/* * Copyright (c) 1995 Daniel Widenfalk * Copyright (c) 1994 Christian E. Hopps * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)dma.c */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int flscprint __P((void *auxp, char *)); void flscattach __P((struct device *, struct device *, void *)); int flscmatch __P((struct device *, struct cfdata *, void *)); struct scsi_adapter flsc_scsiswitch = { sfas_scsicmd, sfas_minphys, 0, /* no lun support */ 0, /* no lun support */ }; struct scsi_device flsc_scsidev = { NULL, /* use default error handler */ NULL, /* do not have a start functio */ NULL, /* have no async handler */ NULL, /* Use default done routine */ }; struct cfdriver flsccd = { NULL, "flsc", (cfmatch_t)flscmatch, flscattach, DV_DULL, sizeof(struct flsc_softc), NULL, 0 }; int flsc_intr __P((struct sfas_softc *dev)); int flsc_setup_dma __P((struct sfas_softc *sc, void *ptr, int len, int mode)); int flsc_build_dma_chain __P((struct sfas_softc *sc, struct sfas_dma_chain *chain, void *p, int l)); int flsc_need_bump __P((struct sfas_softc *sc, void *ptr, int len)); void flsc_led __P((struct sfas_softc *sc, int mode)); /* * if we are an Advanced Systems & Software FastlaneZ3 */ int flscmatch(pdp, cdp, auxp) struct device *pdp; struct cfdata *cdp; void *auxp; { struct zbus_args *zap; if (!is_a4000() && !is_a3000()) return(0); zap = auxp; if (zap->manid == 0x2140 && zap->prodid == 11) return(1); return(0); } void flscattach(pdp, dp, auxp) struct device *pdp; struct device *dp; void *auxp; { struct flsc_softc *sc; struct zbus_args *zap; flsc_regmap_p rp; vu_char *fas; zap = auxp; fas = &((vu_char *)zap->va)[0x1000001]; sc = (struct flsc_softc *)dp; rp = &sc->sc_regmap; rp->FAS216.sfas_tc_low = &fas[0x00]; rp->FAS216.sfas_tc_mid = &fas[0x04]; rp->FAS216.sfas_fifo = &fas[0x08]; rp->FAS216.sfas_command = &fas[0x0C]; rp->FAS216.sfas_dest_id = &fas[0x10]; rp->FAS216.sfas_timeout = &fas[0x14]; rp->FAS216.sfas_syncper = &fas[0x18]; rp->FAS216.sfas_syncoff = &fas[0x1C]; rp->FAS216.sfas_config1 = &fas[0x20]; rp->FAS216.sfas_clkconv = &fas[0x24]; rp->FAS216.sfas_test = &fas[0x28]; rp->FAS216.sfas_config2 = &fas[0x2C]; rp->FAS216.sfas_config3 = &fas[0x30]; rp->FAS216.sfas_tc_high = &fas[0x38]; rp->FAS216.sfas_fifo_bot = &fas[0x3C]; rp->hardbits = &fas[0x40]; rp->clear = &fas[0x80]; rp->dmabase = zap->va; sc->sc_softc.sc_fas = (sfas_regmap_p)rp; sc->sc_softc.sc_spec = &sc->sc_specific; sc->sc_softc.sc_led = flsc_led; sc->sc_softc.sc_setup_dma = flsc_setup_dma; sc->sc_softc.sc_build_dma_chain = flsc_build_dma_chain; sc->sc_softc.sc_need_bump = flsc_need_bump; sc->sc_softc.sc_clock_freq = 40; /* FastlaneZ3 runs at 40MHz */ sc->sc_softc.sc_timeout = 250; /* Set default timeout to 250ms */ sc->sc_softc.sc_config_flags = 0; /* No config flags yet */ sc->sc_softc.sc_host_id = 7; /* Should check the jumpers */ sc->sc_specific.portbits = 0xA0 | FLSC_PB_EDI | FLSC_PB_ESI; sc->sc_specific.hardbits = *rp->hardbits; sc->sc_softc.sc_bump_sz = NBPG; sc->sc_softc.sc_bump_pa = 0x0; sfasinitialize((struct sfas_softc *)sc); sc->sc_softc.sc_link.adapter_softc = sc; sc->sc_softc.sc_link.adapter_target = sc->sc_softc.sc_host_id; sc->sc_softc.sc_link.adapter = &flsc_scsiswitch; sc->sc_softc.sc_link.device = &flsc_scsidev; sc->sc_softc.sc_link.openings = 1; sc->sc_softc.sc_isr.isr_intr = flsc_intr; sc->sc_softc.sc_isr.isr_arg = &sc->sc_softc; sc->sc_softc.sc_isr.isr_ipl = 2; add_isr(&sc->sc_softc.sc_isr); /* We don't want interrupt until we're initialized! */ *rp->hardbits = sc->sc_specific.portbits; printf("\n"); /* attach all scsi units on us */ config_found(dp, &sc->sc_softc.sc_link, flscprint); } /* print diag if pnp is NULL else just extra */ int flscprint(auxp, pnp) void *auxp; char *pnp; { if (pnp == NULL) return(UNCONF); return(QUIET); } int flsc_intr(dev) struct sfas_softc *dev; { flsc_regmap_p rp; struct flsc_specific *flspec; int quickints; u_char hb; flspec = dev->sc_spec; rp = (flsc_regmap_p)dev->sc_fas; hb = *rp->hardbits; if (hb & FLSC_HB_IACT) return(0); flspec->hardbits = hb; if ((hb & FLSC_HB_CREQ) && !(hb & FLSC_HB_MINT) && (*rp->FAS216.sfas_status & SFAS_STAT_INTERRUPT_PENDING)) { quickints = 16; do { dev->sc_status = *rp->FAS216.sfas_status; dev->sc_interrupt = *rp->FAS216.sfas_interrupt; if (dev->sc_interrupt & SFAS_INT_RESELECTED) { dev->sc_resel[0] = *rp->FAS216.sfas_fifo; dev->sc_resel[1] = *rp->FAS216.sfas_fifo; } sfasintr(dev); } while((*rp->FAS216.sfas_status & SFAS_STAT_INTERRUPT_PENDING) && --quickints); } /* Reset fastlane interrupt bits */ *rp->hardbits = flspec->portbits & ~FLSC_PB_INT_BITS; *rp->hardbits = flspec->portbits; return(1); } /* Load transfer adress into dma register */ void flsc_set_dma_adr(sc, ptr) struct sfas_softc *sc; void *ptr; { flsc_regmap_p rp; unsigned int *p; unsigned int d; rp = (flsc_regmap_p)sc->sc_fas; d = (unsigned int)ptr; p = (unsigned int *)((d & 0xFFFFFF) + (int)rp->dmabase); *rp->clear=0; *p = d; } /* Set DMA transfer counter */ void flsc_set_dma_tc(sc, len) struct sfas_softc *sc; unsigned int len; { *sc->sc_fas->sfas_tc_low = len; len >>= 8; *sc->sc_fas->sfas_tc_mid = len; len >>= 8; *sc->sc_fas->sfas_tc_high = len; } /* Set DMA mode */ void flsc_set_dma_mode(sc, mode) struct sfas_softc *sc; int mode; { struct flsc_specific *spec; spec = sc->sc_spec; spec->portbits = (spec->portbits & ~FLSC_PB_DMA_BITS) | mode; *((flsc_regmap_p)sc->sc_fas)->hardbits = spec->portbits; } /* Initialize DMA for transfer */ int flsc_setup_dma(sc, ptr, len, mode) struct sfas_softc *sc; void *ptr; int len; int mode; { int retval; retval = 0; switch(mode) { case SFAS_DMA_READ: case SFAS_DMA_WRITE: flsc_set_dma_adr(sc, ptr); if (mode == SFAS_DMA_READ) flsc_set_dma_mode(sc,FLSC_PB_ENABLE_DMA | FLSC_PB_DMA_READ); else flsc_set_dma_mode(sc,FLSC_PB_ENABLE_DMA | FLSC_PB_DMA_WRITE); flsc_set_dma_tc(sc, len); break; case SFAS_DMA_CLEAR: default: flsc_set_dma_mode(sc, FLSC_PB_DISABLE_DMA); flsc_set_dma_adr(sc, 0); retval = (*sc->sc_fas->sfas_tc_high << 16) | (*sc->sc_fas->sfas_tc_mid << 8) | *sc->sc_fas->sfas_tc_low; flsc_set_dma_tc(sc, 0); break; } return(retval); } /* Check if address and len is ok for DMA transfer */ int flsc_need_bump(sc, ptr, len) struct sfas_softc *sc; void *ptr; int len; { int p; p = (int)ptr & 0x03; if (p) { p = 4-p; if (len < 256) p = len; } return(p); } /* Interrupt driven routines */ int flsc_build_dma_chain(sc, chain, p, l) struct sfas_softc *sc; struct sfas_dma_chain *chain; void *p; int l; { vm_offset_t pa, lastpa; char *ptr; int len, prelen, postlen, max_t, n; if (l == 0) return(0); #define set_link(n, p, l, f)\ do { chain[n].ptr = (p); chain[n].len = (l); chain[n++].flg = (f); } while(0) n = 0; if (l < 512) set_link(n, (vm_offset_t)p, l, SFAS_CHAIN_BUMP); else if ((p >= (void *)0xFF000000) #if M68040 && (cpu040 && (p >= (void *)0xFFFC0000)) #endif ) { while(l != 0) { len = ((l > sc->sc_bump_sz) ? sc->sc_bump_sz : l); set_link(n, (vm_offset_t)p, len, SFAS_CHAIN_BUMP); p += len; l -= len; } } else { ptr = p; len = l; pa = kvtop(ptr); prelen = ((int)ptr & 0x03); if (prelen) { prelen = 4-prelen; set_link(n, (vm_offset_t)ptr, prelen, SFAS_CHAIN_BUMP); ptr += prelen; len -= prelen; } lastpa = 0; while(len > 3) { pa = kvtop(ptr); max_t = NBPG - (pa & PGOFSET); if (max_t > len) max_t = len; max_t &= ~3; if (lastpa == pa) sc->sc_chain[n-1].len += max_t; else set_link(n, pa, max_t, SFAS_CHAIN_DMA); lastpa = pa+max_t; ptr += max_t; len -= max_t; } if (len) set_link(n, (vm_offset_t)ptr, len, SFAS_CHAIN_BUMP); } return(n); } /* Turn on/off led */ void flsc_led(sc, mode) struct sfas_softc *sc; int mode; { struct flsc_specific *spec; flsc_regmap_p rp; spec = sc->sc_spec; rp = (flsc_regmap_p)sc->sc_fas; if (mode) { sc->sc_led_status++; spec->portbits |= FLSC_PB_LED; *rp->hardbits = spec->portbits; } else { if (sc->sc_led_status) sc->sc_led_status--; if (!sc->sc_led_status) { spec->portbits &= ~FLSC_PB_LED; *rp->hardbits = spec->portbits; } } }