/* $NetBSD: auich.c,v 1.82 2004/11/17 15:19:30 kent Exp $ */ /*- * Copyright (c) 2000, 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe and by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2000 Michael Shalayeff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * from OpenBSD: ich.c,v 1.3 2000/08/11 06:17:18 mickey Exp */ /* * Copyright (c) 2000 Katsurajima Naoto * Copyright (c) 2001 Cameron Grant * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF * SUCH DAMAGE. * * auich_calibrate() was from FreeBSD: ich.c,v 1.22 2002/06/27 22:36:01 scottl Exp */ /* #define AUICH_DEBUG */ /* * AC'97 audio found on Intel 810/820/440MX chipsets. * http://developer.intel.com/design/chipsets/datashts/290655.htm * http://developer.intel.com/design/chipsets/manuals/298028.htm * ICH3:http://www.intel.com/design/chipsets/datashts/290716.htm * ICH4:http://www.intel.com/design/chipsets/datashts/290744.htm * ICH5:http://www.intel.com/design/chipsets/datashts/252516.htm * AMD8111: * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24674.pdf * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25720.pdf * * TODO: * - Add support for the dedicated microphone input. * * NOTE: * - The 440MX B-stepping at running 100MHz has a hardware erratum. * It causes PCI master abort and hangups until cold reboot. * http://www.intel.com/design/chipsets/specupdt/245051.htm */ #include __KERNEL_RCSID(0, "$NetBSD: auich.c,v 1.82 2004/11/17 15:19:30 kent Exp $"); #include #include #include #include #include #include #include #include #include /* for PAGE_SIZE */ #include #include #include #include #include #include #include #include #include #include struct auich_dma { bus_dmamap_t map; caddr_t addr; bus_dma_segment_t segs[1]; int nsegs; size_t size; struct auich_dma *next; }; #define DMAADDR(p) ((p)->map->dm_segs[0].ds_addr) #define KERNADDR(p) ((void *)((p)->addr)) struct auich_cdata { struct auich_dmalist ic_dmalist_pcmo[ICH_DMALIST_MAX]; struct auich_dmalist ic_dmalist_pcmi[ICH_DMALIST_MAX]; struct auich_dmalist ic_dmalist_mici[ICH_DMALIST_MAX]; }; #define ICH_CDOFF(x) offsetof(struct auich_cdata, x) #define ICH_PCMO_OFF(x) ICH_CDOFF(ic_dmalist_pcmo[(x)]) #define ICH_PCMI_OFF(x) ICH_CDOFF(ic_dmalist_pcmi[(x)]) #define ICH_MICI_OFF(x) ICH_CDOFF(ic_dmalist_mici[(x)]) struct auich_softc { struct device sc_dev; void *sc_ih; struct device *sc_audiodev; audio_device_t sc_audev; pci_chipset_tag_t sc_pc; pcitag_t sc_pt; bus_space_tag_t iot; bus_space_handle_t mix_ioh; bus_size_t mix_size; bus_space_handle_t aud_ioh; bus_size_t aud_size; bus_dma_tag_t dmat; struct ac97_codec_if *codec_if; struct ac97_host_if host_if; /* DMA scatter-gather lists. */ bus_dmamap_t sc_cddmamap; #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr struct auich_cdata *sc_cdata; struct auich_ring { int qptr; struct auich_dmalist *dmalist; u_int32_t start, p, end; int blksize; void (*intr)(void *); void *arg; } pcmo, pcmi, mici; struct auich_dma *sc_dmas; /* SiS 7012 hack */ int sc_sample_shift; int sc_sts_reg; /* 440MX workaround */ int sc_dmamap_flags; /* Power Management */ void *sc_powerhook; int sc_suspend; /* sysctl */ struct sysctllog *sc_log; uint32_t sc_ac97_clock; int sc_ac97_clock_mib; #define AUICH_NFORMATS 3 struct audio_format sc_formats[AUICH_NFORMATS]; struct audio_encoding_set *sc_encodings; }; /* Debug */ #ifdef AUICH_DEBUG #define DPRINTF(l,x) do { if (auich_debug & (l)) printf x; } while(0) int auich_debug = 0xfffe; #define ICH_DEBUG_CODECIO 0x0001 #define ICH_DEBUG_DMA 0x0002 #define ICH_DEBUG_INTR 0x0004 #else #define DPRINTF(x,y) /* nothing */ #endif static int auich_match(struct device *, struct cfdata *, void *); static void auich_attach(struct device *, struct device *, void *); static int auich_detach(struct device *, int); static int auich_activate(struct device *, enum devact); static int auich_intr(void *); CFATTACH_DECL(auich, sizeof(struct auich_softc), auich_match, auich_attach, auich_detach, auich_activate); static int auich_open(void *, int); static void auich_close(void *); static int auich_query_encoding(void *, struct audio_encoding *); static int auich_set_params(void *, int, int, struct audio_params *, struct audio_params *); static int auich_round_blocksize(void *, int); static int auich_halt_output(void *); static int auich_halt_input(void *); static int auich_getdev(void *, struct audio_device *); static int auich_set_port(void *, mixer_ctrl_t *); static int auich_get_port(void *, mixer_ctrl_t *); static int auich_query_devinfo(void *, mixer_devinfo_t *); static void *auich_allocm(void *, int, size_t, struct malloc_type *, int); static void auich_freem(void *, void *, struct malloc_type *); static size_t auich_round_buffersize(void *, int, size_t); static paddr_t auich_mappage(void *, void *, off_t, int); static int auich_get_props(void *); static int auich_trigger_output(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); static int auich_trigger_input(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); static int auich_alloc_cdata(struct auich_softc *); static int auich_allocmem(struct auich_softc *, size_t, size_t, struct auich_dma *); static int auich_freemem(struct auich_softc *, struct auich_dma *); static void auich_powerhook(int, void *); static int auich_set_rate(struct auich_softc *, int, u_long); static int auich_sysctl_verify(SYSCTLFN_ARGS); static void auich_finish_attach(struct device *); static void auich_calibrate(struct auich_softc *); static int auich_attach_codec(void *, struct ac97_codec_if *); static int auich_read_codec(void *, u_int8_t, u_int16_t *); static int auich_write_codec(void *, u_int8_t, u_int16_t); static int auich_reset_codec(void *); const struct audio_hw_if auich_hw_if = { auich_open, auich_close, NULL, /* drain */ auich_query_encoding, auich_set_params, auich_round_blocksize, NULL, /* commit_setting */ NULL, /* init_output */ NULL, /* init_input */ NULL, /* start_output */ NULL, /* start_input */ auich_halt_output, auich_halt_input, NULL, /* speaker_ctl */ auich_getdev, NULL, /* getfd */ auich_set_port, auich_get_port, auich_query_devinfo, auich_allocm, auich_freem, auich_round_buffersize, auich_mappage, auich_get_props, auich_trigger_output, auich_trigger_input, NULL, /* dev_ioctl */ }; #define AUICH_FORMATS_4CH 1 #define AUICH_FORMATS_6CH 2 static const struct audio_format auich_formats[AUICH_NFORMATS] = { {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 2, AUFMT_STEREO, 0, {8000, 48000}}, {NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 4, AUFMT_SURROUND4, 0, {8000, 48000}}, {NULL, AUMODE_PLAY, AUDIO_ENCODING_SLINEAR_LE, 16, 16, 6, AUFMT_DOLBY_5_1, 0, {8000, 48000}}, }; #define PCI_ID_CODE0(v, p) PCI_ID_CODE(PCI_VENDOR_##v, PCI_PRODUCT_##v##_##p) #define PCIID_ICH PCI_ID_CODE0(INTEL, 82801AA_ACA) #define PCIID_ICH0 PCI_ID_CODE0(INTEL, 82801AB_ACA) #define PCIID_ICH2 PCI_ID_CODE0(INTEL, 82801BA_ACA) #define PCIID_440MX PCI_ID_CODE0(INTEL, 82440MX_ACA) #define PCIID_ICH3 PCI_ID_CODE0(INTEL, 82801CA_AC) #define PCIID_ICH4 PCI_ID_CODE0(INTEL, 82801DB_AC) #define PCIID_ICH5 PCI_ID_CODE0(INTEL, 82801EB_AC) #define PCIID_ICH6 PCI_ID_CODE0(INTEL, 82801FB_AC) #define PCIID_SIS7012 PCI_ID_CODE0(SIS, 7012_AC) #define PCIID_NFORCE PCI_ID_CODE0(NVIDIA, NFORCE_MCP_AC) #define PCIID_NFORCE2 PCI_ID_CODE0(NVIDIA, NFORCE2_MCPT_AC) #define PCIID_NFORCE3 PCI_ID_CODE0(NVIDIA, NFORCE3_MCPT_AC) #define PCIID_NFORCE3_250 PCI_ID_CODE0(NVIDIA, NFORCE3_250_MCPT_AC) #define PCIID_AMD768 PCI_ID_CODE0(AMD, PBC768_AC) #define PCIID_AMD8111 PCI_ID_CODE0(AMD, PBC8111_AC) static const struct auich_devtype { pcireg_t id; const char *name; const char *shortname; /* must be less than 11 characters */ } auich_devices[] = { { PCIID_ICH, "i82801AA (ICH) AC-97 Audio", "ICH" }, { PCIID_ICH0, "i82801AB (ICH0) AC-97 Audio", "ICH0" }, { PCIID_ICH2, "i82801BA (ICH2) AC-97 Audio", "ICH2" }, { PCIID_440MX, "i82440MX AC-97 Audio", "440MX" }, { PCIID_ICH3, "i82801CA (ICH3) AC-97 Audio", "ICH3" }, { PCIID_ICH4, "i82801DB/DBM (ICH4/ICH4M) AC-97 Audio", "ICH4" }, { PCIID_ICH5, "i82801EB (ICH5) AC-97 Audio", "ICH5" }, { PCIID_ICH6, "i82801FB (ICH6) AC-97 Audio", "ICH6" }, { PCIID_SIS7012, "SiS 7012 AC-97 Audio", "SiS7012" }, { PCIID_NFORCE, "nForce MCP AC-97 Audio", "nForce" }, { PCIID_NFORCE2, "nForce2 MCP-T AC-97 Audio", "nForce2" }, { PCIID_NFORCE3, "nForce3 MCP-T AC-97 Audio", "nForce3" }, { PCIID_NFORCE3_250, "nForce3 250 MCP-T AC-97 Audio", "nForce3" }, { PCIID_AMD768, "AMD768 AC-97 Audio", "AMD768" }, { PCIID_AMD8111,"AMD8111 AC-97 Audio", "AMD8111" }, { 0, NULL, NULL }, }; static const struct auich_devtype * auich_lookup(struct pci_attach_args *pa) { const struct auich_devtype *d; for (d = auich_devices; d->name != NULL; d++) { if (pa->pa_id == d->id) return (d); } return (NULL); } static int auich_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; if (auich_lookup(pa) != NULL) return (1); return (0); } static void auich_attach(struct device *parent, struct device *self, void *aux) { struct auich_softc *sc = (struct auich_softc *)self; struct pci_attach_args *pa = aux; pci_intr_handle_t ih; pcireg_t v; const char *intrstr; const struct auich_devtype *d; struct sysctlnode *node; int err, node_mib, i; aprint_naive(": Audio controller\n"); d = auich_lookup(pa); if (d == NULL) panic("auich_attach: impossible"); sc->sc_pc = pa->pa_pc; sc->sc_pt = pa->pa_tag; aprint_normal(": %s\n", d->name); if (d->id == PCIID_ICH4 || d->id == PCIID_ICH5 || d->id == PCIID_ICH6) { /* * Use native mode for ICH4/ICH5/ICH6 */ if (pci_mapreg_map(pa, ICH_MMBAR, PCI_MAPREG_TYPE_MEM, 0, &sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) { v = pci_conf_read(pa->pa_pc, pa->pa_tag, ICH_CFG); pci_conf_write(pa->pa_pc, pa->pa_tag, ICH_CFG, v | ICH_CFG_IOSE); if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0, &sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) { aprint_error("%s: can't map codec i/o space\n", sc->sc_dev.dv_xname); return; } } if (pci_mapreg_map(pa, ICH_MBBAR, PCI_MAPREG_TYPE_MEM, 0, &sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) { v = pci_conf_read(pa->pa_pc, pa->pa_tag, ICH_CFG); pci_conf_write(pa->pa_pc, pa->pa_tag, ICH_CFG, v | ICH_CFG_IOSE); if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0, &sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) { aprint_error("%s: can't map device i/o space\n", sc->sc_dev.dv_xname); return; } } } else { if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0, &sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) { aprint_error("%s: can't map codec i/o space\n", sc->sc_dev.dv_xname); return; } if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0, &sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) { aprint_error("%s: can't map device i/o space\n", sc->sc_dev.dv_xname); return; } } sc->dmat = pa->pa_dmat; /* enable bus mastering */ v = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, v | PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_BACKTOBACK_ENABLE); /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error("%s: can't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, auich_intr, sc); if (sc->sc_ih == NULL) { aprint_error("%s: can't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) aprint_normal(" at %s", intrstr); aprint_normal("\n"); return; } aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); snprintf(sc->sc_audev.name, MAX_AUDIO_DEV_LEN, "%s AC97", d->shortname); snprintf(sc->sc_audev.version, MAX_AUDIO_DEV_LEN, "0x%02x", PCI_REVISION(pa->pa_class)); strlcpy(sc->sc_audev.config, sc->sc_dev.dv_xname, MAX_AUDIO_DEV_LEN); /* SiS 7012 needs special handling */ if (d->id == PCIID_SIS7012) { sc->sc_sts_reg = ICH_PICB; sc->sc_sample_shift = 0; } else { sc->sc_sts_reg = ICH_STS; sc->sc_sample_shift = 1; } /* Workaround for a 440MX B-stepping erratum */ sc->sc_dmamap_flags = BUS_DMA_COHERENT; if (d->id == PCIID_440MX) { sc->sc_dmamap_flags |= BUS_DMA_NOCACHE; printf("%s: DMA bug workaround enabled\n", sc->sc_dev.dv_xname); } /* Set up DMA lists. */ sc->pcmo.qptr = sc->pcmi.qptr = sc->mici.qptr = 0; auich_alloc_cdata(sc); DPRINTF(ICH_DEBUG_DMA, ("auich_attach: lists %p %p %p\n", sc->pcmo.dmalist, sc->pcmi.dmalist, sc->mici.dmalist)); sc->host_if.arg = sc; sc->host_if.attach = auich_attach_codec; sc->host_if.read = auich_read_codec; sc->host_if.write = auich_write_codec; sc->host_if.reset = auich_reset_codec; if (ac97_attach(&sc->host_if) != 0) return; /* setup audio_format */ memcpy(sc->sc_formats, auich_formats, sizeof(auich_formats)); if (!AC97_IS_4CH(sc->codec_if)) AUFMT_INVALIDATE(&sc->sc_formats[AUICH_FORMATS_4CH]); if (!AC97_IS_6CH(sc->codec_if)) AUFMT_INVALIDATE(&sc->sc_formats[AUICH_FORMATS_6CH]); if (AC97_IS_FIXED_RATE(sc->codec_if)) { for (i = 0; i < AUICH_NFORMATS; i++) { sc->sc_formats[i].frequency_type = 1; sc->sc_formats[i].frequency[0] = 48000; } } if (0 != auconv_create_encodings(sc->sc_formats, AUICH_NFORMATS, &sc->sc_encodings)) { return; } /* Watch for power change */ sc->sc_suspend = PWR_RESUME; sc->sc_powerhook = powerhook_establish(auich_powerhook, sc); config_interrupts(self, auich_finish_attach); /* sysctl setup */ if (AC97_IS_FIXED_RATE(sc->codec_if)) return; err = sysctl_createv(&sc->sc_log, 0, NULL, NULL, 0, CTLTYPE_NODE, "hw", NULL, NULL, 0, NULL, 0, CTL_HW, CTL_EOL); if (err != 0) goto sysctl_err; err = sysctl_createv(&sc->sc_log, 0, NULL, &node, 0, CTLTYPE_NODE, sc->sc_dev.dv_xname, NULL, NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err != 0) goto sysctl_err; node_mib = node->sysctl_num; /* passing the sc address instead of &sc->sc_ac97_clock */ err = sysctl_createv(&sc->sc_log, 0, NULL, &node, CTLFLAG_READWRITE, CTLTYPE_INT, "ac97rate", SYSCTL_DESCR("AC'97 codec link rate"), auich_sysctl_verify, 0, sc, 0, CTL_HW, node_mib, CTL_CREATE, CTL_EOL); if (err != 0) goto sysctl_err; sc->sc_ac97_clock_mib = node->sysctl_num; return; sysctl_err: printf("%s: failed to add sysctl nodes. (%d)\n", sc->sc_dev.dv_xname, err); return; /* failure of sysctl is not fatal. */ } static int auich_activate(struct device *self, enum devact act) { struct auich_softc *sc; int ret; sc = (struct auich_softc *)self; ret = 0; switch (act) { case DVACT_ACTIVATE: return EOPNOTSUPP; case DVACT_DEACTIVATE: if (sc->sc_audiodev != NULL) ret = config_deactivate(sc->sc_audiodev); return ret; } return EOPNOTSUPP; } static int auich_detach(struct device *self, int flags) { struct auich_softc *sc; sc = (struct auich_softc *)self; /* audio */ if (sc->sc_audiodev != NULL) config_detach(sc->sc_audiodev, flags); /* sysctl */ sysctl_teardown(&sc->sc_log); /* audio_encoding_set */ auconv_delete_encodings(sc->sc_encodings); /* ac97 */ if (sc->codec_if != NULL) sc->codec_if->vtbl->detach(sc->codec_if); /* PCI */ if (sc->sc_ih != NULL) pci_intr_disestablish(sc->sc_pc, sc->sc_ih); if (sc->mix_size != 0) bus_space_unmap(sc->iot, sc->mix_ioh, sc->mix_size); if (sc->aud_size != 0) bus_space_unmap(sc->iot, sc->aud_ioh, sc->aud_size); return 0; } static int auich_sysctl_verify(SYSCTLFN_ARGS) { int error, tmp; struct sysctlnode node; struct auich_softc *sc; node = *rnode; sc = rnode->sysctl_data; tmp = sc->sc_ac97_clock; node.sysctl_data = &tmp; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (node.sysctl_num == sc->sc_ac97_clock_mib) { if (tmp < 48000 || tmp > 96000) return EINVAL; sc->sc_ac97_clock = tmp; } return 0; } static void auich_finish_attach(struct device *self) { struct auich_softc *sc = (void *)self; if (!AC97_IS_FIXED_RATE(sc->codec_if)) auich_calibrate(sc); sc->sc_audiodev = audio_attach_mi(&auich_hw_if, sc, &sc->sc_dev); } #define ICH_CODECIO_INTERVAL 10 static int auich_read_codec(void *v, u_int8_t reg, u_int16_t *val) { struct auich_softc *sc = v; int i; uint32_t status; /* wait for an access semaphore */ for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- && bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1; DELAY(ICH_CODECIO_INTERVAL)); if (i > 0) { *val = bus_space_read_2(sc->iot, sc->mix_ioh, reg); DPRINTF(ICH_DEBUG_CODECIO, ("auich_read_codec(%x, %x)\n", reg, *val)); status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS); if (status & ICH_RCS) { bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, status & ~(ICH_SRI|ICH_PRI|ICH_GSCI)); *val = 0xffff; DPRINTF(ICH_DEBUG_CODECIO, ("%s: read_codec error\n", sc->sc_dev.dv_xname)); return -1; } return 0; } else { DPRINTF(ICH_DEBUG_CODECIO, ("%s: read_codec timeout\n", sc->sc_dev.dv_xname)); return -1; } } static int auich_write_codec(void *v, u_int8_t reg, u_int16_t val) { struct auich_softc *sc = v; int i; DPRINTF(ICH_DEBUG_CODECIO, ("auich_write_codec(%x, %x)\n", reg, val)); /* wait for an access semaphore */ for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- && bus_space_read_1(sc->iot, sc->aud_ioh, ICH_CAS) & 1; DELAY(ICH_CODECIO_INTERVAL)); if (i > 0) { bus_space_write_2(sc->iot, sc->mix_ioh, reg, val); return 0; } else { DPRINTF(ICH_DEBUG_CODECIO, ("%s: write_codec timeout\n", sc->sc_dev.dv_xname)); return -1; } } static int auich_attach_codec(void *v, struct ac97_codec_if *cif) { struct auich_softc *sc = v; sc->codec_if = cif; return 0; } static int auich_reset_codec(void *v) { struct auich_softc *sc = v; int i; uint32_t control, status; control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL); control &= ~(ICH_ACLSO | ICH_PCM246_MASK); control |= (control & ICH_CRESET) ? ICH_WRESET : ICH_CRESET; bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control); for (i = 500000; i >= 0; i--) { status = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS); if (status & (ICH_PCR | ICH_SCR | ICH_S2CR)) break; DELAY(1); } if (i <= 0) { printf("%s: auich_reset_codec: time out\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } #ifdef DEBUG if (status & ICH_SCR) printf("%s: The 2nd codec is ready.\n", sc->sc_dev.dv_xname); if (status & ICH_S2CR) printf("%s: The 3rd codec is ready.\n", sc->sc_dev.dv_xname); #endif return 0; } static int auich_open(void *v, int flags) { return 0; } static void auich_close(void *v) { } static int auich_query_encoding(void *v, struct audio_encoding *aep) { struct auich_softc *sc; sc = (struct auich_softc *)v; return auconv_query_encoding(sc->sc_encodings, aep); } static int auich_set_rate(struct auich_softc *sc, int mode, u_long srate) { int ret; u_long ratetmp; sc->codec_if->vtbl->set_clock(sc->codec_if, sc->sc_ac97_clock); ratetmp = srate; if (mode == AUMODE_RECORD) return sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_LR_ADC_RATE, &ratetmp); ret = sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_FRONT_DAC_RATE, &ratetmp); if (ret) return ret; ratetmp = srate; ret = sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_SURR_DAC_RATE, &ratetmp); if (ret) return ret; ratetmp = srate; ret = sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_LFE_DAC_RATE, &ratetmp); return ret; } static int auich_set_params(void *v, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { struct auich_softc *sc = v; struct audio_params *p; int mode, index; u_int32_t control; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; if (p == NULL) continue; if (p->sample_rate < 8000 || p->sample_rate > 48000) return (EINVAL); index = auconv_set_converter(sc->sc_formats, AUICH_NFORMATS, mode, p, TRUE); if (index < 0) return EINVAL; if (sc->sc_formats[index].frequency_type != 1 && auich_set_rate(sc, mode, p->hw_sample_rate)) return EINVAL; if (mode == AUMODE_PLAY) { control = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GCTRL); control &= ~ICH_PCM246_MASK; if (p->hw_channels == 4) { control |= ICH_PCM4; } else if (p->hw_channels == 6) { control |= ICH_PCM6; } bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GCTRL, control); } } return (0); } static int auich_round_blocksize(void *v, int blk) { return (blk & ~0x3f); /* keep good alignment */ } static int auich_halt_output(void *v) { struct auich_softc *sc = v; DPRINTF(ICH_DEBUG_DMA, ("%s: halt_output\n", sc->sc_dev.dv_xname)); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL, ICH_RR); sc->pcmo.intr = NULL; return (0); } static int auich_halt_input(void *v) { struct auich_softc *sc = v; DPRINTF(ICH_DEBUG_DMA, ("%s: halt_input\n", sc->sc_dev.dv_xname)); /* XXX halt both unless known otherwise */ bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_MICI + ICH_CTRL, ICH_RR); sc->pcmi.intr = NULL; return (0); } static int auich_getdev(void *v, struct audio_device *adp) { struct auich_softc *sc = v; *adp = sc->sc_audev; return (0); } static int auich_set_port(void *v, mixer_ctrl_t *cp) { struct auich_softc *sc = v; return (sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp)); } static int auich_get_port(void *v, mixer_ctrl_t *cp) { struct auich_softc *sc = v; return (sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp)); } static int auich_query_devinfo(void *v, mixer_devinfo_t *dp) { struct auich_softc *sc = v; return (sc->codec_if->vtbl->query_devinfo(sc->codec_if, dp)); } static void * auich_allocm(void *v, int direction, size_t size, struct malloc_type *pool, int flags) { struct auich_softc *sc = v; struct auich_dma *p; int error; if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX)) return (NULL); p = malloc(sizeof(*p), pool, flags|M_ZERO); if (p == NULL) return (NULL); error = auich_allocmem(sc, size, 0, p); if (error) { free(p, pool); return (NULL); } p->next = sc->sc_dmas; sc->sc_dmas = p; return (KERNADDR(p)); } static void auich_freem(void *v, void *ptr, struct malloc_type *pool) { struct auich_softc *sc = v; struct auich_dma *p, **pp; for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) { if (KERNADDR(p) == ptr) { auich_freemem(sc, p); *pp = p->next; free(p, pool); return; } } } static size_t auich_round_buffersize(void *v, int direction, size_t size) { if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX)) size = ICH_DMALIST_MAX * ICH_DMASEG_MAX; return size; } static paddr_t auich_mappage(void *v, void *mem, off_t off, int prot) { struct auich_softc *sc = v; struct auich_dma *p; if (off < 0) return (-1); for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) ; if (!p) return (-1); return (bus_dmamem_mmap(sc->dmat, p->segs, p->nsegs, off, prot, BUS_DMA_WAITOK)); } static int auich_get_props(void *v) { struct auich_softc *sc = v; int props; props = AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; /* * Even if the codec is fixed-rate, set_param() succeeds for any sample * rate because of aurateconv. Applications can't know what rate the * device can process in the case of mmap(). */ if (!AC97_IS_FIXED_RATE(sc->codec_if)) props |= AUDIO_PROP_MMAP; return props; } static int auich_intr(void *v) { struct auich_softc *sc = v; int ret = 0, gsts; #ifdef DIAGNOSTIC int csts; #endif #ifdef DIAGNOSTIC csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG); if (csts & PCI_STATUS_MASTER_ABORT) { printf("auich_intr: PCI master abort\n"); } #endif gsts = bus_space_read_4(sc->iot, sc->aud_ioh, ICH_GSTS); DPRINTF(ICH_DEBUG_INTR, ("auich_intr: gsts=0x%x\n", gsts)); if (gsts & ICH_POINT) { int sts; sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMO + sc->sc_sts_reg); DPRINTF(ICH_DEBUG_INTR, ("auich_intr: osts=0x%x\n", sts)); if (sts & ICH_FIFOE) printf("%s: fifo underrun\n", sc->sc_dev.dv_xname); if (sts & ICH_BCIS) { struct auich_dmalist *q; int blksize, qptr, i; blksize = sc->pcmo.blksize; qptr = sc->pcmo.qptr; i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CIV); while (qptr != i) { q = &sc->pcmo.dmalist[qptr]; q->base = sc->pcmo.p; q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC; DPRINTF(ICH_DEBUG_INTR, ("auich_intr: %p, %p = %x @ 0x%x\n", &sc->pcmo.dmalist[i], q, q->len, q->base)); sc->pcmo.p += blksize; if (sc->pcmo.p >= sc->pcmo.end) sc->pcmo.p = sc->pcmo.start; qptr = (qptr + 1) & ICH_LVI_MASK; if (sc->pcmo.intr) sc->pcmo.intr(sc->pcmo.arg); } sc->pcmo.qptr = qptr; bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_LVI, (qptr - 1) & ICH_LVI_MASK); } /* int ack */ bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMO + sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE)); bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_POINT); ret++; } if (gsts & ICH_PIINT) { int sts; sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_PCMI + sc->sc_sts_reg); DPRINTF(ICH_DEBUG_INTR, ("auich_intr: ists=0x%x\n", sts)); if (sts & ICH_FIFOE) printf("%s: fifo overrun\n", sc->sc_dev.dv_xname); if (sts & ICH_BCIS) { struct auich_dmalist *q; int blksize, qptr, i; blksize = sc->pcmi.blksize; qptr = sc->pcmi.qptr; i = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV); while (qptr != i) { q = &sc->pcmi.dmalist[qptr]; q->base = sc->pcmi.p; q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC; DPRINTF(ICH_DEBUG_INTR, ("auich_intr: %p, %p = %x @ 0x%x\n", &sc->pcmi.dmalist[i], q, q->len, q->base)); sc->pcmi.p += blksize; if (sc->pcmi.p >= sc->pcmi.end) sc->pcmi.p = sc->pcmi.start; qptr = (qptr + 1) & ICH_LVI_MASK; if (sc->pcmi.intr) sc->pcmi.intr(sc->pcmi.arg); } sc->pcmi.qptr = qptr; bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI, (qptr - 1) & ICH_LVI_MASK); } /* int ack */ bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMI + sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE)); bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_PIINT); ret++; } if (gsts & ICH_MIINT) { int sts; sts = bus_space_read_2(sc->iot, sc->aud_ioh, ICH_MICI + sc->sc_sts_reg); DPRINTF(ICH_DEBUG_INTR, ("auich_intr: ists=0x%x\n", sts)); if (sts & ICH_FIFOE) printf("%s: fifo overrun\n", sc->sc_dev.dv_xname); /* TODO mic input DMA */ bus_space_write_4(sc->iot, sc->aud_ioh, ICH_GSTS, ICH_MIINT); } return ret; } static int auich_trigger_output(void *v, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct auich_softc *sc = v; struct auich_dmalist *q; struct auich_dma *p; size_t size; int qptr; #ifdef DIAGNOSTIC int csts; #endif DPRINTF(ICH_DEBUG_DMA, ("auich_trigger_output(%p, %p, %d, %p, %p, %p)\n", start, end, blksize, intr, arg, param)); sc->pcmo.intr = intr; sc->pcmo.arg = arg; #ifdef DIAGNOSTIC csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG); if (csts & PCI_STATUS_MASTER_ABORT) { printf("auich_trigger_output: PCI master abort\n"); } #endif for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) ; if (!p) { printf("auich_trigger_output: bad addr %p\n", start); return (EINVAL); } size = (size_t)((caddr_t)end - (caddr_t)start); /* * The logic behind this is: * setup one buffer to play, then LVI dump out the rest * to the scatter-gather chain. */ sc->pcmo.start = DMAADDR(p); sc->pcmo.p = sc->pcmo.start; sc->pcmo.end = sc->pcmo.start + size; sc->pcmo.blksize = blksize; for (qptr = 0; qptr < ICH_DMALIST_MAX; qptr++) { q = &sc->pcmo.dmalist[qptr]; q->base = sc->pcmo.p; q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC; sc->pcmo.p += blksize; if (sc->pcmo.p >= sc->pcmo.end) sc->pcmo.p = sc->pcmo.start; } sc->pcmo.qptr = qptr = 0; bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_LVI, (qptr - 1) & ICH_LVI_MASK); bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_BDBAR, sc->sc_cddma + ICH_PCMO_OFF(0)); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_CTRL, ICH_IOCE | ICH_FEIE | ICH_RPBM); return (0); } static int auich_trigger_input(v, start, end, blksize, intr, arg, param) void *v; void *start, *end; int blksize; void (*intr)(void *); void *arg; struct audio_params *param; { struct auich_softc *sc = v; struct auich_dmalist *q; struct auich_dma *p; size_t size; int qptr; #ifdef DIAGNOSTIC int csts; #endif DPRINTF(ICH_DEBUG_DMA, ("auich_trigger_input(%p, %p, %d, %p, %p, %p)\n", start, end, blksize, intr, arg, param)); sc->pcmi.intr = intr; sc->pcmi.arg = arg; #ifdef DIAGNOSTIC csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG); if (csts & PCI_STATUS_MASTER_ABORT) { printf("auich_trigger_input: PCI master abort\n"); } #endif for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next) ; if (!p) { printf("auich_trigger_input: bad addr %p\n", start); return (EINVAL); } size = (size_t)((caddr_t)end - (caddr_t)start); /* * The logic behind this is: * setup one buffer to play, then LVI dump out the rest * to the scatter-gather chain. */ sc->pcmi.start = DMAADDR(p); sc->pcmi.p = sc->pcmi.start; sc->pcmi.end = sc->pcmi.start + size; sc->pcmi.blksize = blksize; for (qptr = 0; qptr < ICH_DMALIST_MAX; qptr++) { q = &sc->pcmi.dmalist[qptr]; q->base = sc->pcmi.p; q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC; sc->pcmi.p += blksize; if (sc->pcmi.p >= sc->pcmi.end) sc->pcmi.p = sc->pcmi.start; } sc->pcmi.qptr = qptr = 0; bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI, (qptr - 1) & ICH_LVI_MASK); bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR, sc->sc_cddma + ICH_PCMI_OFF(0)); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_IOCE | ICH_FEIE | ICH_RPBM); return (0); } static int auich_allocmem(struct auich_softc *sc, size_t size, size_t align, struct auich_dma *p) { int error; p->size = size; error = bus_dmamem_alloc(sc->dmat, p->size, align, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT); if (error) return (error); error = bus_dmamem_map(sc->dmat, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT|sc->sc_dmamap_flags); if (error) goto free; error = bus_dmamap_create(sc->dmat, p->size, 1, p->size, 0, BUS_DMA_NOWAIT, &p->map); if (error) goto unmap; error = bus_dmamap_load(sc->dmat, p->map, p->addr, p->size, NULL, BUS_DMA_NOWAIT); if (error) goto destroy; return (0); destroy: bus_dmamap_destroy(sc->dmat, p->map); unmap: bus_dmamem_unmap(sc->dmat, p->addr, p->size); free: bus_dmamem_free(sc->dmat, p->segs, p->nsegs); return (error); } static int auich_freemem(struct auich_softc *sc, struct auich_dma *p) { bus_dmamap_unload(sc->dmat, p->map); bus_dmamap_destroy(sc->dmat, p->map); bus_dmamem_unmap(sc->dmat, p->addr, p->size); bus_dmamem_free(sc->dmat, p->segs, p->nsegs); return (0); } static int auich_alloc_cdata(struct auich_softc *sc) { bus_dma_segment_t seg; int error, rseg; /* * Allocate the control data structure, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->dmat, sizeof(struct auich_cdata), PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) { printf("%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } if ((error = bus_dmamem_map(sc->dmat, &seg, rseg, sizeof(struct auich_cdata), (caddr_t *) &sc->sc_cdata, sc->sc_dmamap_flags)) != 0) { printf("%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->dmat, sizeof(struct auich_cdata), 1, sizeof(struct auich_cdata), 0, 0, &sc->sc_cddmamap)) != 0) { printf("%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->dmat, sc->sc_cddmamap, sc->sc_cdata, sizeof(struct auich_cdata), NULL, 0)) != 0) { printf("%s: unable tp load control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } sc->pcmo.dmalist = sc->sc_cdata->ic_dmalist_pcmo; sc->pcmi.dmalist = sc->sc_cdata->ic_dmalist_pcmi; sc->mici.dmalist = sc->sc_cdata->ic_dmalist_mici; return (0); fail_3: bus_dmamap_destroy(sc->dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->dmat, (caddr_t) sc->sc_cdata, sizeof(struct auich_cdata)); fail_1: bus_dmamem_free(sc->dmat, &seg, rseg); fail_0: return (error); } static void auich_powerhook(int why, void *addr) { struct auich_softc *sc = (struct auich_softc *)addr; switch (why) { case PWR_SUSPEND: case PWR_STANDBY: /* Power down */ DPRINTF(1, ("%s: power down\n", sc->sc_dev.dv_xname)); sc->sc_suspend = why; break; case PWR_RESUME: /* Wake up */ DPRINTF(1, ("%s: power resume\n", sc->sc_dev.dv_xname)); if (sc->sc_suspend == PWR_RESUME) { printf("%s: resume without suspend.\n", sc->sc_dev.dv_xname); sc->sc_suspend = why; return; } sc->sc_suspend = why; auich_reset_codec(sc); DELAY(1000); (sc->codec_if->vtbl->restore_ports)(sc->codec_if); break; case PWR_SOFTSUSPEND: case PWR_SOFTSTANDBY: case PWR_SOFTRESUME: break; } } /* * Calibrate card (some boards are overclocked and need scaling) */ static void auich_calibrate(struct auich_softc *sc) { struct timeval t1, t2; uint8_t ociv, nciv; uint64_t wait_us; uint32_t actual_48k_rate, bytes, ac97rate; void *temp_buffer; struct auich_dma *p; u_long rate; /* * Grab audio from input for fixed interval and compare how * much we actually get with what we expect. Interval needs * to be sufficiently short that no interrupts are * generated. */ /* Force the codec to a known state first. */ sc->codec_if->vtbl->set_clock(sc->codec_if, 48000); rate = sc->sc_ac97_clock = 48000; sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_LR_ADC_RATE, &rate); /* Setup a buffer */ bytes = 64000; temp_buffer = auich_allocm(sc, AUMODE_RECORD, bytes, M_DEVBUF, M_WAITOK); for (p = sc->sc_dmas; p && KERNADDR(p) != temp_buffer; p = p->next) ; if (p == NULL) { printf("auich_calibrate: bad address %p\n", temp_buffer); return; } sc->pcmi.dmalist[0].base = DMAADDR(p); sc->pcmi.dmalist[0].len = (bytes >> sc->sc_sample_shift); /* * our data format is stereo, 16 bit so each sample is 4 bytes. * assuming we get 48000 samples per second, we get 192000 bytes/sec. * we're going to start recording with interrupts disabled and measure * the time taken for one block to complete. we know the block size, * we know the time in microseconds, we calculate the sample rate: * * actual_rate [bps] = bytes / (time [s] * 4) * actual_rate [bps] = (bytes * 1000000) / (time [us] * 4) * actual_rate [Hz] = (bytes * 250000) / time [us] */ /* prepare */ ociv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV); bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR, sc->sc_cddma + ICH_PCMI_OFF(0)); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI, (0 - 1) & ICH_LVI_MASK); /* start */ microtime(&t1); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RPBM); /* wait */ nciv = ociv; do { microtime(&t2); if (t2.tv_sec - t1.tv_sec > 1) break; nciv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV); } while (nciv == ociv); microtime(&t2); /* stop */ bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, 0); /* reset */ DELAY(100); bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR); /* turn time delta into us */ wait_us = ((t2.tv_sec - t1.tv_sec) * 1000000) + t2.tv_usec - t1.tv_usec; auich_freem(sc, temp_buffer, M_DEVBUF); if (nciv == ociv) { printf("%s: ac97 link rate calibration timed out after %" PRIu64 " us\n", sc->sc_dev.dv_xname, wait_us); return; } actual_48k_rate = (bytes * UINT64_C(250000)) / wait_us; if (actual_48k_rate < 50000) ac97rate = 48000; else ac97rate = ((actual_48k_rate + 500) / 1000) * 1000; printf("%s: measured ac97 link rate at %d Hz", sc->sc_dev.dv_xname, actual_48k_rate); if (ac97rate != actual_48k_rate) printf(", will use %d Hz", ac97rate); printf("\n"); sc->sc_ac97_clock = ac97rate; }