (k != NULL && k->wk_cipher->ic_cipher == IEEE80211_CIPHER_WEP) { ctl0 |= __SHIFTIN(k->wk_keyix, RTW_TXCTL0_KEYID_MASK) & RTW_TXCTL0_KEYID_MASK; } if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) { ctl0 &= ~(RTW_TXCTL0_SPLCP | RTW_TXCTL0_RTSEN); if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == IEEE80211_FC0_SUBTYPE_BEACON) ctl0 |= RTW_TXCTL0_BEACON; } if (ieee80211_compute_duration(wh, k, m0->m_pkthdr.len, ic->ic_flags, ic->ic_fragthreshold, rate, &ts->ts_d0, &ts->ts_dn, &npkt, (ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) == -1) { DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: fail compute duration\n", __func__)); goto post_load_err; } d0 = &ts->ts_d0; *(uint16_t*)wh->i_dur = htole16(d0->d_data_dur); ctl1 = __SHIFTIN(d0->d_plcp_len, RTW_TXCTL1_LENGTH_MASK) | __SHIFTIN(d0->d_rts_dur, RTW_TXCTL1_RTSDUR_MASK); if (d0->d_residue) ctl1 |= RTW_TXCTL1_LENGEXT; /* TBD fragmentation */ ts->ts_first = tdb->tdb_next; rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs, BUS_DMASYNC_PREWRITE); KASSERT(ts->ts_first < tdb->tdb_ndesc); #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap((void *)ic->ic_rawbpf, m0); if (sc->sc_radiobpf != NULL) { struct rtw_tx_radiotap_header *rt = &sc->sc_txtap; rt->rt_rate = rate; bpf_mtap2(sc->sc_radiobpf, (void *)rt, sizeof(sc->sc_txtapu), m0); } #endif /* NBPFILTER > 0 */ for (i = 0, lastdesc = desc = ts->ts_first; i < dmamap->dm_nsegs; i++, desc = RTW_NEXT_IDX(tdb, desc)) { if (dmamap->dm_segs[i].ds_len > RTW_TXLEN_LENGTH_MASK) { DPRINTF(sc, RTW_DEBUG_XMIT_DESC, ("%s: seg too long\n", __func__)); goto post_load_err; } td = &tdb->tdb_desc[desc]; td->td_ctl0 = htole32(ctl0); td->td_ctl1 = htole32(ctl1); td->td_buf = htole32(dmamap->dm_segs[i].ds_addr); td->td_len = htole32(dmamap->dm_segs[i].ds_len); td->td_next = htole32(RTW_NEXT_DESC(tdb, desc)); if (i != 0) td->td_ctl0 |= htole32(RTW_TXCTL0_OWN); lastdesc = desc; #ifdef RTW_DEBUG rtw_print_txdesc(sc, "load", ts, tdb, desc); #endif /* RTW_DEBUG */ } KASSERT(desc < tdb->tdb_ndesc); ts->ts_ni = ni; KASSERT(ni != NULL); ts->ts_mbuf = m0; ts->ts_last = lastdesc; tdb->tdb_desc[ts->ts_last].td_ctl0 |= htole32(RTW_TXCTL0_LS); tdb->tdb_desc[ts->ts_first].td_ctl0 |= htole32(RTW_TXCTL0_FS); #ifdef RTW_DEBUG rtw_print_txdesc(sc, "FS on", ts, tdb, ts->ts_first); rtw_print_txdesc(sc, "LS on", ts, tdb, ts->ts_last); #endif /* RTW_DEBUG */ tdb->tdb_nfree -= dmamap->dm_nsegs; tdb->tdb_next = desc; rtw_txdescs_sync(tdb, ts->ts_first, dmamap->dm_nsegs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); tdb->tdb_desc[ts->ts_first].td_ctl0 |= htole32(RTW_TXCTL0_OWN); #ifdef RTW_DEBUG rtw_print_txdesc(sc, "OWN on", ts, tdb, ts->ts_first); #endif /* RTW_DEBUG */ rtw_txdescs_sync(tdb, ts->ts_first, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); SIMPLEQ_REMOVE_HEAD(&tsb->tsb_freeq, ts_q); SIMPLEQ_INSERT_TAIL(&tsb->tsb_dirtyq, ts, ts_q); if (tsb != &sc->sc_txsoft_blk[RTW_TXPRIBCN]) sc->sc_led_state.ls_event |= RTW_LED_S_TX; tsb->tsb_tx_timer = 5; ifp->if_timer = 1; rtw_tx_kick(&sc->sc_regs, tsb->tsb_poll); } out: DPRINTF(sc, RTW_DEBUG_XMIT, ("%s: leave\n", __func__)); return; post_load_err: bus_dmamap_unload(sc->sc_dmat, dmamap); m_freem(m0); post_dequeue_err: ieee80211_free_node(ni); return; } static void rtw_idle(struct rtw_regs *regs) { int active; uint8_t tppoll; /* request stop DMA; wait for packets to stop transmitting. */ RTW_WRITE8(regs, RTW_TPPOLL, RTW_TPPOLL_SALL); RTW_WBR(regs, RTW_TPPOLL, RTW_TPPOLL); for (active = 0; active < 300 && (tppoll = RTW_READ8(regs, RTW_TPPOLL) & RTW_TPPOLL_ACTIVE) != 0; active++) DELAY(10); printf("%s: transmit DMA idle in %dus, tppoll %02" PRIx8 "\n", __func__, active * 10, tppoll); } static void rtw_watchdog(struct ifnet *ifp) { int pri, tx_timeouts = 0; struct rtw_softc *sc; struct rtw_txsoft_blk *tsb; sc = ifp->if_softc; ifp->if_timer = 0; if (!device_is_active(sc->sc_dev)) return; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; if (tsb->tsb_tx_timer == 0) continue; else if (--tsb->tsb_tx_timer == 0) { if (SIMPLEQ_EMPTY(&tsb->tsb_dirtyq)) continue; else if (rtw_collect_txring(sc, tsb, &sc->sc_txdesc_blk[pri], 0)) continue; printf("%s: transmit timeout, priority %d\n", ifp->if_xname, pri); ifp->if_oerrors++; if (pri != RTW_TXPRIBCN) tx_timeouts++; } else ifp->if_timer = 1; } if (tx_timeouts > 0) { /* Stop Tx DMA, disable xmtr, flush Tx rings, enable xmtr, * reset s/w tx-ring pointers, and start transmission. * * TBD Stop/restart just the broken rings? */ rtw_idle(&sc->sc_regs); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 0); rtw_txdescs_reset(sc); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1); rtw_start(ifp); } ieee80211_watchdog(&sc->sc_ic); return; } static void rtw_next_scan(void *arg) { struct ieee80211com *ic = arg; int s; /* don't call rtw_start w/o network interrupts blocked */ s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_next_scan(ic); splx(s); } static void rtw_join_bss(struct rtw_softc *sc, uint8_t *bssid, uint16_t intval0) { uint16_t bcnitv, bintritv, intval; int i; struct rtw_regs *regs = &sc->sc_regs; for (i = 0; i < IEEE80211_ADDR_LEN; i++) RTW_WRITE8(regs, RTW_BSSID + i, bssid[i]); RTW_SYNC(regs, RTW_BSSID16, RTW_BSSID32); rtw_set_access(regs, RTW_ACCESS_CONFIG); intval = MIN(intval0, __SHIFTOUT_MASK(RTW_BCNITV_BCNITV_MASK)); bcnitv = RTW_READ16(regs, RTW_BCNITV) & ~RTW_BCNITV_BCNITV_MASK; bcnitv |= __SHIFTIN(intval, RTW_BCNITV_BCNITV_MASK); RTW_WRITE16(regs, RTW_BCNITV, bcnitv); /* interrupt host 1ms before the TBTT */ bintritv = RTW_READ16(regs, RTW_BINTRITV) & ~RTW_BINTRITV_BINTRITV; bintritv |= __SHIFTIN(1000, RTW_BINTRITV_BINTRITV); RTW_WRITE16(regs, RTW_BINTRITV, bintritv); /* magic from Linux */ RTW_WRITE16(regs, RTW_ATIMWND, __SHIFTIN(1, RTW_ATIMWND_ATIMWND)); RTW_WRITE16(regs, RTW_ATIMTRITV, __SHIFTIN(2, RTW_ATIMTRITV_ATIMTRITV)); rtw_set_access(regs, RTW_ACCESS_NONE); rtw_io_enable(sc, RTW_CR_RE | RTW_CR_TE, 1); } /* Synchronize the hardware state with the software state. */ static int rtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; enum ieee80211_state ostate; int error; ostate = ic->ic_state; aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__); rtw_led_newstate(sc, nstate); aprint_debug_dev(sc->sc_dev, "%s: l.%d\n", __func__, __LINE__); if (nstate == IEEE80211_S_INIT) { callout_stop(&sc->sc_scan_ch); sc->sc_cur_chan = IEEE80211_CHAN_ANY; return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg); } if (ostate == IEEE80211_S_INIT && nstate != IEEE80211_S_INIT) rtw_pwrstate(sc, RTW_ON); if ((error = rtw_tune(sc)) != 0) return error; switch (nstate) { case IEEE80211_S_INIT: panic("%s: unexpected state IEEE80211_S_INIT\n", __func__); break; case IEEE80211_S_SCAN: if (ostate != IEEE80211_S_SCAN) { (void)memset(ic->ic_bss->ni_bssid, 0, IEEE80211_ADDR_LEN); rtw_set_nettype(sc, IEEE80211_M_MONITOR); } callout_reset(&sc->sc_scan_ch, rtw_dwelltime * hz / 1000, rtw_next_scan, ic); break; case IEEE80211_S_RUN: switch (ic->ic_opmode) { case IEEE80211_M_HOSTAP: case IEEE80211_M_IBSS: rtw_set_nettype(sc, IEEE80211_M_MONITOR); /*FALLTHROUGH*/ case IEEE80211_M_AHDEMO: case IEEE80211_M_STA: rtw_join_bss(sc, ic->ic_bss->ni_bssid, ic->ic_bss->ni_intval); break; case IEEE80211_M_MONITOR: break; } rtw_set_nettype(sc, ic->ic_opmode); break; case IEEE80211_S_ASSOC: case IEEE80211_S_AUTH: break; } if (nstate != IEEE80211_S_SCAN) callout_stop(&sc->sc_scan_ch); return (*sc->sc_mtbl.mt_newstate)(ic, nstate, arg); } /* Extend a 32-bit TSF timestamp to a 64-bit timestamp. */ static uint64_t rtw_tsf_extend(struct rtw_regs *regs, uint32_t rstamp) { uint32_t tsftl, tsfth; tsfth = RTW_READ(regs, RTW_TSFTRH); tsftl = RTW_READ(regs, RTW_TSFTRL); if (tsftl < rstamp) /* Compensate for rollover. */ tsfth--; return ((uint64_t)tsfth << 32) | rstamp; } static void rtw_recv_mgmt(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp) { struct ifnet *ifp = ic->ic_ifp; struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; (*sc->sc_mtbl.mt_recv_mgmt)(ic, m, ni, subtype, rssi, rstamp); switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: if (ic->ic_opmode == IEEE80211_M_IBSS && ic->ic_state == IEEE80211_S_RUN && device_is_active(sc->sc_dev)) { uint64_t tsf = rtw_tsf_extend(&sc->sc_regs, rstamp); if (le64toh(ni->ni_tstamp.tsf) >= tsf) (void)ieee80211_ibss_merge(ni); } break; default: break; } return; } static struct ieee80211_node * rtw_node_alloc(struct ieee80211_node_table *nt) { struct ifnet *ifp = nt->nt_ic->ic_ifp; struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; struct ieee80211_node *ni = (*sc->sc_mtbl.mt_node_alloc)(nt); DPRINTF(sc, RTW_DEBUG_NODE, ("%s: alloc node %p\n", device_xname(sc->sc_dev), ni)); return ni; } static void rtw_node_free(struct ieee80211_node *ni) { struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = ic->ic_ifp; struct rtw_softc *sc = (struct rtw_softc *)ifp->if_softc; DPRINTF(sc, RTW_DEBUG_NODE, ("%s: freeing node %p %s\n", device_xname(sc->sc_dev), ni, ether_sprintf(ni->ni_bssid))); (*sc->sc_mtbl.mt_node_free)(ni); } static int rtw_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error == ENETRESET) { if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) rtw_init(ifp); /* XXX lose error */ error = 0; } return error; } static void rtw_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct rtw_softc *sc = ifp->if_softc; if (!device_is_active(sc->sc_dev)) { imr->ifm_active = IFM_IEEE80211 | IFM_NONE; imr->ifm_status = 0; return; } ieee80211_media_status(ifp, imr); } static inline void rtw_setifprops(struct ifnet *ifp, const char *dvname, void *softc) { (void)strlcpy(ifp->if_xname, dvname, IFNAMSIZ); ifp->if_softc = softc; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; ifp->if_ioctl = rtw_ioctl; ifp->if_start = rtw_start; ifp->if_watchdog = rtw_watchdog; ifp->if_init = rtw_init; ifp->if_stop = rtw_stop; } static inline void rtw_set80211props(struct ieee80211com *ic) { int nrate; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_IBSS | IEEE80211_C_HOSTAP | IEEE80211_C_MONITOR | IEEE80211_C_WEP; nrate = 0; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = IEEE80211_RATE_BASIC | 2; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = IEEE80211_RATE_BASIC | 4; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 11; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates[nrate++] = 22; ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; } static inline void rtw_set80211methods(struct rtw_mtbl *mtbl, struct ieee80211com *ic) { mtbl->mt_newstate = ic->ic_newstate; ic->ic_newstate = rtw_newstate; mtbl->mt_recv_mgmt = ic->ic_recv_mgmt; ic->ic_recv_mgmt = rtw_recv_mgmt; mtbl->mt_node_free = ic->ic_node_free; ic->ic_node_free = rtw_node_free; mtbl->mt_node_alloc = ic->ic_node_alloc; ic->ic_node_alloc = rtw_node_alloc; ic->ic_crypto.cs_key_delete = rtw_key_delete; ic->ic_crypto.cs_key_set = rtw_key_set; ic->ic_crypto.cs_key_update_begin = rtw_key_update_begin; ic->ic_crypto.cs_key_update_end = rtw_key_update_end; } static inline void rtw_init_radiotap(struct rtw_softc *sc) { uint32_t present; memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); sc->sc_rxtap.rr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); if (sc->sc_rfchipid == RTW_RFCHIPID_PHILIPS) present = htole32(RTW_PHILIPS_RX_RADIOTAP_PRESENT); else present = htole32(RTW_RX_RADIOTAP_PRESENT); sc->sc_rxtap.rr_ihdr.it_present = present; memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); sc->sc_txtap.rt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); sc->sc_txtap.rt_ihdr.it_present = htole32(RTW_TX_RADIOTAP_PRESENT); } static int rtw_txsoft_blk_setup(struct rtw_txsoft_blk *tsb, u_int qlen) { SIMPLEQ_INIT(&tsb->tsb_dirtyq); SIMPLEQ_INIT(&tsb->tsb_freeq); tsb->tsb_ndesc = qlen; tsb->tsb_desc = malloc(qlen * sizeof(*tsb->tsb_desc), M_DEVBUF, M_NOWAIT); if (tsb->tsb_desc == NULL) return ENOMEM; return 0; } static void rtw_txsoft_blk_cleanup_all(struct rtw_softc *sc) { int pri; struct rtw_txsoft_blk *tsb; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; free(tsb->tsb_desc, M_DEVBUF); tsb->tsb_desc = NULL; } } static int rtw_txsoft_blk_setup_all(struct rtw_softc *sc) { int pri, rc = 0; int qlen[RTW_NTXPRI] = {RTW_TXQLENLO, RTW_TXQLENMD, RTW_TXQLENHI, RTW_TXQLENBCN}; struct rtw_txsoft_blk *tsbs; tsbs = sc->sc_txsoft_blk; for (pri = 0; pri < RTW_NTXPRI; pri++) { rc = rtw_txsoft_blk_setup(&tsbs[pri], qlen[pri]); if (rc != 0) break; } tsbs[RTW_TXPRILO].tsb_poll = RTW_TPPOLL_LPQ | RTW_TPPOLL_SLPQ; tsbs[RTW_TXPRIMD].tsb_poll = RTW_TPPOLL_NPQ | RTW_TPPOLL_SNPQ; tsbs[RTW_TXPRIHI].tsb_poll = RTW_TPPOLL_HPQ | RTW_TPPOLL_SHPQ; tsbs[RTW_TXPRIBCN].tsb_poll = RTW_TPPOLL_BQ | RTW_TPPOLL_SBQ; return rc; } static void rtw_txdesc_blk_setup(struct rtw_txdesc_blk *tdb, struct rtw_txdesc *desc, u_int ndesc, bus_addr_t ofs, bus_addr_t physbase) { tdb->tdb_ndesc = ndesc; tdb->tdb_desc = desc; tdb->tdb_physbase = physbase; tdb->tdb_ofs = ofs; (void)memset(tdb->tdb_desc, 0, sizeof(tdb->tdb_desc[0]) * tdb->tdb_ndesc); rtw_txdesc_blk_init(tdb); tdb->tdb_next = 0; } static void rtw_txdesc_blk_setup_all(struct rtw_softc *sc) { rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRILO], &sc->sc_descs->hd_txlo[0], RTW_NTXDESCLO, RTW_RING_OFFSET(hd_txlo), RTW_RING_BASE(sc, hd_txlo)); rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIMD], &sc->sc_descs->hd_txmd[0], RTW_NTXDESCMD, RTW_RING_OFFSET(hd_txmd), RTW_RING_BASE(sc, hd_txmd)); rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIHI], &sc->sc_descs->hd_txhi[0], RTW_NTXDESCHI, RTW_RING_OFFSET(hd_txhi), RTW_RING_BASE(sc, hd_txhi)); rtw_txdesc_blk_setup(&sc->sc_txdesc_blk[RTW_TXPRIBCN], &sc->sc_descs->hd_bcn[0], RTW_NTXDESCBCN, RTW_RING_OFFSET(hd_bcn), RTW_RING_BASE(sc, hd_bcn)); } static struct rtw_rf * rtw_rf_attach(struct rtw_softc *sc, enum rtw_rfchipid rfchipid, int digphy) { rtw_rf_write_t rf_write; struct rtw_rf *rf; switch (rfchipid) { default: rf_write = rtw_rf_hostwrite; break; case RTW_RFCHIPID_INTERSIL: case RTW_RFCHIPID_PHILIPS: case RTW_RFCHIPID_GCT: /* XXX a guess */ case RTW_RFCHIPID_RFMD: rf_write = (rtw_host_rfio) ? rtw_rf_hostwrite : rtw_rf_macwrite; break; } switch (rfchipid) { case RTW_RFCHIPID_GCT: rf = rtw_grf5101_create(&sc->sc_regs, rf_write, 0); sc->sc_pwrstate_cb = rtw_maxim_pwrstate; break; case RTW_RFCHIPID_MAXIM: rf = rtw_max2820_create(&sc->sc_regs, rf_write, 0); sc->sc_pwrstate_cb = rtw_maxim_pwrstate; break; case RTW_RFCHIPID_PHILIPS: rf = rtw_sa2400_create(&sc->sc_regs, rf_write, digphy); sc->sc_pwrstate_cb = rtw_philips_pwrstate; break; case RTW_RFCHIPID_RFMD: /* XXX RFMD has no RF constructor */ sc->sc_pwrstate_cb = rtw_rfmd_pwrstate; /*FALLTHROUGH*/ default: return NULL; } rf->rf_continuous_tx_cb = (rtw_continuous_tx_cb_t)rtw_continuous_tx_enable; rf->rf_continuous_tx_arg = (void *)sc; return rf; } /* Revision C and later use a different PHY delay setting than * revisions A and B. */ static uint8_t rtw_check_phydelay(struct rtw_regs *regs, uint32_t old_rcr) { #define REVAB (RTW_RCR_MXDMA_UNLIMITED | RTW_RCR_AICV) #define REVC (REVAB | RTW_RCR_RXFTH_WHOLE) uint8_t phydelay = __SHIFTIN(0x6, RTW_PHYDELAY_PHYDELAY); RTW_WRITE(regs, RTW_RCR, REVAB); RTW_WBW(regs, RTW_RCR, RTW_RCR); RTW_WRITE(regs, RTW_RCR, REVC); RTW_WBR(regs, RTW_RCR, RTW_RCR); if ((RTW_READ(regs, RTW_RCR) & REVC) == REVC) phydelay |= RTW_PHYDELAY_REVC_MAGIC; RTW_WRITE(regs, RTW_RCR, old_rcr); /* restore RCR */ RTW_SYNC(regs, RTW_RCR, RTW_RCR); return phydelay; #undef REVC } void rtw_attach(struct rtw_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct ieee80211com *ic = &sc->sc_ic; struct rtw_txsoft_blk *tsb; int pri, rc; pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual); rtw_cipher_wep = ieee80211_cipher_wep; rtw_cipher_wep.ic_decap = rtw_wep_decap; NEXT_ATTACH_STATE(sc, DETACHED); switch (RTW_READ(&sc->sc_regs, RTW_TCR) & RTW_TCR_HWVERID_MASK) { case RTW_TCR_HWVERID_F: sc->sc_hwverid = 'F'; break; case RTW_TCR_HWVERID_D: sc->sc_hwverid = 'D'; break; default: sc->sc_hwverid = '?'; break; } aprint_verbose_dev(sc->sc_dev, "hardware version %c\n", sc->sc_hwverid); rc = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct rtw_descs), RTW_DESC_ALIGNMENT, 0, &sc->sc_desc_segs, 1, &sc->sc_desc_nsegs, 0); if (rc != 0) { aprint_error_dev(sc->sc_dev, "could not allocate hw descriptors, error %d\n", rc); goto err; } NEXT_ATTACH_STATE(sc, FINISH_DESC_ALLOC); rc = bus_dmamem_map(sc->sc_dmat, &sc->sc_desc_segs, sc->sc_desc_nsegs, sizeof(struct rtw_descs), (void **)&sc->sc_descs, BUS_DMA_COHERENT); if (rc != 0) { aprint_error_dev(sc->sc_dev, "could not map hw descriptors, error %d\n", rc); goto err; } NEXT_ATTACH_STATE(sc, FINISH_DESC_MAP); rc = bus_dmamap_create(sc->sc_dmat, sizeof(struct rtw_descs), 1, sizeof(struct rtw_descs), 0, 0, &sc->sc_desc_dmamap); if (rc != 0) { aprint_error_dev(sc->sc_dev, "could not create DMA map for hw descriptors, error %d\n", rc); goto err; } NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_CREATE); sc->sc_rxdesc_blk.rdb_dmat = sc->sc_dmat; sc->sc_rxdesc_blk.rdb_dmamap = sc->sc_desc_dmamap; for (pri = 0; pri < RTW_NTXPRI; pri++) { sc->sc_txdesc_blk[pri].tdb_dmat = sc->sc_dmat; sc->sc_txdesc_blk[pri].tdb_dmamap = sc->sc_desc_dmamap; } rc = bus_dmamap_load(sc->sc_dmat, sc->sc_desc_dmamap, sc->sc_descs, sizeof(struct rtw_descs), NULL, 0); if (rc != 0) { aprint_error_dev(sc->sc_dev, "could not load DMA map for hw descriptors, error %d\n", rc); goto err; } NEXT_ATTACH_STATE(sc, FINISH_DESCMAP_LOAD); if (rtw_txsoft_blk_setup_all(sc) != 0) goto err; NEXT_ATTACH_STATE(sc, FINISH_TXCTLBLK_SETUP); rtw_txdesc_blk_setup_all(sc); NEXT_ATTACH_STATE(sc, FINISH_TXDESCBLK_SETUP); sc->sc_rxdesc_blk.rdb_desc = &sc->sc_descs->hd_rx[0]; for (pri = 0; pri < RTW_NTXPRI; pri++) { tsb = &sc->sc_txsoft_blk[pri]; if ((rc = rtw_txdesc_dmamaps_create(sc->sc_dmat, &tsb->tsb_desc[0], tsb->tsb_ndesc)) != 0) { aprint_error_dev(sc->sc_dev, "could not load DMA map for hw tx descriptors, " "error %d\n", rc); goto err; } } NEXT_ATTACH_STATE(sc, FINISH_TXMAPS_CREATE); if ((rc = rtw_rxdesc_dmamaps_create(sc->sc_dmat, &sc->sc_rxsoft[0], RTW_RXQLEN)) != 0) { aprint_error_dev(sc->sc_dev, "could not load DMA map for hw rx descriptors, error %d\n", rc); goto err; } NEXT_ATTACH_STATE(sc, FINISH_RXMAPS_CREATE); /* Reset the chip to a known state. */ if (rtw_reset(sc) != 0) goto err; NEXT_ATTACH_STATE(sc, FINISH_RESET); sc->sc_rcr = RTW_READ(&sc->sc_regs, RTW_RCR); if ((sc->sc_rcr & RTW_RCR_9356SEL) != 0) sc->sc_flags |= RTW_F_9356SROM; if (rtw_srom_read(&sc->sc_regs, sc->sc_flags, &sc->sc_srom, sc->sc_dev) != 0) goto err; NEXT_ATTACH_STATE(sc, FINISH_READ_SROM); if (rtw_srom_parse(&sc->sc_srom, &sc->sc_flags, &sc->sc_csthr, &sc->sc_rfchipid, &sc->sc_rcr, &sc->sc_locale, sc->sc_dev) != 0) { aprint_error_dev(sc->sc_dev, "attach failed, malformed serial ROM\n"); goto err; } aprint_verbose_dev(sc->sc_dev, "%s PHY\n", ((sc->sc_flags & RTW_F_DIGPHY) != 0) ? "digital" : "analog"); aprint_verbose_dev(sc->sc_dev, "carrier-sense threshold %u\n", sc->sc_csthr); NEXT_ATTACH_STATE(sc, FINISH_PARSE_SROM); sc->sc_rf = rtw_rf_attach(sc, sc->sc_rfchipid, sc->sc_flags & RTW_F_DIGPHY); if (sc->sc_rf == NULL) { aprint_verbose_dev(sc->sc_dev, "attach failed, could not attach RF\n"); goto err; } NEXT_ATTACH_STATE(sc, FINISH_RF_ATTACH); sc->sc_phydelay = rtw_check_phydelay(&sc->sc_regs, sc->sc_rcr); RTW_DPRINTF(RTW_DEBUG_ATTACH, ("%s: PHY delay %d\n", device_xname(sc->sc_dev), sc->sc_phydelay)); if (sc->sc_locale == RTW_LOCALE_UNKNOWN) rtw_identify_country(&sc->sc_regs, &sc->sc_locale); rtw_init_channels(sc->sc_locale, &sc->sc_ic.ic_channels, sc->sc_dev); if (rtw_identify_sta(&sc->sc_regs, &sc->sc_ic.ic_myaddr, sc->sc_dev) != 0) goto err; NEXT_ATTACH_STATE(sc, FINISH_ID_STA); rtw_setifprops(ifp, device_xname(sc->sc_dev), (void*)sc); IFQ_SET_READY(&ifp->if_snd); sc->sc_ic.ic_ifp = ifp; rtw_set80211props(&sc->sc_ic); rtw_led_attach(&sc->sc_led_state, (void *)sc); /* * Call MI attach routines. */ if_attach(ifp); ieee80211_ifattach(&sc->sc_ic); rtw_set80211methods(&sc->sc_mtbl, &sc->sc_ic); /* possibly we should fill in our own sc_send_prresp, since * the RTL8180 is probably sending probe responses in ad hoc * mode. */ /* complete initialization */ ieee80211_media_init(&sc->sc_ic, rtw_media_change, rtw_media_status); callout_init(&sc->sc_scan_ch, 0); rtw_init_radiotap(sc); #if NBPFILTER > 0 bpfattach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + 64, &sc->sc_radiobpf); #endif NEXT_ATTACH_STATE(sc, FINISHED); ieee80211_announce(ic); return; err: rtw_detach(sc); return; } int rtw_detach(struct rtw_softc *sc) { struct ifnet *ifp = &sc->sc_if; int pri, s; s = splnet(); switch (sc->sc_attach_state) { case FINISHED: rtw_stop(ifp, 1); pmf_device_deregister(sc->sc_dev); callout_stop(&sc->sc_scan_ch); ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); rtw_led_detach(&sc->sc_led_state); /*FALLTHROUGH*/ case FINISH_ID_STA: case FINISH_RF_ATTACH: rtw_rf_destroy(sc->sc_rf); sc->sc_rf = NULL; /*FALLTHROUGH*/ case FINISH_PARSE_SROM: case FINISH_READ_SROM: rtw_srom_free(&sc->sc_srom); /*FALLTHROUGH*/ case FINISH_RESET: case FINISH_RXMAPS_CREATE: rtw_rxdesc_dmamaps_destroy(sc->sc_dmat, &sc->sc_rxsoft[0], RTW_RXQLEN); /*FALLTHROUGH*/ case FINISH_TXMAPS_CREATE: for (pri = 0; pri < RTW_NTXPRI; pri++) { rtw_txdesc_dmamaps_destroy(sc->sc_dmat, sc->sc_txsoft_blk[pri].tsb_desc, sc->sc_txsoft_blk[pri].tsb_ndesc); } /*FALLTHROUGH*/ case FINISH_TXDESCBLK_SETUP: case FINISH_TXCTLBLK_SETUP: rtw_txsoft_blk_cleanup_all(sc); /*FALLTHROUGH*/ case FINISH_DESCMAP_LOAD: bus_dmamap_unload(sc->sc_dmat, sc->sc_desc_dmamap); /*FALLTHROUGH*/ case FINISH_DESCMAP_CREATE: bus_dmamap_destroy(sc->sc_dmat, sc->sc_desc_dmamap); /*FALLTHROUGH*/ case FINISH_DESC_MAP: bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs, sizeof(struct rtw_descs)); /*FALLTHROUGH*/ case FINISH_DESC_ALLOC: bus_dmamem_free(sc->sc_dmat, &sc->sc_desc_segs, sc->sc_desc_nsegs); /*FALLTHROUGH*/ case DETACHED: NEXT_ATTACH_STATE(sc, DETACHED); break; } splx(s); return 0; }