/* $NetBSD: cd.c,v 1.40 1994/10/30 21:49:14 cgd Exp $ */ /* * Copyright (c) 1994 Charles Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* rw_big and start_stop come from there */ #include #ifdef DDB int Debugger(); #else /* DDB */ #define Debugger() #endif /* DDB */ #define CDOUTSTANDING 2 #define CDRETRIES 1 #define CDUNIT(z) DISKUNIT(z) #define CDPART(z) DISKPART(z) #define MAKECDDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part) struct cd_data { struct device sc_dev; struct dkdevice sc_dk; struct scsi_link *sc_link; /* address of scsi low level switch */ u_int32 ad_info; /* info about the adapter */ u_int32 cmdscount; /* cmds allowed outstanding by board */ struct cd_parms { u_int32 blksize; u_long disksize; /* total number sectors */ } params; u_int32 xfer_block_wait; struct buf buf_queue; }; void cdattach __P((struct device *, struct device *, void *)); struct cfdriver cdcd = { NULL, "cd", scsi_targmatch, cdattach, DV_DISK, sizeof(struct cd_data) }; int cdgetdisklabel __P((struct cd_data *)); int cd_get_parms __P((struct cd_data *, int)); void cdstrategy __P((struct buf *)); void cdstart __P((int)); struct dkdriver cddkdriver = { cdstrategy }; struct scsi_device cd_switch = { NULL, /* use default error handler */ cdstart, /* we have a queue, which is started by this */ NULL, /* we do not have an async handler */ NULL, /* use default 'done' routine */ "cd", /* we are to be refered to by this name */ 0 /* no device specific flags */ }; #define CD_STOP 0 #define CD_START 1 #define CD_EJECT -2 /* * The routine called by the low level scsi routine when it discovers * A device suitable for this driver */ void cdattach(parent, self, aux) struct device *parent, *self; void *aux; { struct cd_data *cd = (void *)self; struct cd_parms *dp = &cd->params; struct scsi_link *sc_link = aux; SC_DEBUG(sc_link, SDEV_DB2, ("cdattach: ")); /* * Store information needed to contact our base driver */ cd->sc_link = sc_link; sc_link->device = &cd_switch; sc_link->dev_unit = cd->sc_dev.dv_unit; cd->sc_dk.dk_driver = &cddkdriver; #if !defined(i386) || defined(NEWCONFIG) dk_establish(&cd->sc_dk, &cd->sc_dev); #endif if (cd->sc_link->adapter->adapter_info) { cd->ad_info = ((*(cd->sc_link->adapter->adapter_info)) (sc_link->adapter_softc)); cd->cmdscount = cd->ad_info & AD_INF_MAX_CMDS; if (cd->cmdscount > CDOUTSTANDING) cd->cmdscount = CDOUTSTANDING; } else { cd->ad_info = 1; cd->cmdscount = 1; } sc_link->opennings = cd->cmdscount; /* * Use the subdriver to request information regarding * the drive. We cannot use interrupts yet, so the * request must specify this. */ cd_get_parms(cd, SCSI_NOSLEEP | SCSI_NOMASK | SCSI_SILENT); if (dp->disksize) printf(": cd present, %d x %d byte records\n", cd->params.disksize, cd->params.blksize); else printf(": drive empty\n"); } /* * open the device. Make sure the partition info is a up-to-date as can be. */ int cdopen(dev, flag, fmt, p) dev_t dev; int flag, fmt; struct proc *p; { int error = 0; int unit, part; struct cd_data *cd; struct scsi_link *sc_link; unit = CDUNIT(dev); part = CDPART(dev); if (unit >= cdcd.cd_ndevs) return ENXIO; cd = cdcd.cd_devs[unit]; if (!cd) return ENXIO; sc_link = cd->sc_link; SC_DEBUG(sc_link, SDEV_DB1, ("cdopen: dev=0x%x (unit %d (of %d), partition %d)\n", dev, unit, cdcd.cd_ndevs, part)); /* * If it's been invalidated, and not everybody has closed it then * forbid re-entry. (may have changed media) */ if ((sc_link->flags & SDEV_MEDIA_LOADED) == 0 && cd->sc_dk.dk_openmask != 0) return ENXIO; /* * Check that it is still responding and ok. * if the media has been changed this will result in a * "unit attention" error which the error code will * disregard because the SDEV_MEDIA_LOADED flag is not yet set */ scsi_test_unit_ready(sc_link, SCSI_SILENT); /* * In case it is a funny one, tell it to start * not needed for some drives */ scsi_start(sc_link, SSS_START, SCSI_ERR_OK | SCSI_SILENT); /* * Next time actually take notice of error returns */ sc_link->flags |= SDEV_OPEN; /* unit attn errors are now errors */ if (scsi_test_unit_ready(sc_link, 0) != 0) { SC_DEBUG(sc_link, SDEV_DB3, ("device not responding\n")); error = ENXIO; goto bad; } SC_DEBUG(sc_link, SDEV_DB3, ("device ok\n")); /* Lock the pack in. */ scsi_prevent(sc_link, PR_PREVENT, SCSI_ERR_OK | SCSI_SILENT); /* * Load the physical device parameters */ if (cd_get_parms(cd, 0)) { error = ENXIO; goto bad; } SC_DEBUG(sc_link, SDEV_DB3, ("Params loaded ")); /* * Make up some partition information */ cdgetdisklabel(cd); SC_DEBUG(sc_link, SDEV_DB3, ("Disklabel fabricated ")); /* * Check that the partition exists */ if (part != RAW_PART && (part >= cd->sc_dk.dk_label.d_npartitions || cd->sc_dk.dk_label.d_partitions[part].p_fstype == FS_UNUSED)) { error = ENXIO; goto bad; } /* Insure only one open at a time. */ switch (fmt) { case S_IFCHR: cd->sc_dk.dk_copenmask |= (1 << part); break; case S_IFBLK: cd->sc_dk.dk_bopenmask |= (1 << part); break; } cd->sc_dk.dk_openmask = cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask; SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n")); sc_link->flags |= SDEV_MEDIA_LOADED; return 0; bad: if (cd->sc_dk.dk_openmask == 0) { scsi_prevent(sc_link, PR_ALLOW, SCSI_ERR_OK | SCSI_SILENT); sc_link->flags &= ~SDEV_OPEN; } return error; } /* * close the device.. only called if we are the LAST * occurence of an open device */ int cdclose(dev, flag, fmt) dev_t dev; int flag, fmt; { struct cd_data *cd = cdcd.cd_devs[CDUNIT(dev)]; int part = CDPART(dev); switch (fmt) { case S_IFCHR: cd->sc_dk.dk_copenmask &= ~(1 << part); break; case S_IFBLK: cd->sc_dk.dk_bopenmask &= ~(1 << part); break; } cd->sc_dk.dk_openmask = cd->sc_dk.dk_copenmask | cd->sc_dk.dk_bopenmask; if (cd->sc_dk.dk_openmask == 0) { scsi_prevent(cd->sc_link, PR_ALLOW, SCSI_ERR_OK | SCSI_SILENT); cd->sc_link->flags &= ~SDEV_OPEN; } return 0; } /* * trim the size of the transfer if needed, * called by physio * basically the smaller of our max and the scsi driver's * minphys (note we have no max ourselves) * * Trim buffer length if buffer-size is bigger than page size */ void cdminphys(bp) struct buf *bp; { register struct cd_data *cd = cdcd.cd_devs[CDUNIT(bp->b_dev)]; (cd->sc_link->adapter->scsi_minphys) (bp); } /* * Actually translate the requested transfer into one the physical driver can * understand. The transfer is described by a buf and will include only one * physical transfer. */ void cdstrategy(bp) struct buf *bp; { int opri; struct cd_data *cd; int unit; unit = CDUNIT(bp->b_dev); cd = cdcd.cd_devs[unit]; SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdstrategy ")); SC_DEBUG(cd->sc_link, SDEV_DB1, ("%d bytes @ blk %d\n", bp->b_bcount, bp->b_blkno)); cdminphys(bp); /* * If the device has been made invalid, error out * maybe the media changed */ if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED)) { bp->b_error = EIO; goto bad; } /* * can't ever write to a CD */ if ((bp->b_flags & B_READ) == 0) { bp->b_error = EROFS; goto bad; } /* * If it's a null transfer, return immediately */ if (bp->b_bcount == 0) goto done; /* * Decide which unit and partition we are talking about */ if (CDPART(bp->b_dev) != RAW_PART) { /* * do bounds checking, adjust transfer. if error, process. * if end of partition, just return */ if (bounds_check_with_label(bp, &cd->sc_dk.dk_label, 1) <= 0) goto done; /* otherwise, process transfer request */ } opri = splbio(); /* * Place it in the queue of disk activities for this disk */ disksort(&cd->buf_queue, bp); /* * Tell the device to get going on the transfer if it's * not doing anything, otherwise just wait for completion */ cdstart(unit); splx(opri); return; bad: bp->b_flags |= B_ERROR; done: /* * Correctly set the buf to indicate a completed xfer */ bp->b_resid = bp->b_bcount; biodone(bp); } /* * cdstart looks to see if there is a buf waiting for the device * and that the device is not already busy. If both are true, * It deques the buf and creates a scsi command to perform the * transfer in the buf. The transfer request will call scsi_done * on completion, which will in turn call this routine again * so that the next queued transfer is performed. * The bufs are queued by the strategy routine (cdstrategy) * * This routine is also called after other non-queued requests * have been made of the scsi driver, to ensure that the queue * continues to be drained. * * must be called at the correct (highish) spl level * cdstart() is called at splbio from cdstrategy and scsi_done */ void cdstart(unit) int unit; { register struct cd_data *cd = cdcd.cd_devs[unit]; register struct scsi_link *sc_link = cd->sc_link; struct buf *bp = 0; struct buf *dp; struct scsi_rw_big cmd; int blkno, nblks; struct partition *p; SC_DEBUG(sc_link, SDEV_DB2, ("cdstart ")); /* * See if there is a buf to do and we are not already * doing one */ while (sc_link->opennings) { /* * there is excess capacity, but a special waits * It'll need the adapter as soon as we clear out of the * way and let it run (user level wait). */ if (sc_link->flags & SDEV_WAITING) { sc_link->flags &= ~SDEV_WAITING; wakeup((caddr_t)sc_link); return; } /* * See if there is a buf with work for us to do.. */ dp = &cd->buf_queue; if ((bp = dp->b_actf) == NULL) /* yes, an assign */ return; dp->b_actf = bp->b_actf; /* * If the deivce has become invalid, abort all the * reads and writes until all files have been closed and * re-openned */ if (!(sc_link->flags & SDEV_MEDIA_LOADED)) { bp->b_error = EIO; bp->b_flags |= B_ERROR; biodone(bp); continue; } /* * We have a buf, now we should make a command * * First, translate the block to absolute and put it in terms * of the logical blocksize of the device. Really a bit silly * until we have real partitions, but. */ blkno = bp->b_blkno / (cd->sc_dk.dk_label.d_secsize / DEV_BSIZE); if (CDPART(bp->b_dev) != RAW_PART) { p = &cd->sc_dk.dk_label.d_partitions[CDPART(bp->b_dev)]; blkno += p->p_offset; } nblks = howmany(bp->b_bcount, cd->sc_dk.dk_label.d_secsize); /* * Fill out the scsi command */ bzero(&cmd, sizeof(cmd)); cmd.op_code = (bp->b_flags & B_READ) ? READ_BIG : WRITE_BIG; cmd.addr_3 = (blkno & 0xff000000) >> 24; cmd.addr_2 = (blkno & 0xff0000) >> 16; cmd.addr_1 = (blkno & 0xff00) >> 8; cmd.addr_0 = blkno & 0xff; cmd.length2 = (nblks & 0xff00) >> 8; cmd.length1 = (nblks & 0xff); /* * Call the routine that chats with the adapter. * Note: we cannot sleep as we may be an interrupt */ if (scsi_scsi_cmd(sc_link, (struct scsi_generic *)&cmd, sizeof(cmd), (u_char *) bp->b_data, bp->b_bcount, CDRETRIES, 30000, bp, SCSI_NOSLEEP | ((bp->b_flags & B_READ) ? SCSI_DATA_IN : SCSI_DATA_OUT)) != SUCCESSFULLY_QUEUED) printf("%s: not queued", cd->sc_dev.dv_xname); } } /* * Perform special action on behalf of the user. * Knows about the internals of this device */ int cdioctl(dev, cmd, addr, flag) dev_t dev; u_long cmd; caddr_t addr; int flag; { int error; int unit, part; register struct cd_data *cd; /* * Find the device that the user is talking about */ unit = CDUNIT(dev); part = CDPART(dev); cd = cdcd.cd_devs[unit]; SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdioctl 0x%x ", cmd)); /* * If the device is not valid.. abandon ship */ if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED)) return EIO; switch (cmd) { case DIOCSBAD: return EINVAL; case DIOCGDINFO: *(struct disklabel *)addr = cd->sc_dk.dk_label; return 0; case DIOCGPART: ((struct partinfo *)addr)->disklab = &cd->sc_dk.dk_label; ((struct partinfo *)addr)->part = &cd->sc_dk.dk_label.d_partitions[CDPART(dev)]; return 0; /* * a bit silly, but someone might want to test something on a * section of cdrom. */ case DIOCWDINFO: case DIOCSDINFO: if ((flag & FWRITE) == 0) return EBADF; error = setdisklabel(&cd->sc_dk.dk_label, (struct disklabel *)addr, 0, (struct cpu_disklabel *)0); return error; case DIOCWLABEL: return EBADF; case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(cd, &data)) return error; return cd_play_tracks(cd, args->start_track, args->start_index, args->end_track, args->end_index); } case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(cd, &data)) return error; return cd_play_msf(cd, args->start_m, args->start_s, args->start_f, args->end_m, args->end_s, args->end_f); } case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(cd, &data)) return error; return cd_play(cd, args->blk, args->len); } case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *)addr; struct cd_sub_channel_info data; u_int32 len = args->data_len; if (len > sizeof(data) || len < sizeof(struct cd_sub_channel_header)) return EINVAL; if (error = cd_read_subchannel(cd, args->address_format, args->data_format, args->track, &data, len)) return error; len = min(len, ((data.header.data_len[0] << 8) + data.header.data_len[1] + sizeof(struct cd_sub_channel_header))); return copyout(&data, args->data, len); } case CDIOREADTOCHEADER: { struct ioc_toc_header th; if (error = cd_read_toc(cd, 0, 0, &th, sizeof(th))) return error; th.len = ntohs(th.len); bcopy(&th, addr, sizeof(th)); return 0; } case CDIOREADTOCENTRYS: { struct cd_toc { struct ioc_toc_header header; struct cd_toc_entry entries[65]; } data; struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr; struct ioc_toc_header *th; u_int32 len = te->data_len; th = &data.header; if (len > sizeof(data.entries) || len < sizeof(struct cd_toc_entry)) return EINVAL; if (error = cd_read_toc(cd, te->address_format, te->starting_track, (struct cd_toc_entry *)&data, len + sizeof(struct ioc_toc_header))) return error; len = min(len, ntohs(th->len) - (sizeof(th->starting_track) + sizeof(th->ending_track))); return copyout(data.entries, te->data, len); } case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = arg->patch[0]; data.page.audio.port[RIGHT_PORT].channels = arg->patch[1]; data.page.audio.port[2].channels = arg->patch[2]; data.page.audio.port[3].channels = arg->patch[3]; return cd_set_mode(cd, &data); } case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; arg->vol[LEFT_PORT] = data.page.audio.port[LEFT_PORT].volume; arg->vol[RIGHT_PORT] = data.page.audio.port[RIGHT_PORT].volume; arg->vol[2] = data.page.audio.port[2].volume; arg->vol[3] = data.page.audio.port[3].volume; return 0; } case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = CHANNEL_0; data.page.audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT]; data.page.audio.port[RIGHT_PORT].channels = CHANNEL_1; data.page.audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT]; data.page.audio.port[2].volume = arg->vol[2]; data.page.audio.port[3].volume = arg->vol[3]; return cd_set_mode(cd, &data); } case CDIOCSETMONO: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL | 4 | 8; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETSTEREO: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETMUTE: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = 0; data.page.audio.port[RIGHT_PORT].channels = 0; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETLEFT: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCSETRIGHT: { struct ioc_vol *arg = (struct ioc_vol *)addr; struct cd_mode_data data; if (error = cd_get_mode(cd, &data, AUDIO_PAGE)) return error; data.page.audio.port[LEFT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; return cd_set_mode(cd, &data); } case CDIOCRESUME: return cd_pause(cd, 1); case CDIOCPAUSE: return cd_pause(cd, 0); case CDIOCSTART: return scsi_start(cd->sc_link, SSS_START, 0); case CDIOCSTOP: return scsi_start(cd->sc_link, SSS_STOP, 0); case CDIOCEJECT: return scsi_start(cd->sc_link, SSS_LOEJ, 0); case CDIOCALLOW: return scsi_prevent(cd->sc_link, PR_ALLOW, 0); case CDIOCPREVENT: return scsi_prevent(cd->sc_link, PR_PREVENT, 0); case CDIOCSETDEBUG: cd->sc_link->flags |= (SDEV_DB1 | SDEV_DB2); return 0; case CDIOCCLRDEBUG: cd->sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2); return 0; case CDIOCRESET: return cd_reset(cd); default: if (part != RAW_PART) return ENOTTY; return scsi_do_ioctl(cd->sc_link, dev, cmd, addr, flag); } #ifdef DIAGNOSTIC panic("cdioctl: impossible"); #endif } /* * Load the label information on the named device * Actually fabricate a disklabel * * EVENTUALLY take information about different * data tracks from the TOC and put it in the disklabel */ int cdgetdisklabel(cd) struct cd_data *cd; { char *errstring; bzero(&cd->sc_dk.dk_label, sizeof(struct disklabel)); bzero(&cd->sc_dk.dk_cpulabel, sizeof(struct cpu_disklabel)); /* * make partition 0 the whole disk * remember that comparisons with the partition are done * assuming the blocks are 512 bytes so fudge it. */ cd->sc_dk.dk_label.d_partitions[0].p_offset = 0; cd->sc_dk.dk_label.d_partitions[0].p_size = cd->params.disksize * (cd->params.blksize / DEV_BSIZE); cd->sc_dk.dk_label.d_partitions[0].p_fstype = FS_ISO9660; cd->sc_dk.dk_label.d_npartitions = 1; cd->sc_dk.dk_label.d_secsize = cd->params.blksize; cd->sc_dk.dk_label.d_ntracks = 1; cd->sc_dk.dk_label.d_nsectors = 100; cd->sc_dk.dk_label.d_ncylinders = (cd->params.disksize / 100) + 1; cd->sc_dk.dk_label.d_secpercyl = 100; strncpy(cd->sc_dk.dk_label.d_typename, "scsi cd_rom", 16); strncpy(cd->sc_dk.dk_label.d_packname, "ficticious", 16); cd->sc_dk.dk_label.d_secperunit = cd->params.disksize; cd->sc_dk.dk_label.d_rpm = 300; cd->sc_dk.dk_label.d_interleave = 1; cd->sc_dk.dk_label.d_flags = D_REMOVABLE; cd->sc_dk.dk_label.d_magic = DISKMAGIC; cd->sc_dk.dk_label.d_magic2 = DISKMAGIC; cd->sc_dk.dk_label.d_checksum = dkcksum(&cd->sc_dk.dk_label); /* * Signal to other users and routines that we now have a * disklabel that represents the media (maybe) */ return 0; } /* * Find out from the device what it's capacity is */ u_int32 cd_size(cd, flags) struct cd_data *cd; int flags; { struct scsi_read_cd_cap_data rdcap; struct scsi_read_cd_capacity scsi_cmd; u_int32 size, blksize; int error; /* * make up a scsi command and ask the scsi driver to do * it for you. */ bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = READ_CD_CAPACITY; /* * If the command works, interpret the result as a 4 byte * number of blocks and a blocksize */ error = scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)&rdcap, sizeof(rdcap), CDRETRIES, 20000, NULL, SCSI_DATA_IN | flags); if (error == EBUSY) { if (!(flags & SCSI_SILENT)) printf("%s: waiting for drive to spin up\n", cd->sc_dev.dv_xname); if (flags & SCSI_NOSLEEP) delay(2000000); else tsleep(cd, PRIBIO + 1, "cd_size", 2 * hz); error = scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)&rdcap, sizeof(rdcap), CDRETRIES, 20000, NULL, SCSI_DATA_IN | flags); } if (error) { if (!(flags & SCSI_SILENT)) printf("%s: could not get size\n", cd->sc_dev.dv_xname); return 0; } blksize = (rdcap.length_3 << 24) + (rdcap.length_2 << 16) + (rdcap.length_1 << 8) + rdcap.length_0; if (blksize < 512) blksize = 2048; /* some drives lie ! */ cd->params.blksize = blksize; size = (rdcap.addr_3 << 24) + (rdcap.addr_2 << 16) + (rdcap.addr_1 << 8) + rdcap.addr_0 + 1; if (size < 100) size = 400000; /* ditto */ cd->params.disksize = size; return size; } /* * Get the requested page into the buffer given */ int cd_get_mode(cd, data, page) struct cd_data *cd; struct cd_mode_data *data; int page; { struct scsi_mode_sense scsi_cmd; int error; bzero(&scsi_cmd, sizeof(scsi_cmd)); bzero(data, sizeof(*data)); scsi_cmd.op_code = MODE_SENSE; scsi_cmd.page = page; scsi_cmd.length = sizeof(*data) & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)data, sizeof(*data), CDRETRIES, 20000, NULL, SCSI_DATA_IN); } /* * Get the requested page into the buffer given */ int cd_set_mode(cd, data) struct cd_data *cd; struct cd_mode_data *data; { struct scsi_mode_select scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = MODE_SELECT; scsi_cmd.byte2 |= SMS_PF; scsi_cmd.length = sizeof(*data) & 0xff; data->header.data_length = 0; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), (u_char *)data, sizeof(*data), CDRETRIES, 20000, NULL, SCSI_DATA_OUT); } /* * Get scsi driver to send a "start playing" command */ int cd_play(cd, blkno, nblks) struct cd_data *cd; int blkno, nblks; { struct scsi_play scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY; scsi_cmd.blk_addr[0] = (blkno >> 24) & 0xff; scsi_cmd.blk_addr[1] = (blkno >> 16) & 0xff; scsi_cmd.blk_addr[2] = (blkno >> 8) & 0xff; scsi_cmd.blk_addr[3] = blkno & 0xff; scsi_cmd.xfer_len[0] = (nblks >> 8) & 0xff; scsi_cmd.xfer_len[1] = nblks & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 200000, NULL, 0); } /* * Get scsi driver to send a "start playing" command */ int cd_play_big(cd, blkno, nblks) struct cd_data *cd; int blkno, nblks; { struct scsi_play_big scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_BIG; scsi_cmd.blk_addr[0] = (blkno >> 24) & 0xff; scsi_cmd.blk_addr[1] = (blkno >> 16) & 0xff; scsi_cmd.blk_addr[2] = (blkno >> 8) & 0xff; scsi_cmd.blk_addr[3] = blkno & 0xff; scsi_cmd.xfer_len[0] = (nblks >> 24) & 0xff; scsi_cmd.xfer_len[1] = (nblks >> 16) & 0xff; scsi_cmd.xfer_len[2] = (nblks >> 8) & 0xff; scsi_cmd.xfer_len[3] = nblks & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, NULL, 0); } /* * Get scsi driver to send a "start playing" command */ int cd_play_tracks(cd, strack, sindex, etrack, eindex) struct cd_data *cd; int strack, sindex, etrack, eindex; { struct scsi_play_track scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_TRACK; scsi_cmd.start_track = strack; scsi_cmd.start_index = sindex; scsi_cmd.end_track = etrack; scsi_cmd.end_index = eindex; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, NULL, 0); } /* * Get scsi driver to send a "play msf" command */ int cd_play_msf(cd, startm, starts, startf, endm, ends, endf) struct cd_data *cd; int startm, starts, startf, endm, ends, endf; { struct scsi_play_msf scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_MSF; scsi_cmd.start_m = startm; scsi_cmd.start_s = starts; scsi_cmd.start_f = startf; scsi_cmd.end_m = endm; scsi_cmd.end_s = ends; scsi_cmd.end_f = endf; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0); } /* * Get scsi driver to send a "start up" command */ int cd_pause(cd, go) struct cd_data *cd; int go; { struct scsi_pause scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PAUSE; scsi_cmd.resume = go; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0); } /* * Get scsi driver to send a "RESET" command */ int cd_reset(cd) struct cd_data *cd; { return scsi_scsi_cmd(cd->sc_link, 0, 0, 0, 0, CDRETRIES, 2000, NULL, SCSI_RESET); } /* * Read subchannel */ int cd_read_subchannel(cd, mode, format, track, data, len) struct cd_data *cd; int mode, format, len; struct cd_sub_channel_info *data; { struct scsi_read_subchannel scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = READ_SUBCHANNEL; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.byte3 = SRS_SUBQ; scsi_cmd.subchan_format = format; scsi_cmd.track = track; scsi_cmd.data_len[0] = (len) >> 8; scsi_cmd.data_len[1] = (len) & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(struct scsi_read_subchannel), (u_char *)data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN); } /* * Read table of contents */ int cd_read_toc(cd, mode, start, data, len) struct cd_data *cd; int mode, start, len; struct cd_toc_entry *data; { struct scsi_read_toc scsi_cmd; int ntoc; bzero(&scsi_cmd, sizeof(scsi_cmd)); /*if (len!=sizeof(struct ioc_toc_header)) * ntoc=((len)-sizeof(struct ioc_toc_header))/sizeof(struct cd_toc_entry); * else */ ntoc = len; scsi_cmd.op_code = READ_TOC; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.from_track = start; scsi_cmd.data_len[0] = (ntoc) >> 8; scsi_cmd.data_len[1] = (ntoc) & 0xff; return scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *)&scsi_cmd, sizeof(struct scsi_read_toc), (u_char *)data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN); } #define b2tol(a) (((unsigned)(a##_1) << 8) + (unsigned)a##_0) /* * Get the scsi driver to send a full inquiry to the device and use the * results to fill out the disk parameter structure. */ int cd_get_parms(cd, flags) struct cd_data *cd; int flags; { /* * First check if we have it all loaded */ if (cd->sc_link->flags & SDEV_MEDIA_LOADED) return 0; /* * give a number of sectors so that sec * trks * cyls * is <= disk_size */ if (!cd_size(cd, flags)) return ENXIO; cd->sc_link->flags |= SDEV_MEDIA_LOADED; return 0; } int cdsize(dev) dev_t dev; { return -1; } int cddump() { /* Not implemented. */ return EINVAL; }