/* $NetBSD: jitter.h,v 1.1.1.1 2006/06/11 15:02:26 kardel Exp $ */ /* * ntp_types.h - defines how int32 and u_int32 are treated. * For 64 bit systems like the DEC Alpha, they have to be defined * as int and u_int. * For 32 bit systems, define them as long and u_long */ #define SIZEOF_INT 4 /* * Set up for prototyping */ #ifndef P #if defined(__STDC__) || defined(HAVE_PROTOTYPES) #define P(x) x #else /* not __STDC__ and not HAVE_PROTOTYPES */ #define P(x) () #endif /* not __STDC__ and HAVE_PROTOTYPES */ #endif /* P */ /* * VMS DECC (v4.1), {u_char,u_short,u_long} are only in SOCKET.H, * and u_int isn't defined anywhere */ #if defined(VMS) #include typedef unsigned int u_int; /* * Note: VMS DECC has long == int (even on __alpha), * so the distinction below doesn't matter */ #endif /* VMS */ #if (SIZEOF_INT == 4) # ifndef int32 # define int32 int # endif # ifndef u_int32 # define u_int32 unsigned int # endif #else /* not sizeof(int) == 4 */ # if (SIZEOF_LONG == 4) # else /* not sizeof(long) == 4 */ # ifndef int32 # define int32 long # endif # ifndef u_int32 # define u_int32 unsigned long # endif # endif /* not sizeof(long) == 4 */ # include "Bletch: what's 32 bits on this machine?" #endif /* not sizeof(int) == 4 */ typedef unsigned short associd_t; /* association ID */ typedef u_int32 keyid_t; /* cryptographic key ID */ typedef u_int32 tstamp_t; /* NTP seconds timestamp */ /* * NTP uses two fixed point formats. The first (l_fp) is the "long" * format and is 64 bits long with the decimal between bits 31 and 32. * This is used for time stamps in the NTP packet header (in network * byte order) and for internal computations of offsets (in local host * byte order). We use the same structure for both signed and unsigned * values, which is a big hack but saves rewriting all the operators * twice. Just to confuse this, we also sometimes just carry the * fractional part in calculations, in both signed and unsigned forms. * Anyway, an l_fp looks like: * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Integral Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Fractional Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */ typedef struct { union { u_int32 Xl_ui; int32 Xl_i; } Ul_i; union { u_int32 Xl_uf; int32 Xl_f; } Ul_f; } l_fp; #define l_ui Ul_i.Xl_ui /* unsigned integral part */ #define l_i Ul_i.Xl_i /* signed integral part */ #define l_uf Ul_f.Xl_uf /* unsigned fractional part */ #define l_f Ul_f.Xl_f /* signed fractional part */ /* * Fractional precision (of an l_fp) is actually the number of * bits in a long. */ #define FRACTION_PREC (32) /* * The second fixed point format is 32 bits, with the decimal between * bits 15 and 16. There is a signed version (s_fp) and an unsigned * version (u_fp). This is used to represent synchronizing distance * and synchronizing dispersion in the NTP packet header (again, in * network byte order) and internally to hold both distance and * dispersion values (in local byte order). In network byte order * it looks like: * * 0 1 2 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | Integer Part | Fraction Part | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * */ typedef int32 s_fp; typedef u_int32 u_fp; /* * A unit second in fp format. Actually 2**(half_the_bits_in_a_long) */ #define FP_SECOND (0x10000) /* * Byte order conversions */ #define HTONS_FP(x) (htonl(x)) #define HTONL_FP(h, n) do { (n)->l_ui = htonl((h)->l_ui); \ (n)->l_uf = htonl((h)->l_uf); } while (0) #define NTOHS_FP(x) (ntohl(x)) #define NTOHL_FP(n, h) do { (h)->l_ui = ntohl((n)->l_ui); \ (h)->l_uf = ntohl((n)->l_uf); } while (0) #define NTOHL_MFP(ni, nf, hi, hf) \ do { (hi) = ntohl(ni); (hf) = ntohl(nf); } while (0) #define HTONL_MFP(hi, hf, ni, nf) \ do { (ni) = ntohl(hi); (nf) = ntohl(hf); } while (0) /* funny ones. Converts ts fractions to net order ts */ #define HTONL_UF(uf, nts) \ do { (nts)->l_ui = 0; (nts)->l_uf = htonl(uf); } while (0) #define HTONL_F(f, nts) do { (nts)->l_uf = htonl(f); \ if ((f) & 0x80000000) \ (nts)->l_i = -1; \ else \ (nts)->l_i = 0; \ } while (0) /* * Conversions between the two fixed point types */ #define MFPTOFP(x_i, x_f) (((x_i) >= 0x00010000) ? 0x7fffffff : \ (((x_i) <= -0x00010000) ? 0x80000000 : \ (((x_i)<<16) | (((x_f)>>16)&0xffff)))) #define LFPTOFP(v) MFPTOFP((v)->l_i, (v)->l_f) #define UFPTOLFP(x, v) ((v)->l_ui = (u_fp)(x)>>16, (v)->l_uf = (x)<<16) #define FPTOLFP(x, v) (UFPTOLFP((x), (v)), (x) < 0 ? (v)->l_ui -= 0x10000 : 0) #define MAXLFP(v) ((v)->l_ui = 0x7fffffff, (v)->l_uf = 0xffffffff) #define MINLFP(v) ((v)->l_ui = 0x80000000, (v)->l_uf = 0) /* * Primitive operations on long fixed point values. If these are * reminiscent of assembler op codes it's only because some may * be replaced by inline assembler for particular machines someday. * These are the (kind of inefficient) run-anywhere versions. */ #define M_NEG(v_i, v_f) /* v = -v */ \ do { \ if ((v_f) == 0) \ (v_i) = -((s_fp)(v_i)); \ else { \ (v_f) = -((s_fp)(v_f)); \ (v_i) = ~(v_i); \ } \ } while(0) #define M_NEGM(r_i, r_f, a_i, a_f) /* r = -a */ \ do { \ if ((a_f) == 0) { \ (r_f) = 0; \ (r_i) = -(a_i); \ } else { \ (r_f) = -(a_f); \ (r_i) = ~(a_i); \ } \ } while(0) #define M_ADD(r_i, r_f, a_i, a_f) /* r += a */ \ do { \ register u_int32 lo_tmp; \ register u_int32 hi_tmp; \ \ lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \ hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \ if (lo_tmp & 0x10000) \ hi_tmp++; \ (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \ \ (r_i) += (a_i); \ if (hi_tmp & 0x10000) \ (r_i)++; \ } while (0) #define M_ADD3(r_ovr, r_i, r_f, a_ovr, a_i, a_f) /* r += a, three word */ \ do { \ register u_int32 lo_tmp; \ register u_int32 hi_tmp; \ \ lo_tmp = ((r_f) & 0xffff) + ((a_f) & 0xffff); \ hi_tmp = (((r_f) >> 16) & 0xffff) + (((a_f) >> 16) & 0xffff); \ if (lo_tmp & 0x10000) \ hi_tmp++; \ (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \ \ lo_tmp = ((r_i) & 0xffff) + ((a_i) & 0xffff); \ if (hi_tmp & 0x10000) \ lo_tmp++; \ hi_tmp = (((r_i) >> 16) & 0xffff) + (((a_i) >> 16) & 0xffff); \ if (lo_tmp & 0x10000) \ hi_tmp++; \ (r_i) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \ \ (r_ovr) += (a_ovr); \ if (hi_tmp & 0x10000) \ (r_ovr)++; \ } while (0) #define M_SUB(r_i, r_f, a_i, a_f) /* r -= a */ \ do { \ register u_int32 lo_tmp; \ register u_int32 hi_tmp; \ \ if ((a_f) == 0) { \ (r_i) -= (a_i); \ } else { \ lo_tmp = ((r_f) & 0xffff) + ((-((s_fp)(a_f))) & 0xffff); \ hi_tmp = (((r_f) >> 16) & 0xffff) \ + (((-((s_fp)(a_f))) >> 16) & 0xffff); \ if (lo_tmp & 0x10000) \ hi_tmp++; \ (r_f) = ((hi_tmp & 0xffff) << 16) | (lo_tmp & 0xffff); \ \ (r_i) += ~(a_i); \ if (hi_tmp & 0x10000) \ (r_i)++; \ } \ } while (0) #define M_RSHIFTU(v_i, v_f) /* v >>= 1, v is unsigned */ \ do { \ (v_f) = (u_int32)(v_f) >> 1; \ if ((v_i) & 01) \ (v_f) |= 0x80000000; \ (v_i) = (u_int32)(v_i) >> 1; \ } while (0) #define M_RSHIFT(v_i, v_f) /* v >>= 1, v is signed */ \ do { \ (v_f) = (u_int32)(v_f) >> 1; \ if ((v_i) & 01) \ (v_f) |= 0x80000000; \ if ((v_i) & 0x80000000) \ (v_i) = ((v_i) >> 1) | 0x80000000; \ else \ (v_i) = (v_i) >> 1; \ } while (0) #define M_LSHIFT(v_i, v_f) /* v <<= 1 */ \ do { \ (v_i) <<= 1; \ if ((v_f) & 0x80000000) \ (v_i) |= 0x1; \ (v_f) <<= 1; \ } while (0) #define M_LSHIFT3(v_ovr, v_i, v_f) /* v <<= 1, with overflow */ \ do { \ (v_ovr) <<= 1; \ if ((v_i) & 0x80000000) \ (v_ovr) |= 0x1; \ (v_i) <<= 1; \ if ((v_f) & 0x80000000) \ (v_i) |= 0x1; \ (v_f) <<= 1; \ } while (0) #define M_ADDUF(r_i, r_f, uf) /* r += uf, uf is u_int32 fraction */ \ M_ADD((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */ #define M_SUBUF(r_i, r_f, uf) /* r -= uf, uf is u_int32 fraction */ \ M_SUB((r_i), (r_f), 0, (uf)) /* let optimizer worry about it */ #define M_ADDF(r_i, r_f, f) /* r += f, f is a int32 fraction */ \ do { \ if ((f) > 0) \ M_ADD((r_i), (r_f), 0, (f)); \ else if ((f) < 0) \ M_ADD((r_i), (r_f), (-1), (f));\ } while(0) #define M_ISNEG(v_i, v_f) /* v < 0 */ \ (((v_i) & 0x80000000) != 0) #define M_ISHIS(a_i, a_f, b_i, b_f) /* a >= b unsigned */ \ (((u_int32)(a_i)) > ((u_int32)(b_i)) || \ ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f)))) #define M_ISGEQ(a_i, a_f, b_i, b_f) /* a >= b signed */ \ (((int32)(a_i)) > ((int32)(b_i)) || \ ((a_i) == (b_i) && ((u_int32)(a_f)) >= ((u_int32)(b_f)))) #define M_ISEQU(a_i, a_f, b_i, b_f) /* a == b unsigned */ \ ((a_i) == (b_i) && (a_f) == (b_f)) /* * Operations on the long fp format */ #define L_ADD(r, a) M_ADD((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf) #define L_SUB(r, a) M_SUB((r)->l_ui, (r)->l_uf, (a)->l_ui, (a)->l_uf) #define L_NEG(v) M_NEG((v)->l_ui, (v)->l_uf) #define L_ADDUF(r, uf) M_ADDUF((r)->l_ui, (r)->l_uf, (uf)) #define L_SUBUF(r, uf) M_SUBUF((r)->l_ui, (r)->l_uf, (uf)) #define L_ADDF(r, f) M_ADDF((r)->l_ui, (r)->l_uf, (f)) #define L_RSHIFT(v) M_RSHIFT((v)->l_i, (v)->l_uf) #define L_RSHIFTU(v) M_RSHIFT((v)->l_ui, (v)->l_uf) #define L_LSHIFT(v) M_LSHIFT((v)->l_ui, (v)->l_uf) #define L_CLR(v) ((v)->l_ui = (v)->l_uf = 0) #define L_ISNEG(v) (((v)->l_ui & 0x80000000) != 0) #define L_ISZERO(v) ((v)->l_ui == 0 && (v)->l_uf == 0) #define L_ISHIS(a, b) ((a)->l_ui > (b)->l_ui || \ ((a)->l_ui == (b)->l_ui && (a)->l_uf >= (b)->l_uf)) #define L_ISGEQ(a, b) ((a)->l_i > (b)->l_i || \ ((a)->l_i == (b)->l_i && (a)->l_uf >= (b)->l_uf)) #define L_ISEQU(a, b) M_ISEQU((a)->l_ui, (a)->l_uf, (b)->l_ui, (b)->l_uf) /* * s_fp/double and u_fp/double conversions */ #define FRIC 65536. /* 2^16 as a double */ #define DTOFP(r) ((s_fp)((r) * FRIC)) #define DTOUFP(r) ((u_fp)((r) * FRIC)) #define FPTOD(r) ((double)(r) / FRIC) /* * l_fp/double conversions */ #define FRAC 4294967296. /* 2^32 as a double */ #define M_DTOLFP(d, r_i, r_uf) /* double to l_fp */ \ do { \ register double d_tmp; \ \ d_tmp = (d); \ if (d_tmp < 0) { \ d_tmp = -d_tmp; \ (r_i) = (int32)(d_tmp); \ (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \ M_NEG((r_i), (r_uf)); \ } else { \ (r_i) = (int32)(d_tmp); \ (r_uf) = (u_int32)(((d_tmp) - (double)(r_i)) * FRAC); \ } \ } while (0) #define M_LFPTOD(r_i, r_uf, d) /* l_fp to double */ \ do { \ register l_fp l_tmp; \ \ l_tmp.l_i = (r_i); \ l_tmp.l_f = (r_uf); \ if (l_tmp.l_i < 0) { \ M_NEG(l_tmp.l_i, l_tmp.l_uf); \ (d) = -((double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC); \ } else { \ (d) = (double)l_tmp.l_i + ((double)l_tmp.l_uf) / FRAC; \ } \ } while (0) #define DTOLFP(d, v) M_DTOLFP((d), (v)->l_ui, (v)->l_uf) #define LFPTOD(v, d) M_LFPTOD((v)->l_ui, (v)->l_uf, (d)) /* * Prototypes */ #if 0 extern char * dofptoa P((u_fp, int, short, int)); extern char * dolfptoa P((u_long, u_long, int, short, int)); #endif extern int atolfp P((const char *, l_fp *)); extern int buftvtots P((const char *, l_fp *)); extern char * fptoa P((s_fp, short)); extern char * fptoms P((s_fp, short)); extern int hextolfp P((const char *, l_fp *)); extern void gpstolfp P((int, int, unsigned long, l_fp *)); extern int mstolfp P((const char *, l_fp *)); extern char * prettydate P((l_fp *)); extern char * gmprettydate P((l_fp *)); extern char * uglydate P((l_fp *)); extern void mfp_mul P((int32 *, u_int32 *, int32, u_int32, int32, u_int32)); extern void get_systime P((l_fp *)); extern int step_systime P((double)); extern int adj_systime P((double)); #define lfptoa(_fpv, _ndec) mfptoa((_fpv)->l_ui, (_fpv)->l_uf, (_ndec)) #define lfptoms(_fpv, _ndec) mfptoms((_fpv)->l_ui, (_fpv)->l_uf, (_ndec)) #define ufptoa(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 0) #define ufptoms(_fpv, _ndec) dofptoa((_fpv), 0, (_ndec), 1) #define ulfptoa(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 0) #define ulfptoms(_fpv, _ndec) dolfptoa((_fpv)->l_ui, (_fpv)->l_uf, 0, (_ndec), 1) #define umfptoa(_fpi, _fpf, _ndec) dolfptoa((_fpi), (_fpf), 0, (_ndec), 0)