/* $NetBSD: netwalker_machdep.c,v 1.5 2011/07/01 20:42:37 dyoung Exp $ */ /* * Copyright (c) 2002, 2003, 2005, 2010 Genetec Corporation. * All rights reserved. * Written by Hiroyuki Bessho for Genetec Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Machine dependent functions for kernel setup for Sharp Netwalker. * Based on iq80310_machhdep.c */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup for Intel IQ80310 evaluation * boards using RedBoot firmware. */ #include __KERNEL_RCSID(0, "$NetBSD: netwalker_machdep.c,v 1.5 2011/07/01 20:42:37 dyoung Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_ipkdb.h" #include "opt_pmap_debug.h" #include "opt_md.h" #include "opt_com.h" #include "imxuart.h" #include "opt_imxuart.h" #include "opt_imx.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KGDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Kernel text starts 1MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00100000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0C000000 /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependent as it varies depending * on where the ROM appears when you turn the MMU off. */ u_int cpu_reset_address = 0; /* Define various stack sizes in pages */ #define FIQ_STACK_SIZE 1 #define IRQ_STACK_SIZE 1 #define ABT_STACK_SIZE 1 #ifdef IPKDB #define UND_STACK_SIZE 2 #else #define UND_STACK_SIZE 1 #endif BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; vm_offset_t physical_start; vm_offset_t physical_freestart; vm_offset_t physical_freeend; vm_offset_t physical_end; u_int free_pages; vm_offset_t pagetables_start; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ /* Physical and virtual addresses for some global pages */ pv_addr_t fiqstack; pv_addr_t irqstack; pv_addr_t undstack; pv_addr_t abtstack; pv_addr_t kernelstack; vm_offset_t msgbufphys; extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; extern char KERNEL_BASE_phys[]; extern char KERNEL_BASE_virt[]; extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[]; extern char _end[]; extern int cpu_do_powersave; #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; /* * Macros to translate between physical and virtual for a subset of the * kernel address space. *Not* for general use. */ #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys) #define KERNEL_BASE_VIRT ((vaddr_t)&KERNEL_BASE_virt) #define KERN_VTOPHYS(va) \ ((paddr_t)((vaddr_t)va - KERNEL_BASE_VIRT + KERNEL_BASE_PHYS)) #define KERN_PHYSTOV(pa) \ ((vaddr_t)((paddr_t)pa - KERNEL_BASE_PHYS + KERNEL_BASE_VIRT)) /* Prototypes */ void consinit(void); #if 0 void process_kernel_args(char *); #endif #ifdef KGDB void kgdb_port_init(void); #endif void change_clock(uint32_t v); static void init_clocks(void); static void setup_ioports(void); #ifdef DEBUG_IOPORTS void dump_registers(void); #endif bs_protos(bs_notimpl); #ifndef CONSPEED #define CONSPEED B115200 /* What RedBoot uses */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curproc=%p\n", howto, curproc); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ /* cnpollc(1);*/ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in netwalker_start() so that we * can use them while booting the kernel, and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). */ #define _A(a) ((a) & ~L1_S_OFFSET) #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) static const struct pmap_devmap netwalker_devmap[] = { { /* for UART1, IOMUXC */ NETWALKER_IO_VBASE0, _A(NETWALKER_IO_PBASE0), L1_S_SIZE * 4, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, {0, 0, 0, 0, 0 } }; #ifndef MEMSTART #define MEMSTART 0x90000000 #endif #ifndef MEMSIZE #define MEMSIZE 512 #endif /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { int loop; int loop1; vaddr_t l1pagetable; #ifdef RBFLAGS boothowto |= RBFLAGS; #endif disable_interrupts(I32_bit|F32_bit); /* XXX move to netwalker_start.S */ /* Register devmap for devices we mapped in start */ pmap_devmap_register(netwalker_devmap); setup_ioports(); consinit(); #ifdef DEBUG_IOPORTS dump_registers(); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); #ifdef NO_POWERSAVE cpu_do_powersave=0; #endif init_clocks(); #ifdef KGDB kgdb_port_init(); #endif /* Talk to the user */ printf("\nNetBSD/evbarm (netwalker) booting ...\n"); /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * * 0x90000000 - 0x97FFFFFF DDR SDRAM (128MByte) * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ #if 0 /* * Examine the boot args string for options we need to know about * now. */ process_kernel_args((char *)nwbootinfo.bt_args); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = MEMSTART; bootconfig.dram[0].pages = (MEMSIZE * 1024 * 1024)/ PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0x80100000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the bottom of SDRAM, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = 0x90000000UL; /* top of loadaddres */ physical_freeend = 0x90100000UL; /* base of kernel */ physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 1MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); systempage.pv_va = ARM_VECTORS_HIGH; /* Allocate stacks for all modes */ valloc_pages(fiqstack, FIQ_STACK_SIZE); valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("FIQ stack: p0x%08lx v0x%08lx\n", fiqstack.pv_pa, fiqstack.pv_va); printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at p0x%08lx v0x%08lx\n", kernel_l1pt.pv_pa, kernel_l1pt.pv_va); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ #define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME) { size_t textsize = round_L_page((size_t)etext - KERNEL_TEXT_BASE); size_t totalsize = round_L_page((size_t)_end - KERNEL_TEXT_BASE); u_int logical; #ifdef VERBOSE_INIT_ARM printf("%s: etext %lx, _end %lx\n", __func__, (uintptr_t)etext, (uintptr_t)_end); printf("%s: textsize %#lx, totalsize %#lx\n", __func__, textsize, totalsize); #endif logical = 0x00100000; /* offset of kernel in RAM */ /* Map text section read-only. */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE); /* Map data and bss sections read-write. */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, fiqstack.pv_va, fiqstack.pv_pa, FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ #if 0 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, netwalker_devmap); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about where all the bits and pieces live. */ printf("%22s Physical Virtual Num\n", " "); printf("%22s Starting Ending Starting Ending Pages\n", " "); static const char mem_fmt[] = "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n"; static const char mem_fmt_nov[] = "%20s: 0x%08lx 0x%08lx %d\n"; printf(mem_fmt, "SDRAM", physical_start, physical_end-1, KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1), physmem); printf(mem_fmt, "text section", (paddr_t)KERNEL_BASE_phys, KERN_VTOPHYS(etext-1), (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1, (int)(round_L_page((size_t)etext - KERNEL_TEXT_BASE) / PAGE_SIZE)); printf(mem_fmt, "data section", KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata), (vaddr_t)__data_start, (vaddr_t)_edata, (int)((round_page((vaddr_t)_edata) - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE)); printf(mem_fmt, "bss section", KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__), (vaddr_t)__bss_start, (vaddr_t)__bss_end__, (int)((round_page((vaddr_t)__bss_end__) - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE)); printf(mem_fmt, "L1 page directory", kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1, kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1, L1_TABLE_SIZE / PAGE_SIZE); printf(mem_fmt, "Exception Vectors", systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1, systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1, 1); printf(mem_fmt, "FIQ stack", fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1, FIQ_STACK_SIZE); printf(mem_fmt, "IRQ stack", irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1, IRQ_STACK_SIZE); printf(mem_fmt, "ABT stack", abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1, abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1, ABT_STACK_SIZE); printf(mem_fmt, "UND stack", undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1, undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1, UND_STACK_SIZE); printf(mem_fmt, "SVC stack", kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1, kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1, UPAGES); printf(mem_fmt_nov, "Message Buffer", msgbufphys, msgbufphys + round_page(MSGBUFSIZE) - 1, round_page(MSGBUFSIZE) / PAGE_SIZE); printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1, KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1), free_pages); #endif /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif /* disable power down counter in watch dog, This must be done within 16 seconds of start-up. */ ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0); #ifdef IPKDB /* Initialise ipkdb */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB #ifdef VERBOSE_INIT_ARM printf("ddb "); #endif db_machine_init(); /* Firmware doesn't load symbols. */ ddb_init(0, NULL, NULL); if (boothowto & RB_KDB) Debugger(); #endif printf("initarm done.\n"); /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } #if 0 void process_kernel_args(char *args) { boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, args, MAX_BOOT_STRING); args = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; if (*args != 0) *args++ = 0; while (*args == ' ') ++args; boot_args = args; printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); parse_mi_bootargs(boot_args); } #endif static void init_clocks(void) { extern void cortexa8_pmc_ccnt_init(void); cortexa8_pmc_ccnt_init(); } struct iomux_setup { size_t pad_ctl_reg; uint32_t pad_ctl_val; size_t mux_ctl_reg; uint32_t mux_ctl_val; }; #define IOMUX_DATA(padname, mux, pad) \ IOMUX_DATA2(__CONCAT(IOMUXC_SW_MUX_CTL_PAD_,padname), mux, \ __CONCAT(IOMUXC_SW_PAD_CTL_PAD_,padname), pad) #define IOMUX_DATA2(muxreg, muxval, padreg, padval) \ { \ .pad_ctl_reg = (padreg), \ .pad_ctl_val = (padval), \ .mux_ctl_reg = (muxreg), \ .mux_ctl_val = (muxval) \ } const struct iomux_setup iomux_setup_data[] = { /* left buttons */ IOMUX_DATA(EIM_EB2, IOMUX_CONFIG_ALT1, PAD_CTL_HYS), /* right buttons */ IOMUX_DATA(EIM_EB3, IOMUX_CONFIG_ALT1, PAD_CTL_HYS), /* UART1 */ #if 1 IOMUX_DATA(UART1_RXD, IOMUX_CONFIG_ALT0, PAD_CTL_DSE_HIGH | PAD_CTL_SRE), #else IOMUX_DATA(UART1_RXD, IOMUX_CONFIG_ALT3, /* gpio4[28] */ PAD_CTL_DSE_HIGH | PAD_CTL_SRE), #endif IOMUX_DATA(UART1_TXD, IOMUX_CONFIG_ALT0, PAD_CTL_DSE_HIGH | PAD_CTL_SRE), IOMUX_DATA(UART1_RTS, IOMUX_CONFIG_ALT0, PAD_CTL_DSE_HIGH), IOMUX_DATA(UART1_CTS, IOMUX_CONFIG_ALT0, PAD_CTL_DSE_HIGH), }; static void setup_ioports(void) { int i; const struct iomux_setup *p; #if 0 /* These are all done already by Netwalker's bootloader. */ /* set IO multiplexor for UART1 */ uint32_t reg; uint32_t addr; /* input */ addr = NETWALKER_IOMUXC_VBASE + MUX_IN_UART1_IPP_UART_RXD_MUX; reg = INPUT_DAISY_0; ioreg_write(addr, reg); addr = NETWALKER_IOMUXC_VBASE + MUX_IN_UART1_IPP_UART_RTS_B; reg = INPUT_DAISY_0; ioreg_write(addr, reg); #endif for (i=0; i < __arraycount(iomux_setup_data); ++i) { p = iomux_setup_data + i; ioreg_write(NETWALKER_IOMUXC_VBASE + p->pad_ctl_reg, p->pad_ctl_val); ioreg_write(NETWALKER_IOMUXC_VBASE + p->mux_ctl_reg, p->mux_ctl_val); } #if 0 /* already done by bootloader */ /* GPIO2[22,23]: input (left/right button) GPIO2[21]: input (power button) */ ioreg_write(NETWALKER_GPIO_VBASE(2) + GPIO_DIR, ~__BITS(21,23) & ioreg_read(NETWALKER_GPIO_VBASE(2) + GPIO_DIR)); #endif #if 0 /* already done by bootloader */ /* GPIO4[12]: input (cover switch) */ ioreg_write(NETWALKER_GPIO_VBASE(4) + GPIO_DIR, ~__BIT(12) & ioreg_read(NETWALKER_GPIO_VBASE(4) + GPIO_DIR)); #endif } #ifdef CONSDEVNAME const char consdevname[] = CONSDEVNAME; #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif #ifndef CONSPEED #define CONSPEED 115200 #endif int consmode = CONMODE; int consrate = CONSPEED; #endif /* CONSDEVNAME */ #ifndef IMXUART_FREQ #define IMXUART_FREQ 66355200 #endif void consinit(void) { static int consinit_called = 0; if (consinit_called) return; consinit_called = 1; #ifdef CONSDEVNAME #if NIMXUART > 0 imxuart_set_frequency(IMXUART_FREQ, 2); #endif #if (NIMXUART > 0) && defined(IMXUARTCONSOLE) if (strcmp(consdevname, "imxuart") == 0) { paddr_t consaddr; #ifdef CONADDR consaddr = CONADDR; #else consaddr = IMX51_UART1_BASE; #endif imxuart_cons_attach(&imx_bs_tag, consaddr, consrate, consmode); return; } #endif #endif #if (NWSDISPLAY > 0) && defined(IMXLCDCONSOLE) { extern void netwalker_cnattach(void); netwalker_cnattach(); } #endif } #ifdef KGDB #ifndef KGDB_DEVNAME #define KGDB_DEVNAME "imxuart" #endif #ifndef KGDB_DEVMODE #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif const char kgdb_devname[20] = KGDB_DEVNAME; int kgdb_mode = KGDB_DEVMODE; int kgdb_addr = KGDB_DEVADDR; extern int kgdb_rate; /* defined in kgdb_stub.c */ void kgdb_port_init(void) { #if (NIMXUART > 0) if (strcmp(kgdb_devname, "imxuart") == 0) { imxuart_kgdb_attach(&imx_bs_tag, kgdb_addr, kgdb_rate, kgdb_mode); return; } #endif } #endif #ifdef DEBUG_IOPORTS static void dump_sub(paddr_t addr, size_t size) { paddr_t end = addr + size; for (; addr < end; addr += 4) { if (addr % 16 == 0) printf("%08x: ", (u_int)addr); printf("%08x ", ioreg_read(addr)); if (addr % 16 == 12) printf("\n"); } printf("\n"); } void dump_registers(void) { paddr_t pa; int i; dump_sub(IOMUXC_BASE, IOMUXC_USBOH3_IPP_IND_UH3_STP_SELECT_INPUT + 4); for (i = 1; i <= 4; ++i) { dump_sub(GPIO_BASE(i), GPIO_SIZE); } printf("\nwatchdog: "); for (pa = WDOG1_BASE; pa <= WDOG1_BASE + IMX_WDOG_WMCR; pa += 2) { printf("%04x ", *(volatile uint16_t *)pa); } printf("\n"); printf("\nCCM\n"); dump_sub(CCM_BASE, CCM_SIZE); #if 0 /* disable power down counter in watch dog, This must be done within 16 seconds of start-up. */ ioreg16_write(NETWALKER_WDOG_VBASE + IMX_WDOG_WMCR, 0); /* read left/right buttons */ for (;;) { uint32_t reg; reg = ioreg_read(GPIO_BASE(2) + GPIO_DR); printf("\r%08x", reg); reg = ioreg_read(GPIO_BASE(4) + GPIO_DR); printf(" %08x", reg); #if 0 ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC1); ioreg16_write(WDOG1_BASE + IMX_WDOG_WSR, WSR_MAGIC2); #endif } #endif } #endif #if 0 #include void gpio_test(void) void gpio_test(void) { int left, right; gpio_set_direction(GPIO_NO(2, 22), GPIO_DIR_IN); gpio_set_direction(GPIO_NO(2, 23), GPIO_DIR_IN); for (;;) { left = gpio_data_read(GPIO_NO(2, 22)); right = gpio_data_read(GPIO_NO(2, 23)); printf("\r%s %s", left ? "off" : "ON ", right ? "off" : "ON "); } } #endif