/* $NetBSD: subr_lockdebug.c,v 1.51 2014/03/07 16:36:32 matt Exp $ */ /*- * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Basic lock debugging code shared among lock primitives. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_lockdebug.c,v 1.51 2014/03/07 16:36:32 matt Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include unsigned int ld_panic; #ifdef LOCKDEBUG #define LD_BATCH_SHIFT 9 #define LD_BATCH (1 << LD_BATCH_SHIFT) #define LD_BATCH_MASK (LD_BATCH - 1) #define LD_MAX_LOCKS 1048576 #define LD_SLOP 16 #define LD_LOCKED 0x01 #define LD_SLEEPER 0x02 #define LD_WRITE_LOCK 0x80000000 typedef struct lockdebug { struct rb_node ld_rb_node; __cpu_simple_lock_t ld_spinlock; _TAILQ_ENTRY(struct lockdebug, volatile) ld_chain; _TAILQ_ENTRY(struct lockdebug, volatile) ld_achain; volatile void *ld_lock; lockops_t *ld_lockops; struct lwp *ld_lwp; uintptr_t ld_locked; uintptr_t ld_unlocked; uintptr_t ld_initaddr; uint16_t ld_shares; uint16_t ld_cpu; uint8_t ld_flags; uint8_t ld_shwant; /* advisory */ uint8_t ld_exwant; /* advisory */ uint8_t ld_unused; } volatile lockdebug_t; typedef _TAILQ_HEAD(lockdebuglist, struct lockdebug, volatile) lockdebuglist_t; __cpu_simple_lock_t ld_mod_lk; lockdebuglist_t ld_free = TAILQ_HEAD_INITIALIZER(ld_free); lockdebuglist_t ld_all = TAILQ_HEAD_INITIALIZER(ld_all); int ld_nfree; int ld_freeptr; int ld_recurse; bool ld_nomore; lockdebug_t ld_prime[LD_BATCH]; static void lockdebug_abort1(lockdebug_t *, int, const char *, const char *, bool); static int lockdebug_more(int); static void lockdebug_init(void); static signed int ld_rbto_compare_nodes(void *ctx, const void *n1, const void *n2) { const lockdebug_t *ld1 = n1; const lockdebug_t *ld2 = n2; const uintptr_t a = (uintptr_t)ld1->ld_lock; const uintptr_t b = (uintptr_t)ld2->ld_lock; if (a < b) return -1; if (a > b) return 1; return 0; } static signed int ld_rbto_compare_key(void *ctx, const void *n, const void *key) { const lockdebug_t *ld = n; const uintptr_t a = (uintptr_t)ld->ld_lock; const uintptr_t b = (uintptr_t)key; if (a < b) return -1; if (a > b) return 1; return 0; } static rb_tree_t ld_rb_tree; static const rb_tree_ops_t ld_rb_tree_ops = { .rbto_compare_nodes = ld_rbto_compare_nodes, .rbto_compare_key = ld_rbto_compare_key, .rbto_node_offset = offsetof(lockdebug_t, ld_rb_node), .rbto_context = NULL }; static inline lockdebug_t * lockdebug_lookup1(volatile void *lock) { lockdebug_t *ld; struct cpu_info *ci; ci = curcpu(); __cpu_simple_lock(&ci->ci_data.cpu_ld_lock); ld = (lockdebug_t *)rb_tree_find_node(&ld_rb_tree, __UNVOLATILE(lock)); __cpu_simple_unlock(&ci->ci_data.cpu_ld_lock); if (ld == NULL) { return NULL; } __cpu_simple_lock(&ld->ld_spinlock); return ld; } static void lockdebug_lock_cpus(void) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { __cpu_simple_lock(&ci->ci_data.cpu_ld_lock); } } static void lockdebug_unlock_cpus(void) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { __cpu_simple_unlock(&ci->ci_data.cpu_ld_lock); } } /* * lockdebug_lookup: * * Find a lockdebug structure by a pointer to a lock and return it locked. */ static inline lockdebug_t * lockdebug_lookup(volatile void *lock, uintptr_t where) { lockdebug_t *ld; ld = lockdebug_lookup1(lock); if (ld == NULL) { panic("lockdebug_lookup: uninitialized lock " "(lock=%p, from=%08"PRIxPTR")", lock, where); } return ld; } /* * lockdebug_init: * * Initialize the lockdebug system. Allocate an initial pool of * lockdebug structures before the VM system is up and running. */ static void lockdebug_init(void) { lockdebug_t *ld; int i; TAILQ_INIT(&curcpu()->ci_data.cpu_ld_locks); TAILQ_INIT(&curlwp->l_ld_locks); __cpu_simple_lock_init(&curcpu()->ci_data.cpu_ld_lock); __cpu_simple_lock_init(&ld_mod_lk); rb_tree_init(&ld_rb_tree, &ld_rb_tree_ops); ld = ld_prime; for (i = 1, ld++; i < LD_BATCH; i++, ld++) { __cpu_simple_lock_init(&ld->ld_spinlock); TAILQ_INSERT_TAIL(&ld_free, ld, ld_chain); TAILQ_INSERT_TAIL(&ld_all, ld, ld_achain); } ld_freeptr = 1; ld_nfree = LD_BATCH - 1; } /* * lockdebug_alloc: * * A lock is being initialized, so allocate an associated debug * structure. */ bool lockdebug_alloc(volatile void *lock, lockops_t *lo, uintptr_t initaddr) { struct cpu_info *ci; lockdebug_t *ld; int s; if (lo == NULL || panicstr != NULL || ld_panic) return false; if (ld_freeptr == 0) lockdebug_init(); s = splhigh(); __cpu_simple_lock(&ld_mod_lk); if ((ld = lockdebug_lookup1(lock)) != NULL) { __cpu_simple_unlock(&ld_mod_lk); lockdebug_abort1(ld, s, __func__, "already initialized", true); return false; } /* * Pinch a new debug structure. We may recurse because we call * kmem_alloc(), which may need to initialize new locks somewhere * down the path. If not recursing, we try to maintain at least * LD_SLOP structures free, which should hopefully be enough to * satisfy kmem_alloc(). If we can't provide a structure, not to * worry: we'll just mark the lock as not having an ID. */ ci = curcpu(); ci->ci_lkdebug_recurse++; if (TAILQ_EMPTY(&ld_free)) { if (ci->ci_lkdebug_recurse > 1 || ld_nomore) { ci->ci_lkdebug_recurse--; __cpu_simple_unlock(&ld_mod_lk); splx(s); return false; } s = lockdebug_more(s); } else if (ci->ci_lkdebug_recurse == 1 && ld_nfree < LD_SLOP) { s = lockdebug_more(s); } if ((ld = TAILQ_FIRST(&ld_free)) == NULL) { __cpu_simple_unlock(&ld_mod_lk); splx(s); return false; } TAILQ_REMOVE(&ld_free, ld, ld_chain); ld_nfree--; ci->ci_lkdebug_recurse--; if (ld->ld_lock != NULL) { panic("lockdebug_alloc: corrupt table ld %p", ld); } /* Initialise the structure. */ ld->ld_lock = lock; ld->ld_lockops = lo; ld->ld_locked = 0; ld->ld_unlocked = 0; ld->ld_lwp = NULL; ld->ld_initaddr = initaddr; ld->ld_flags = (lo->lo_type == LOCKOPS_SLEEP ? LD_SLEEPER : 0); lockdebug_lock_cpus(); (void)rb_tree_insert_node(&ld_rb_tree, __UNVOLATILE(ld)); lockdebug_unlock_cpus(); __cpu_simple_unlock(&ld_mod_lk); splx(s); return true; } /* * lockdebug_free: * * A lock is being destroyed, so release debugging resources. */ void lockdebug_free(volatile void *lock) { lockdebug_t *ld; int s; if (panicstr != NULL || ld_panic) return; s = splhigh(); __cpu_simple_lock(&ld_mod_lk); ld = lockdebug_lookup(lock, (uintptr_t) __builtin_return_address(0)); if (ld == NULL) { __cpu_simple_unlock(&ld_mod_lk); panic("lockdebug_free: destroying uninitialized object %p" "(ld_lock=%p)", lock, ld->ld_lock); return; } if ((ld->ld_flags & LD_LOCKED) != 0 || ld->ld_shares != 0) { __cpu_simple_unlock(&ld_mod_lk); lockdebug_abort1(ld, s, __func__, "is locked or in use", true); return; } lockdebug_lock_cpus(); rb_tree_remove_node(&ld_rb_tree, __UNVOLATILE(ld)); lockdebug_unlock_cpus(); ld->ld_lock = NULL; TAILQ_INSERT_TAIL(&ld_free, ld, ld_chain); ld_nfree++; __cpu_simple_unlock(&ld->ld_spinlock); __cpu_simple_unlock(&ld_mod_lk); splx(s); } /* * lockdebug_more: * * Allocate a batch of debug structures and add to the free list. * Must be called with ld_mod_lk held. */ static int lockdebug_more(int s) { lockdebug_t *ld; void *block; int i, base, m; /* * Can't call kmem_alloc() if in interrupt context. XXX We could * deadlock, because we don't know which locks the caller holds. */ if (cpu_intr_p() || (curlwp->l_pflag & LP_INTR) != 0) { return s; } while (ld_nfree < LD_SLOP) { __cpu_simple_unlock(&ld_mod_lk); splx(s); block = kmem_zalloc(LD_BATCH * sizeof(lockdebug_t), KM_SLEEP); s = splhigh(); __cpu_simple_lock(&ld_mod_lk); if (block == NULL) return s; if (ld_nfree > LD_SLOP) { /* Somebody beat us to it. */ __cpu_simple_unlock(&ld_mod_lk); splx(s); kmem_free(block, LD_BATCH * sizeof(lockdebug_t)); s = splhigh(); __cpu_simple_lock(&ld_mod_lk); continue; } base = ld_freeptr; ld_nfree += LD_BATCH; ld = block; base <<= LD_BATCH_SHIFT; m = min(LD_MAX_LOCKS, base + LD_BATCH); if (m == LD_MAX_LOCKS) ld_nomore = true; for (i = base; i < m; i++, ld++) { __cpu_simple_lock_init(&ld->ld_spinlock); TAILQ_INSERT_TAIL(&ld_free, ld, ld_chain); TAILQ_INSERT_TAIL(&ld_all, ld, ld_achain); } membar_producer(); } return s; } /* * lockdebug_wantlock: * * Process the preamble to a lock acquire. */ void lockdebug_wantlock(volatile void *lock, uintptr_t where, int shared) { struct lwp *l = curlwp; lockdebug_t *ld; bool recurse; int s; (void)shared; recurse = false; if (panicstr != NULL || ld_panic) return; s = splhigh(); if ((ld = lockdebug_lookup(lock, where)) == NULL) { splx(s); return; } if ((ld->ld_flags & LD_LOCKED) != 0 || ld->ld_shares != 0) { if ((ld->ld_flags & LD_SLEEPER) != 0) { if (ld->ld_lwp == l) recurse = true; } else if (ld->ld_cpu == (uint16_t)cpu_index(curcpu())) recurse = true; } if (cpu_intr_p()) { if ((ld->ld_flags & LD_SLEEPER) != 0) { lockdebug_abort1(ld, s, __func__, "acquiring sleep lock from interrupt context", true); return; } } if (shared) ld->ld_shwant++; else ld->ld_exwant++; if (recurse) { lockdebug_abort1(ld, s, __func__, "locking against myself", true); return; } __cpu_simple_unlock(&ld->ld_spinlock); splx(s); } /* * lockdebug_locked: * * Process a lock acquire operation. */ void lockdebug_locked(volatile void *lock, void *cvlock, uintptr_t where, int shared) { struct lwp *l = curlwp; lockdebug_t *ld; int s; if (panicstr != NULL || ld_panic) return; s = splhigh(); if ((ld = lockdebug_lookup(lock, where)) == NULL) { splx(s); return; } if (cvlock) { KASSERT(ld->ld_lockops->lo_type == LOCKOPS_CV); if (lock == (void *)&lbolt) { /* nothing */ } else if (ld->ld_shares++ == 0) { ld->ld_locked = (uintptr_t)cvlock; } else if (cvlock != (void *)ld->ld_locked) { lockdebug_abort1(ld, s, __func__, "multiple locks used" " with condition variable", true); return; } } else if (shared) { l->l_shlocks++; ld->ld_locked = where; ld->ld_shares++; ld->ld_shwant--; } else { if ((ld->ld_flags & LD_LOCKED) != 0) { lockdebug_abort1(ld, s, __func__, "already locked", true); return; } ld->ld_flags |= LD_LOCKED; ld->ld_locked = where; ld->ld_exwant--; if ((ld->ld_flags & LD_SLEEPER) != 0) { TAILQ_INSERT_TAIL(&l->l_ld_locks, ld, ld_chain); } else { TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_ld_locks, ld, ld_chain); } } ld->ld_cpu = (uint16_t)cpu_index(curcpu()); ld->ld_lwp = l; __cpu_simple_unlock(&ld->ld_spinlock); splx(s); } /* * lockdebug_unlocked: * * Process a lock release operation. */ void lockdebug_unlocked(volatile void *lock, uintptr_t where, int shared) { struct lwp *l = curlwp; lockdebug_t *ld; int s; if (panicstr != NULL || ld_panic) return; s = splhigh(); if ((ld = lockdebug_lookup(lock, where)) == NULL) { splx(s); return; } if (ld->ld_lockops->lo_type == LOCKOPS_CV) { if (lock == (void *)&lbolt) { /* nothing */ } else { ld->ld_shares--; } } else if (shared) { if (l->l_shlocks == 0) { lockdebug_abort1(ld, s, __func__, "no shared locks held by LWP", true); return; } if (ld->ld_shares == 0) { lockdebug_abort1(ld, s, __func__, "no shared holds on this lock", true); return; } l->l_shlocks--; ld->ld_shares--; if (ld->ld_lwp == l) { ld->ld_unlocked = where; ld->ld_lwp = NULL; } if (ld->ld_cpu == (uint16_t)cpu_index(curcpu())) ld->ld_cpu = (uint16_t)-1; } else { if ((ld->ld_flags & LD_LOCKED) == 0) { lockdebug_abort1(ld, s, __func__, "not locked", true); return; } if ((ld->ld_flags & LD_SLEEPER) != 0) { if (ld->ld_lwp != curlwp) { lockdebug_abort1(ld, s, __func__, "not held by current LWP", true); return; } TAILQ_REMOVE(&l->l_ld_locks, ld, ld_chain); } else { if (ld->ld_cpu != (uint16_t)cpu_index(curcpu())) { lockdebug_abort1(ld, s, __func__, "not held by current CPU", true); return; } TAILQ_REMOVE(&curcpu()->ci_data.cpu_ld_locks, ld, ld_chain); } ld->ld_flags &= ~LD_LOCKED; ld->ld_unlocked = where; ld->ld_lwp = NULL; } __cpu_simple_unlock(&ld->ld_spinlock); splx(s); } /* * lockdebug_wakeup: * * Process a wakeup on a condition variable. */ void lockdebug_wakeup(volatile void *lock, uintptr_t where) { lockdebug_t *ld; int s; if (panicstr != NULL || ld_panic || lock == (void *)&lbolt) return; s = splhigh(); /* Find the CV... */ if ((ld = lockdebug_lookup(lock, where)) == NULL) { splx(s); return; } /* * If it has any waiters, ensure that they are using the * same interlock. */ if (ld->ld_shares != 0 && !mutex_owned((kmutex_t *)ld->ld_locked)) { lockdebug_abort1(ld, s, __func__, "interlocking mutex not " "held during wakeup", true); return; } __cpu_simple_unlock(&ld->ld_spinlock); splx(s); } /* * lockdebug_barrier: * * Panic if we hold more than one specified spin lock, and optionally, * if we hold sleep locks. */ void lockdebug_barrier(volatile void *spinlock, int slplocks) { struct lwp *l = curlwp; lockdebug_t *ld; int s; if (panicstr != NULL || ld_panic) return; s = splhigh(); if ((l->l_pflag & LP_INTR) == 0) { TAILQ_FOREACH(ld, &curcpu()->ci_data.cpu_ld_locks, ld_chain) { if (ld->ld_lock == spinlock) { continue; } __cpu_simple_lock(&ld->ld_spinlock); lockdebug_abort1(ld, s, __func__, "spin lock held", true); return; } } if (slplocks) { splx(s); return; } if ((ld = TAILQ_FIRST(&l->l_ld_locks)) != NULL) { __cpu_simple_lock(&ld->ld_spinlock); lockdebug_abort1(ld, s, __func__, "sleep lock held", true); return; } splx(s); if (l->l_shlocks != 0) { panic("lockdebug_barrier: holding %d shared locks", l->l_shlocks); } } /* * lockdebug_mem_check: * * Check for in-use locks within a memory region that is * being freed. */ void lockdebug_mem_check(const char *func, void *base, size_t sz) { lockdebug_t *ld; struct cpu_info *ci; int s; if (panicstr != NULL || ld_panic) return; s = splhigh(); ci = curcpu(); __cpu_simple_lock(&ci->ci_data.cpu_ld_lock); ld = (lockdebug_t *)rb_tree_find_node_geq(&ld_rb_tree, base); if (ld != NULL) { const uintptr_t lock = (uintptr_t)ld->ld_lock; if ((uintptr_t)base > lock) panic("%s: corrupt tree ld=%p, base=%p, sz=%zu", __func__, ld, base, sz); if (lock >= (uintptr_t)base + sz) ld = NULL; } __cpu_simple_unlock(&ci->ci_data.cpu_ld_lock); if (ld != NULL) { __cpu_simple_lock(&ld->ld_spinlock); lockdebug_abort1(ld, s, func, "allocation contains active lock", !cold); return; } splx(s); } /* * lockdebug_dump: * * Dump information about a lock on panic, or for DDB. */ static void lockdebug_dump(lockdebug_t *ld, void (*pr)(const char *, ...) __printflike(1, 2)) { int sleeper = (ld->ld_flags & LD_SLEEPER); (*pr)( "lock address : %#018lx type : %18s\n" "initialized : %#018lx", (long)ld->ld_lock, (sleeper ? "sleep/adaptive" : "spin"), (long)ld->ld_initaddr); if (ld->ld_lockops->lo_type == LOCKOPS_CV) { (*pr)(" interlock: %#018lx\n", (long)ld->ld_locked); } else { (*pr)("\n" "shared holds : %18u exclusive: %18u\n" "shares wanted: %18u exclusive: %18u\n" "current cpu : %18u last held: %18u\n" "current lwp : %#018lx last held: %#018lx\n" "last locked%c : %#018lx unlocked%c: %#018lx\n", (unsigned)ld->ld_shares, ((ld->ld_flags & LD_LOCKED) != 0), (unsigned)ld->ld_shwant, (unsigned)ld->ld_exwant, (unsigned)cpu_index(curcpu()), (unsigned)ld->ld_cpu, (long)curlwp, (long)ld->ld_lwp, ((ld->ld_flags & LD_LOCKED) ? '*' : ' '), (long)ld->ld_locked, ((ld->ld_flags & LD_LOCKED) ? ' ' : '*'), (long)ld->ld_unlocked); } if (ld->ld_lockops->lo_dump != NULL) (*ld->ld_lockops->lo_dump)(ld->ld_lock); if (sleeper) { (*pr)("\n"); turnstile_print(ld->ld_lock, pr); } } /* * lockdebug_abort1: * * An error has been trapped - dump lock info and panic. */ static void lockdebug_abort1(lockdebug_t *ld, int s, const char *func, const char *msg, bool dopanic) { /* * Don't make the situation worse if the system is already going * down in flames. Once a panic is triggered, lockdebug state * becomes stale and cannot be trusted. */ if (atomic_inc_uint_nv(&ld_panic) != 1) { __cpu_simple_unlock(&ld->ld_spinlock); splx(s); return; } printf_nolog("%s error: %s: %s\n\n", ld->ld_lockops->lo_name, func, msg); lockdebug_dump(ld, printf_nolog); __cpu_simple_unlock(&ld->ld_spinlock); splx(s); printf_nolog("\n"); if (dopanic) panic("LOCKDEBUG: %s error: %s: %s", ld->ld_lockops->lo_name, func, msg); } #endif /* LOCKDEBUG */ /* * lockdebug_lock_print: * * Handle the DDB 'show lock' command. */ #ifdef DDB void lockdebug_lock_print(void *addr, void (*pr)(const char *, ...)) { #ifdef LOCKDEBUG lockdebug_t *ld; TAILQ_FOREACH(ld, &ld_all, ld_achain) { if (ld->ld_lock == NULL) continue; if (addr == NULL || ld->ld_lock == addr) { lockdebug_dump(ld, pr); if (addr != NULL) return; } } if (addr != NULL) { (*pr)("Sorry, no record of a lock with address %p found.\n", addr); } #else (*pr)("Sorry, kernel not built with the LOCKDEBUG option.\n"); #endif /* LOCKDEBUG */ } #endif /* DDB */ /* * lockdebug_abort: * * An error has been trapped - dump lock info and call panic(). */ void lockdebug_abort(volatile void *lock, lockops_t *ops, const char *func, const char *msg) { #ifdef LOCKDEBUG lockdebug_t *ld; int s; s = splhigh(); if ((ld = lockdebug_lookup(lock, (uintptr_t) __builtin_return_address(0))) != NULL) { lockdebug_abort1(ld, s, func, msg, true); return; } splx(s); #endif /* LOCKDEBUG */ /* * Complain first on the occurrance only. Otherwise proceeed to * panic where we will `rendezvous' with other CPUs if the machine * is going down in flames. */ if (atomic_inc_uint_nv(&ld_panic) == 1) { printf_nolog("%s error: %s: %s\n\n" "lock address : %#018lx\n" "current cpu : %18d\n" "current lwp : %#018lx\n", ops->lo_name, func, msg, (long)lock, (int)cpu_index(curcpu()), (long)curlwp); (*ops->lo_dump)(lock); printf_nolog("\n"); } panic("lock error"); }