/* $NetBSD: in_pcb.c,v 1.140 2011/12/19 11:59:56 drochner Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1998, 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Coyote Point Systems, Inc. * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 */ #include __KERNEL_RCSID(0, "$NetBSD: in_pcb.c,v 1.140 2011/12/19 11:59:56 drochner Exp $"); #include "opt_inet.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #ifdef KAME_IPSEC #include #include #elif FAST_IPSEC #include #include #endif /* IPSEC */ #include struct in_addr zeroin_addr; #define INPCBHASH_PORT(table, lport) \ &(table)->inpt_porthashtbl[ntohs(lport) & (table)->inpt_porthash] #define INPCBHASH_BIND(table, laddr, lport) \ &(table)->inpt_bindhashtbl[ \ ((ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_bindhash] #define INPCBHASH_CONNECT(table, faddr, fport, laddr, lport) \ &(table)->inpt_connecthashtbl[ \ ((ntohl((faddr).s_addr) + ntohs(fport)) + \ (ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_connecthash] int anonportmin = IPPORT_ANONMIN; int anonportmax = IPPORT_ANONMAX; int lowportmin = IPPORT_RESERVEDMIN; int lowportmax = IPPORT_RESERVEDMAX; static struct pool inpcb_pool; static int inpcb_poolinit(void) { pool_init(&inpcb_pool, sizeof(struct inpcb), 0, 0, 0, "inpcbpl", NULL, IPL_NET); return 0; } void in_pcbinit(struct inpcbtable *table, int bindhashsize, int connecthashsize) { static ONCE_DECL(control); CIRCLEQ_INIT(&table->inpt_queue); table->inpt_porthashtbl = hashinit(bindhashsize, HASH_LIST, true, &table->inpt_porthash); table->inpt_bindhashtbl = hashinit(bindhashsize, HASH_LIST, true, &table->inpt_bindhash); table->inpt_connecthashtbl = hashinit(connecthashsize, HASH_LIST, true, &table->inpt_connecthash); table->inpt_lastlow = IPPORT_RESERVEDMAX; table->inpt_lastport = (u_int16_t)anonportmax; RUN_ONCE(&control, inpcb_poolinit); } int in_pcballoc(struct socket *so, void *v) { struct inpcbtable *table = v; struct inpcb *inp; int s; #if defined(KAME_IPSEC) || defined(FAST_IPSEC) int error; #endif s = splnet(); inp = pool_get(&inpcb_pool, PR_NOWAIT); splx(s); if (inp == NULL) return (ENOBUFS); memset(inp, 0, sizeof(*inp)); inp->inp_af = AF_INET; inp->inp_table = table; inp->inp_socket = so; inp->inp_errormtu = -1; inp->inp_rfc6056algo = RFC6056_ALGO_DEFAULT; inp->inp_bindportonsend = false; #if defined(KAME_IPSEC) || defined(FAST_IPSEC) error = ipsec_init_pcbpolicy(so, &inp->inp_sp); if (error != 0) { s = splnet(); pool_put(&inpcb_pool, inp); splx(s); return error; } #endif so->so_pcb = inp; s = splnet(); CIRCLEQ_INSERT_HEAD(&table->inpt_queue, &inp->inp_head, inph_queue); LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head, inph_lhash); in_pcbstate(inp, INP_ATTACHED); splx(s); return (0); } static int in_pcbsetport(struct sockaddr_in *sin, struct inpcb *inp, kauth_cred_t cred) { struct inpcbtable *table = inp->inp_table; struct socket *so = inp->inp_socket; u_int16_t *lastport; u_int16_t lport = 0; enum kauth_network_req req; int error; if (inp->inp_flags & INP_LOWPORT) { #ifndef IPNOPRIVPORTS req = KAUTH_REQ_NETWORK_BIND_PRIVPORT; #else req = KAUTH_REQ_NETWORK_BIND_PORT; #endif lastport = &table->inpt_lastlow; } else { req = KAUTH_REQ_NETWORK_BIND_PORT; lastport = &table->inpt_lastport; } /* XXX-kauth: KAUTH_REQ_NETWORK_BIND_AUTOASSIGN_{,PRIV}PORT */ error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req, so, sin, NULL); if (error) return (EACCES); /* * Use RFC6056 randomized port selection */ error = rfc6056_randport(&lport, &inp->inp_head, cred); if (error) return error; inp->inp_flags |= INP_ANONPORT; *lastport = lport; lport = htons(lport); inp->inp_lport = lport; in_pcbstate(inp, INP_BOUND); return (0); } static int in_pcbbind_addr(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred) { if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (IN_MULTICAST(sin->sin_addr.s_addr)) { /* Always succeed; port reuse handled in in_pcbbind_port(). */ } else if (!in_nullhost(sin->sin_addr)) { struct in_ifaddr *ia = NULL; INADDR_TO_IA(sin->sin_addr, ia); /* check for broadcast addresses */ if (ia == NULL) ia = ifatoia(ifa_ifwithaddr(sintosa(sin))); if (ia == NULL) return (EADDRNOTAVAIL); } inp->inp_laddr = sin->sin_addr; return (0); } static int in_pcbbind_port(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred) { struct inpcbtable *table = inp->inp_table; struct socket *so = inp->inp_socket; int reuseport = (so->so_options & SO_REUSEPORT); int wild = 0, error; if (IN_MULTICAST(sin->sin_addr.s_addr)) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } if (sin->sin_port == 0) { error = in_pcbsetport(sin, inp, cred); if (error) return (error); } else { struct inpcb *t; vestigial_inpcb_t vestige; #ifdef INET6 struct in6pcb *t6; struct in6_addr mapped; #endif enum kauth_network_req req; if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) wild = 1; #ifndef IPNOPRIVPORTS if (ntohs(sin->sin_port) < IPPORT_RESERVED) req = KAUTH_REQ_NETWORK_BIND_PRIVPORT; else #endif /* !IPNOPRIVPORTS */ req = KAUTH_REQ_NETWORK_BIND_PORT; error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req, so, sin, NULL); if (error) return (EACCES); #ifdef INET6 memset(&mapped, 0, sizeof(mapped)); mapped.s6_addr16[5] = 0xffff; memcpy(&mapped.s6_addr32[3], &sin->sin_addr, sizeof(mapped.s6_addr32[3])); t6 = in6_pcblookup_port(table, &mapped, sin->sin_port, wild, &vestige); if (t6 && (reuseport & t6->in6p_socket->so_options) == 0) return (EADDRINUSE); if (!t6 && vestige.valid) { if (!!reuseport != !!vestige.reuse_port) { return EADDRINUSE; } } #endif /* XXX-kauth */ if (so->so_uidinfo->ui_uid && !IN_MULTICAST(sin->sin_addr.s_addr)) { t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, 1, &vestige); /* * XXX: investigate ramifications of loosening this * restriction so that as long as both ports have * SO_REUSEPORT allow the bind */ if (t && (!in_nullhost(sin->sin_addr) || !in_nullhost(t->inp_laddr) || (t->inp_socket->so_options & SO_REUSEPORT) == 0) && (so->so_uidinfo->ui_uid != t->inp_socket->so_uidinfo->ui_uid)) { return (EADDRINUSE); } if (!t && vestige.valid) { if ((!in_nullhost(sin->sin_addr) || !in_nullhost(vestige.laddr.v4) || !vestige.reuse_port) && so->so_uidinfo->ui_uid != vestige.uid) { return EADDRINUSE; } } } t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, wild, &vestige); if (t && (reuseport & t->inp_socket->so_options) == 0) return (EADDRINUSE); if (!t && vestige.valid && !(reuseport && vestige.reuse_port)) return EADDRINUSE; inp->inp_lport = sin->sin_port; in_pcbstate(inp, INP_BOUND); } LIST_REMOVE(&inp->inp_head, inph_lhash); LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head, inph_lhash); return (0); } int in_pcbbind(void *v, struct mbuf *nam, struct lwp *l) { struct inpcb *inp = v; struct sockaddr_in *sin = NULL; /* XXXGCC */ struct sockaddr_in lsin; int error; if (inp->inp_af != AF_INET) return (EINVAL); if (TAILQ_FIRST(&in_ifaddrhead) == 0) return (EADDRNOTAVAIL); if (inp->inp_lport || !in_nullhost(inp->inp_laddr)) return (EINVAL); if (nam != NULL) { sin = mtod(nam, struct sockaddr_in *); if (nam->m_len != sizeof (*sin)) return (EINVAL); } else { lsin = *((const struct sockaddr_in *) inp->inp_socket->so_proto->pr_domain->dom_sa_any); sin = &lsin; } /* Bind address. */ error = in_pcbbind_addr(inp, sin, l->l_cred); if (error) return (error); /* Bind port. */ error = in_pcbbind_port(inp, sin, l->l_cred); if (error) { inp->inp_laddr.s_addr = INADDR_ANY; return (error); } return (0); } /* * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(void *v, struct mbuf *nam, struct lwp *l) { struct inpcb *inp = v; struct in_ifaddr *ia = NULL; struct sockaddr_in *ifaddr = NULL; struct sockaddr_in *sin = mtod(nam, struct sockaddr_in *); vestigial_inpcb_t vestige; int error; if (inp->inp_af != AF_INET) return (EINVAL); if (nam->m_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); if (TAILQ_FIRST(&in_ifaddrhead) != 0) { /* * If the destination address is INADDR_ANY, * use any local address (likely loopback). * If the supplied address is INADDR_BROADCAST, * use the broadcast address of an interface * which supports broadcast. (loopback does not) */ if (in_nullhost(sin->sin_addr)) { sin->sin_addr = TAILQ_FIRST(&in_ifaddrhead)->ia_addr.sin_addr; } else if (sin->sin_addr.s_addr == INADDR_BROADCAST) { TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) { if (ia->ia_ifp->if_flags & IFF_BROADCAST) { sin->sin_addr = ia->ia_broadaddr.sin_addr; break; } } } } /* * If we haven't bound which network number to use as ours, * we will use the number of the outgoing interface. * This depends on having done a routing lookup, which * we will probably have to do anyway, so we might * as well do it now. On the other hand if we are * sending to multiple destinations we may have already * done the lookup, so see if we can use the route * from before. In any case, we only * chose a port number once, even if sending to multiple * destinations. */ if (in_nullhost(inp->inp_laddr)) { int xerror; ifaddr = in_selectsrc(sin, &inp->inp_route, inp->inp_socket->so_options, inp->inp_moptions, &xerror); if (ifaddr == NULL) { if (xerror == 0) xerror = EADDRNOTAVAIL; return xerror; } INADDR_TO_IA(ifaddr->sin_addr, ia); if (ia == NULL) return (EADDRNOTAVAIL); } if (in_pcblookup_connect(inp->inp_table, sin->sin_addr, sin->sin_port, !in_nullhost(inp->inp_laddr) ? inp->inp_laddr : ifaddr->sin_addr, inp->inp_lport, &vestige) != 0 || vestige.valid) return (EADDRINUSE); if (in_nullhost(inp->inp_laddr)) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, NULL, l); /* * This used to ignore the return value * completely, but we need to check for * ephemeral port shortage. * And attempts to request low ports if not root. */ if (error != 0) return (error); } inp->inp_laddr = ifaddr->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; /* Late bind, if needed */ if (inp->inp_bindportonsend) { struct sockaddr_in lsin = *((const struct sockaddr_in *) inp->inp_socket->so_proto->pr_domain->dom_sa_any); lsin.sin_addr = inp->inp_laddr; lsin.sin_port = 0; if ((error = in_pcbbind_port(inp, &lsin, l->l_cred)) != 0) return error; } in_pcbstate(inp, INP_CONNECTED); #if defined(KAME_IPSEC) || defined(FAST_IPSEC) if (inp->inp_socket->so_type == SOCK_STREAM) ipsec_pcbconn(inp->inp_sp); #endif return (0); } void in_pcbdisconnect(void *v) { struct inpcb *inp = v; if (inp->inp_af != AF_INET) return; inp->inp_faddr = zeroin_addr; inp->inp_fport = 0; in_pcbstate(inp, INP_BOUND); #if defined(KAME_IPSEC) || defined(FAST_IPSEC) ipsec_pcbdisconn(inp->inp_sp); #endif if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); } void in_pcbdetach(void *v) { struct inpcb *inp = v; struct socket *so = inp->inp_socket; int s; if (inp->inp_af != AF_INET) return; #if defined(KAME_IPSEC) || defined(FAST_IPSEC) ipsec4_delete_pcbpolicy(inp); #endif /*IPSEC*/ so->so_pcb = 0; if (inp->inp_options) (void)m_free(inp->inp_options); rtcache_free(&inp->inp_route); ip_freemoptions(inp->inp_moptions); s = splnet(); in_pcbstate(inp, INP_ATTACHED); LIST_REMOVE(&inp->inp_head, inph_lhash); CIRCLEQ_REMOVE(&inp->inp_table->inpt_queue, &inp->inp_head, inph_queue); pool_put(&inpcb_pool, inp); splx(s); sofree(so); /* drops the socket's lock */ mutex_enter(softnet_lock); /* reacquire the softnet_lock */ } void in_setsockaddr(struct inpcb *inp, struct mbuf *nam) { struct sockaddr_in *sin; if (inp->inp_af != AF_INET) return; sin = mtod(nam, struct sockaddr_in *); sockaddr_in_init(sin, &inp->inp_laddr, inp->inp_lport); nam->m_len = sin->sin_len; } void in_setpeeraddr(struct inpcb *inp, struct mbuf *nam) { struct sockaddr_in *sin; if (inp->inp_af != AF_INET) return; sin = mtod(nam, struct sockaddr_in *); sockaddr_in_init(sin, &inp->inp_faddr, inp->inp_fport); nam->m_len = sin->sin_len; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. * * Must be called at splsoftnet. */ int in_pcbnotify(struct inpcbtable *table, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, int errno, void (*notify)(struct inpcb *, int)) { struct inpcbhead *head; struct inpcb *inp, *ninp; u_int16_t fport = fport_arg, lport = lport_arg; int nmatch; if (in_nullhost(faddr) || notify == 0) return (0); nmatch = 0; head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport); for (inp = (struct inpcb *)LIST_FIRST(head); inp != NULL; inp = ninp) { ninp = (struct inpcb *)LIST_NEXT(inp, inp_hash); if (inp->inp_af != AF_INET) continue; if (in_hosteq(inp->inp_faddr, faddr) && inp->inp_fport == fport && inp->inp_lport == lport && in_hosteq(inp->inp_laddr, laddr)) { (*notify)(inp, errno); nmatch++; } } return (nmatch); } void in_pcbnotifyall(struct inpcbtable *table, struct in_addr faddr, int errno, void (*notify)(struct inpcb *, int)) { struct inpcb *inp, *ninp; if (in_nullhost(faddr) || notify == 0) return; for (inp = (struct inpcb *)CIRCLEQ_FIRST(&table->inpt_queue); inp != (void *)&table->inpt_queue; inp = ninp) { ninp = (struct inpcb *)CIRCLEQ_NEXT(inp, inp_queue); if (inp->inp_af != AF_INET) continue; if (in_hosteq(inp->inp_faddr, faddr)) (*notify)(inp, errno); } } void in_pcbpurgeif0(struct inpcbtable *table, struct ifnet *ifp) { struct inpcb *inp, *ninp; struct ip_moptions *imo; int i, gap; for (inp = (struct inpcb *)CIRCLEQ_FIRST(&table->inpt_queue); inp != (void *)&table->inpt_queue; inp = ninp) { ninp = (struct inpcb *)CIRCLEQ_NEXT(inp, inp_queue); if (inp->inp_af != AF_INET) continue; imo = inp->inp_moptions; if (imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } } } void in_pcbpurgeif(struct inpcbtable *table, struct ifnet *ifp) { struct rtentry *rt; struct inpcb *inp, *ninp; for (inp = (struct inpcb *)CIRCLEQ_FIRST(&table->inpt_queue); inp != (void *)&table->inpt_queue; inp = ninp) { ninp = (struct inpcb *)CIRCLEQ_NEXT(inp, inp_queue); if (inp->inp_af != AF_INET) continue; if ((rt = rtcache_validate(&inp->inp_route)) != NULL && rt->rt_ifp == ifp) in_rtchange(inp, 0); } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(struct inpcb *inp) { struct rtentry *rt; struct rt_addrinfo info; if (inp->inp_af != AF_INET) return; if ((rt = rtcache_validate(&inp->inp_route)) == NULL) return; memset(&info, 0, sizeof(info)); info.rti_info[RTAX_DST] = rtcache_getdst(&inp->inp_route); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void) rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); /* * A new route can be allocated * the next time output is attempted. */ rtcache_free(&inp->inp_route); } /* * After a routing change, flush old routing. A new route can be * allocated the next time output is attempted. */ void in_rtchange(struct inpcb *inp, int errno) { if (inp->inp_af != AF_INET) return; rtcache_free(&inp->inp_route); /* XXX SHOULD NOTIFY HIGHER-LEVEL PROTOCOLS */ } struct inpcb * in_pcblookup_port(struct inpcbtable *table, struct in_addr laddr, u_int lport_arg, int lookup_wildcard, vestigial_inpcb_t *vp) { struct inpcbhead *head; struct inpcb_hdr *inph; struct inpcb *inp, *match = 0; int matchwild = 3, wildcard; u_int16_t lport = lport_arg; if (vp) vp->valid = 0; head = INPCBHASH_PORT(table, lport); LIST_FOREACH(inph, head, inph_lhash) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (inp->inp_lport != lport) continue; wildcard = 0; if (!in_nullhost(inp->inp_faddr)) wildcard++; if (in_nullhost(inp->inp_laddr)) { if (!in_nullhost(laddr)) wildcard++; } else { if (in_nullhost(laddr)) wildcard++; else { if (!in_hosteq(inp->inp_laddr, laddr)) continue; } } if (wildcard && !lookup_wildcard) continue; if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) break; } } if (match && matchwild == 0) return match; if (vp && table->vestige) { void *state = (*table->vestige->init_ports4)(laddr, lport_arg, lookup_wildcard); vestigial_inpcb_t better; while (table->vestige && (*table->vestige->next_port4)(state, vp)) { if (vp->lport != lport) continue; wildcard = 0; if (!in_nullhost(vp->faddr.v4)) wildcard++; if (in_nullhost(vp->laddr.v4)) { if (!in_nullhost(laddr)) wildcard++; } else { if (in_nullhost(laddr)) wildcard++; else { if (!in_hosteq(vp->laddr.v4, laddr)) continue; } } if (wildcard && !lookup_wildcard) continue; if (wildcard < matchwild) { better = *vp; match = (void*)&better; matchwild = wildcard; if (matchwild == 0) break; } } if (match) { if (match != (void*)&better) return match; else { *vp = better; return 0; } } } return (match); } #ifdef DIAGNOSTIC int in_pcbnotifymiss = 0; #endif struct inpcb * in_pcblookup_connect(struct inpcbtable *table, struct in_addr faddr, u_int fport_arg, struct in_addr laddr, u_int lport_arg, vestigial_inpcb_t *vp) { struct inpcbhead *head; struct inpcb_hdr *inph; struct inpcb *inp; u_int16_t fport = fport_arg, lport = lport_arg; if (vp) vp->valid = 0; head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport); LIST_FOREACH(inph, head, inph_hash) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (in_hosteq(inp->inp_faddr, faddr) && inp->inp_fport == fport && inp->inp_lport == lport && in_hosteq(inp->inp_laddr, laddr)) goto out; } if (vp && table->vestige) { if ((*table->vestige->lookup4)(faddr, fport_arg, laddr, lport_arg, vp)) return 0; } #ifdef DIAGNOSTIC if (in_pcbnotifymiss) { printf("in_pcblookup_connect: faddr=%08x fport=%d laddr=%08x lport=%d\n", ntohl(faddr.s_addr), ntohs(fport), ntohl(laddr.s_addr), ntohs(lport)); } #endif return (0); out: /* Move this PCB to the head of hash chain. */ inph = &inp->inp_head; if (inph != LIST_FIRST(head)) { LIST_REMOVE(inph, inph_hash); LIST_INSERT_HEAD(head, inph, inph_hash); } return (inp); } struct inpcb * in_pcblookup_bind(struct inpcbtable *table, struct in_addr laddr, u_int lport_arg) { struct inpcbhead *head; struct inpcb_hdr *inph; struct inpcb *inp; u_int16_t lport = lport_arg; head = INPCBHASH_BIND(table, laddr, lport); LIST_FOREACH(inph, head, inph_hash) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (inp->inp_lport == lport && in_hosteq(inp->inp_laddr, laddr)) goto out; } head = INPCBHASH_BIND(table, zeroin_addr, lport); LIST_FOREACH(inph, head, inph_hash) { inp = (struct inpcb *)inph; if (inp->inp_af != AF_INET) continue; if (inp->inp_lport == lport && in_hosteq(inp->inp_laddr, zeroin_addr)) goto out; } #ifdef DIAGNOSTIC if (in_pcbnotifymiss) { printf("in_pcblookup_bind: laddr=%08x lport=%d\n", ntohl(laddr.s_addr), ntohs(lport)); } #endif return (0); out: /* Move this PCB to the head of hash chain. */ inph = &inp->inp_head; if (inph != LIST_FIRST(head)) { LIST_REMOVE(inph, inph_hash); LIST_INSERT_HEAD(head, inph, inph_hash); } return (inp); } void in_pcbstate(struct inpcb *inp, int state) { if (inp->inp_af != AF_INET) return; if (inp->inp_state > INP_ATTACHED) LIST_REMOVE(&inp->inp_head, inph_hash); switch (state) { case INP_BOUND: LIST_INSERT_HEAD(INPCBHASH_BIND(inp->inp_table, inp->inp_laddr, inp->inp_lport), &inp->inp_head, inph_hash); break; case INP_CONNECTED: LIST_INSERT_HEAD(INPCBHASH_CONNECT(inp->inp_table, inp->inp_faddr, inp->inp_fport, inp->inp_laddr, inp->inp_lport), &inp->inp_head, inph_hash); break; } inp->inp_state = state; } struct rtentry * in_pcbrtentry(struct inpcb *inp) { struct route *ro; union { struct sockaddr dst; struct sockaddr_in dst4; } u; if (inp->inp_af != AF_INET) return (NULL); ro = &inp->inp_route; sockaddr_in_init(&u.dst4, &inp->inp_faddr, 0); return rtcache_lookup(ro, &u.dst); } struct sockaddr_in * in_selectsrc(struct sockaddr_in *sin, struct route *ro, int soopts, struct ip_moptions *mopts, int *errorp) { struct rtentry *rt = NULL; struct in_ifaddr *ia = NULL; /* * If route is known or can be allocated now, take the * source address from the interface. Otherwise, punt. */ if ((soopts & SO_DONTROUTE) != 0) rtcache_free(ro); else { union { struct sockaddr dst; struct sockaddr_in dst4; } u; sockaddr_in_init(&u.dst4, &sin->sin_addr, 0); rt = rtcache_lookup(ro, &u.dst); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). * * XXX Is this still true? Do we care? */ if (rt != NULL && (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) ia = ifatoia(rt->rt_ifa); if (ia == NULL) { u_int16_t fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithladdr(sintosa(sin))); sin->sin_port = fport; if (ia == NULL) { /* Find 1st non-loopback AF_INET address */ TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) { if (!(ia->ia_ifp->if_flags & IFF_LOOPBACK)) break; } } if (ia == NULL) { *errorp = EADDRNOTAVAIL; return NULL; } } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(sin->sin_addr.s_addr) && mopts != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = mopts; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; IFP_TO_IA(ifp, ia); /* XXX */ if (ia == 0) { *errorp = EADDRNOTAVAIL; return NULL; } } } if (ia->ia_ifa.ifa_getifa != NULL) { ia = ifatoia((*ia->ia_ifa.ifa_getifa)(&ia->ia_ifa, sintosa(sin))); } #ifdef GETIFA_DEBUG else printf("%s: missing ifa_getifa\n", __func__); #endif return satosin(&ia->ia_addr); }