/* $NetBSD: kauai.c,v 1.20 2007/06/25 11:12:54 aymeric Exp $ */ /*- * Copyright (c) 2003 Tsubai Masanari. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: kauai.c,v 1.20 2007/06/25 11:12:54 aymeric Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define WDC_REG_NPORTS 8 #define WDC_AUXREG_OFFSET 0x16 #define PIO_CONFIG_REG (0x200 >> 4) /* PIO and DMA access timing */ #define DMA_CONFIG_REG (0x210 >> 4) /* UDMA access timing */ struct kauai_softc { struct wdc_softc sc_wdcdev; struct ata_channel *sc_chanptr; struct ata_channel sc_channel; struct wdc_regs sc_wdc_regs; struct ata_queue sc_queue; dbdma_regmap_t *sc_dmareg; dbdma_command_t *sc_dmacmd; u_int sc_piotiming_r[2]; u_int sc_piotiming_w[2]; u_int sc_dmatiming_r[2]; u_int sc_dmatiming_w[2]; void (*sc_calc_timing)(struct kauai_softc *, int); }; int kauai_match __P((struct device *, struct cfdata *, void *)); void kauai_attach __P((struct device *, struct device *, void *)); int kauai_dma_init __P((void *, int, int, void *, size_t, int)); void kauai_dma_start __P((void *, int, int)); int kauai_dma_finish __P((void *, int, int, int)); void kauai_set_modes __P((struct ata_channel *)); static void calc_timing_kauai __P((struct kauai_softc *, int)); static int getnodebypci(pci_chipset_tag_t, pcitag_t); CFATTACH_DECL(kauai, sizeof(struct kauai_softc), kauai_match, kauai_attach, NULL, wdcactivate); int kauai_match(parent, match, aux) struct device *parent; struct cfdata *match; void *aux; { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_APPLE) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_APPLE_KAUAI: case PCI_PRODUCT_APPLE_UNINORTH_ATA: case PCI_PRODUCT_APPLE_INTREPID2_ATA: return 5; } } return 0; } void kauai_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct kauai_softc *sc = (void *)self; struct pci_attach_args *pa = aux; struct ata_channel *chp = &sc->sc_channel; struct wdc_regs *wdr; pci_intr_handle_t ih; paddr_t regbase, dmabase; int node, reg[5], i; #ifdef DIAGNOSTIC if ((vaddr_t)sc->sc_dmacmd & 0x0f) { printf(": bad dbdma alignment\n"); return; } #endif node = getnodebypci(pa->pa_pc, pa->pa_tag); if (node == 0) { printf(": cannot find gmac node\n"); return; } if (OF_getprop(node, "assigned-addresses", reg, sizeof reg) < 12) { printf(": cannot get address property\n"); return; } regbase = reg[2] + 0x2000; dmabase = reg[2] + 0x1000; /* * XXX PCI_INTERRUPT_REG seems to be wired to 0. * XXX So use fixed intrpin and intrline values. */ if (pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_INTERRUPT_REG) == 0) { pa->pa_intrpin = 1; pa->pa_intrline = 39; } if (pci_intr_map(pa, &ih)) { printf(": unable to map interrupt\n"); return; } printf(": interrupting at %s\n", pci_intr_string(pa->pa_pc, ih)); sc->sc_wdcdev.regs = wdr = &sc->sc_wdc_regs; wdr->cmd_iot = wdr->ctl_iot = macppc_make_bus_space_tag(regbase, 4); if (bus_space_map(wdr->cmd_iot, 0, WDC_REG_NPORTS, 0, &wdr->cmd_baseioh) || bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh, WDC_AUXREG_OFFSET, 1, &wdr->ctl_ioh)) { printf("%s: couldn't map registers\n", self->dv_xname); return; } for (i = 0; i < WDC_NREG; i++) { if (bus_space_subregion(wdr->cmd_iot, wdr->cmd_baseioh, i, i == 0 ? 4 : 1, &wdr->cmd_iohs[i]) != 0) { bus_space_unmap(wdr->cmd_iot, wdr->cmd_baseioh, WDC_REG_NPORTS); printf("%s: couldn't subregion registers\n", sc->sc_wdcdev.sc_atac.atac_dev.dv_xname); return; } } if (pci_intr_establish(pa->pa_pc, ih, IPL_BIO, wdcintr, chp) == NULL) { printf("%s: unable to establish interrupt\n", self->dv_xname); return; } sc->sc_wdcdev.sc_atac.atac_pio_cap = 4; sc->sc_wdcdev.sc_atac.atac_dma_cap = 2; sc->sc_wdcdev.sc_atac.atac_udma_cap = 5; sc->sc_wdcdev.sc_atac.atac_cap |= ATAC_CAP_DATA16; sc->sc_wdcdev.sc_atac.atac_cap |= ATAC_CAP_DMA | ATAC_CAP_UDMA; sc->sc_chanptr = chp; sc->sc_wdcdev.sc_atac.atac_channels = &sc->sc_chanptr; sc->sc_wdcdev.sc_atac.atac_nchannels = 1; sc->sc_wdcdev.dma_arg = sc; sc->sc_wdcdev.dma_init = kauai_dma_init; sc->sc_wdcdev.dma_start = kauai_dma_start; sc->sc_wdcdev.dma_finish = kauai_dma_finish; sc->sc_wdcdev.sc_atac.atac_set_modes = kauai_set_modes; sc->sc_calc_timing = calc_timing_kauai; sc->sc_dmareg = (void *)dmabase; chp->ch_channel = 0; chp->ch_atac = &sc->sc_wdcdev.sc_atac; chp->ch_queue = &sc->sc_queue; chp->ch_ndrive = 2; wdc_init_shadow_regs(chp); wdcattach(chp); } void kauai_set_modes(chp) struct ata_channel *chp; { struct kauai_softc *sc = (void *)chp->ch_atac; struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp); struct ata_drive_datas *drvp0 = &chp->ch_drive[0]; struct ata_drive_datas *drvp1 = &chp->ch_drive[1]; struct ata_drive_datas *drvp; int drive; if ((drvp0->drive_flags & DRIVE) && (drvp1->drive_flags & DRIVE)) { drvp0->PIO_mode = drvp1->PIO_mode = min(drvp0->PIO_mode, drvp1->PIO_mode); } for (drive = 0; drive < 2; drive++) { drvp = &chp->ch_drive[drive]; if (drvp->drive_flags & DRIVE) { (*sc->sc_calc_timing)(sc, drive); bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh, PIO_CONFIG_REG, sc->sc_piotiming_r[drive]); bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh, DMA_CONFIG_REG, sc->sc_dmatiming_r[drive]); } } } /* * IDE transfer timings */ static const u_int pio_timing_kauai[] = { /* 0xff000fff */ 0x08000a92, /* Mode 0 */ 0x0800060f, /* 1 */ 0x0800038b, /* 2 */ 0x05000249, /* 3 */ 0x04000148 /* 4 */ }; static const u_int dma_timing_kauai[] = { /* 0x00fff000 */ 0x00618000, /* Mode 0 */ 0x00209000, /* 1 */ 0x00148000 /* 2 */ }; static const u_int udma_timing_kauai[] = { /* 0x0000ffff */ 0x000070c0, /* Mode 0 */ 0x00005d80, /* 1 */ 0x00004a60, /* 2 */ 0x00003a50, /* 3 */ 0x00002a30, /* 4 */ 0x00002921 /* 5 */ }; /* * Timing calculation for Kauai. */ void calc_timing_kauai(sc, drive) struct kauai_softc *sc; int drive; { struct ata_channel *chp = &sc->sc_channel; struct ata_drive_datas *drvp = &chp->ch_drive[drive]; int piomode = drvp->PIO_mode; int dmamode = drvp->DMA_mode; int udmamode = drvp->UDMA_mode; u_int pioconf, dmaconf; pioconf = pio_timing_kauai[piomode]; dmaconf = 0; if (drvp->drive_flags & DRIVE_DMA) dmaconf |= dma_timing_kauai[dmamode]; if (drvp->drive_flags & DRIVE_UDMA) dmaconf |= udma_timing_kauai[udmamode]; if (drvp->drive_flags & DRIVE_UDMA) dmaconf |= 1; sc->sc_piotiming_r[drive] = sc->sc_piotiming_w[drive] = pioconf; sc->sc_dmatiming_r[drive] = sc->sc_dmatiming_w[drive] = dmaconf; } int kauai_dma_init(v, channel, drive, databuf, datalen, flags) void *v; void *databuf; size_t datalen; int flags; { struct kauai_softc *sc = v; dbdma_command_t *cmdp = sc->sc_dmacmd; struct ata_channel *chp = &sc->sc_channel; struct wdc_regs *wdr = CHAN_TO_WDC_REGS(chp); vaddr_t va = (vaddr_t)databuf; int read = flags & WDC_DMA_READ; int cmd = read ? DBDMA_CMD_IN_MORE : DBDMA_CMD_OUT_MORE; u_int offset; bus_space_write_4(wdr->cmd_iot, wdr->cmd_baseioh, DMA_CONFIG_REG, read ? sc->sc_dmatiming_r[drive] : sc->sc_dmatiming_w[drive]); bus_space_read_4(wdr->cmd_iot, wdr->cmd_baseioh, DMA_CONFIG_REG); offset = va & PGOFSET; /* if va is not page-aligned, setup the first page */ if (offset != 0) { int rest = PAGE_SIZE - offset; /* the rest of the page */ if (datalen > rest) { /* if continues to next page */ DBDMA_BUILD(cmdp, cmd, 0, rest, vtophys(va), DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); datalen -= rest; va += rest; cmdp++; } } /* now va is page-aligned */ while (datalen > PAGE_SIZE) { DBDMA_BUILD(cmdp, cmd, 0, PAGE_SIZE, vtophys(va), DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); datalen -= PAGE_SIZE; va += PAGE_SIZE; cmdp++; } /* the last page (datalen <= PAGE_SIZE here) */ cmd = read ? DBDMA_CMD_IN_LAST : DBDMA_CMD_OUT_LAST; DBDMA_BUILD(cmdp, cmd, 0, datalen, vtophys(va), DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); cmdp++; DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0, DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); return 0; } void kauai_dma_start(v, channel, drive) void *v; int channel, drive; { struct kauai_softc *sc = v; dbdma_start(sc->sc_dmareg, sc->sc_dmacmd); } int kauai_dma_finish(v, channel, drive, read) void *v; int channel, drive; int read; { struct kauai_softc *sc = v; dbdma_stop(sc->sc_dmareg); return 0; } /* * Find OF-device corresponding to the PCI device. */ int getnodebypci(pc, tag) pci_chipset_tag_t pc; pcitag_t tag; { int bus, dev, func; u_int reg[5]; int p, q; int l, b, d, f; pci_decompose_tag(pc, tag, &bus, &dev, &func); for (q = OF_peer(0); q; q = p) { l = OF_getprop(q, "assigned-addresses", reg, sizeof(reg)); if (l > 4) { b = (reg[0] >> 16) & 0xff; d = (reg[0] >> 11) & 0x1f; f = (reg[0] >> 8) & 0x07; if (b == bus && d == dev && f == func) return q; } if ((p = OF_child(q))) continue; while (q) { if ((p = OF_peer(q))) break; q = OF_parent(q); } } return 0; }