/* $NetBSD: ifpci2.c,v 1.12 2007/10/19 12:00:50 ad Exp $ */ /* * Copyright (c) 1999 Gary Jennejohn. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * 4. Altered versions must be plainly marked as such, and must not be * misrepresented as being the original software and/or documentation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * *--------------------------------------------------------------------------- * a lot of code was borrowed from i4b_bchan.c and i4b_hscx.c *--------------------------------------------------------------------------- * * Fritz!Card PCI driver * ------------------------------------------------ * * $Id: ifpci2.c,v 1.12 2007/10/19 12:00:50 ad Exp $ * * last edit-date: [Fri Jan 5 11:38:58 2001] * *---------------------------------------------------------------------------*/ #include __KERNEL_RCSID(0, "$NetBSD: ifpci2.c,v 1.12 2007/10/19 12:00:50 ad Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* PCI config map to use (only one in this driver) */ #define FRITZPCI_PORT0_IO_MAPOFF PCI_MAPREG_START+4 #define FRITZPCI_PORT0_MEM_MAPOFF PCI_MAPREG_START static isdn_link_t *avma1pp2_ret_linktab(void *token, int channel); static void avma1pp2_set_link(void *token, int channel, const struct isdn_l4_driver_functions *l4_driver, void *l4_driver_softc); void n_connect_request(struct call_desc *cd); void n_connect_response(struct call_desc *cd, int response, int cause); void n_disconnect_request(struct call_desc *cd, int cause); void n_alert_request(struct call_desc *cd); void n_mgmt_command(struct isdn_l3_driver *drv, int cmd, void *parm); extern const struct isdn_layer1_isdnif_driver isic_std_driver; const struct isdn_l3_driver_functions ifpci2_l3_driver = { avma1pp2_ret_linktab, avma1pp2_set_link, n_connect_request, n_connect_response, n_disconnect_request, n_alert_request, NULL, NULL, n_mgmt_command }; struct ifpci_softc { struct isic_softc sc_isic; /* parent class */ /* PCI-specific goo */ void *sc_ih; /* interrupt handler */ bus_addr_t sc_base; bus_size_t sc_size; pci_chipset_tag_t sc_pc; }; /* prototypes */ static void avma1pp2_disable(struct isic_softc *); static int isic_hscx_fifo(l1_bchan_state_t *chan, struct isic_softc *sc); static int avma1pp2_intr(void*); static void avma1pp2_read_fifo(struct isic_softc *sc, int what, void *buf, size_t size); static void avma1pp2_write_fifo(struct isic_softc *sc, int what, const void *buf, size_t size); static void avma1pp2_write_reg(struct isic_softc *sc, int what, bus_size_t offs, u_int8_t data); static u_int8_t avma1pp2_read_reg(struct isic_softc *sc, int what, bus_size_t offs); static void hscx_write_fifo(int chan, const void *buf, size_t len, struct isic_softc *sc); static void hscx_read_fifo(int chan, void *buf, size_t len, struct isic_softc *sc); static void hscx_write_reg(int chan, u_int val, struct isic_softc *sc); static u_char hscx_read_reg(int chan, struct isic_softc *sc); static u_int hscx_read_reg_int(int chan, struct isic_softc *sc); static void avma1pp2_bchannel_stat(isdn_layer1token, int h_chan, bchan_statistics_t *bsp); static void avma1pp2_map_int(struct ifpci_softc *sc, struct pci_attach_args *pa); static void avma1pp2_bchannel_setup(isdn_layer1token, int h_chan, int bprot, int activate); static void avma1pp2_init_linktab(struct isic_softc *); static int ifpci2_match(struct device *parent, struct cfdata *match, void *aux); static void ifpci2_attach(struct device *parent, struct device *self, void *aux); static int ifpci2_detach(struct device *self, int flags); static int ifpci2_activate(struct device *self, enum devact act); CFATTACH_DECL(ifritz, sizeof(struct ifpci_softc), ifpci2_match, ifpci2_attach, ifpci2_detach, ifpci2_activate); /*---------------------------------------------------------------------------* * AVM PCI Fritz!Card V. 2 special registers *---------------------------------------------------------------------------*/ /* * AVM PCI Status Latch 0 read only bits */ #define ASL_IRQ_ISAC 0x01 /* ISAC interrupt, active high */ #define ASL_IRQ_HSCX 0x02 /* HSX interrupt, active high */ #define ASL_IRQ_TIMER 0x04 /* Timer interrupt, active high */ #define ASL_IRQ_BCHAN ASL_IRQ_HSCX /* actually active high */ #define ASL_IRQ_Pending (ASL_IRQ_ISAC | ASL_IRQ_HSCX | ASL_IRQ_TIMER) /* * AVM PCI Status Latch 0 read only bits */ #define ASL_RESET 0x01 #define ASL_TIMERRESET 0x04 #define ASL_ENABLE_INT 0x08 /* * "HSCX" status bits */ #define HSCX_STAT_RME 0x01 #define HSCX_STAT_RDO 0x10 #define HSCX_STAT_CRCVFRRAB 0x0E #define HSCX_STAT_CRCVFR 0x06 #define HSCX_STAT_RML_MASK 0x3f00 /* * "HSCX" interrupt bits */ #define HSCX_INT_XPR 0x80 #define HSCX_INT_XDU 0x40 #define HSCX_INT_RPR 0x20 #define HSCX_INT_MASK 0xE0 /* * "HSCX" command bits */ #define HSCX_CMD_XRS 0x80 #define HSCX_CMD_XME 0x01 #define HSCX_CMD_RRS 0x20 #define HSCX_CMD_XML_MASK 0x3f00 /* "HSCX" mode bits */ #define HSCX_MODE_ITF_FLG 0x01 #define HSCX_MODE_TRANS 0x02 /* offsets to various registers in the ASIC, evidently */ #define STAT0_OFFSET 0x02 #define HSCX_FIFO1 0x10 #define HSCX_FIFO2 0x18 #define HSCX_STAT1 0x14 #define HSCX_STAT2 0x1c #define ISACSX_INDEX 0x04 #define ISACSX_DATA 0x08 /* * Commands and parameters are sent to the "HSCX" as a long, but the * fields are handled as bytes. * * The long contains: * (prot << 16)|(txl << 8)|cmd * * where: * prot = protocol to use * txl = transmit length * cmd = the command to be executed * * The fields are defined as u_char in struct l1_softc. * * Macro to coalesce the byte fields into a u_int */ #define AVMA1PPSETCMDLONG(f) (f) = ((sc->avma1pp_cmd) | (sc->avma1pp_txl << 8) \ | (sc->avma1pp_prot << 16)) /* * to prevent deactivating the "HSCX" when both channels are active we * define an HSCX_ACTIVE flag which is or'd into the channel's state * flag in avma1pp2_bchannel_setup upon active and cleared upon deactivation. * It is set high to allow room for new flags. */ #define HSCX_AVMA1PP_ACTIVE 0x1000 static int ifpci2_match(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AVM && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AVM_FRITZ_PCI_V2_ISDN) return 1; return 0; } static void ifpci2_attach(struct device *parent, struct device *self, void *aux) { struct ifpci_softc *psc = (void*)self; struct pci_attach_args *pa = aux; struct isic_softc *sc = &psc->sc_isic; struct isdn_l3_driver *drv; u_int v; /* announce */ printf(": Fritz!PCI V2 card\n"); /* initialize sc */ callout_init(&sc->sc_T3_callout, 0); callout_init(&sc->sc_T4_callout, 0); /* setup io mappings */ sc->sc_num_mappings = 1; MALLOC_MAPS(sc); sc->sc_maps[0].size = 0; if (pci_mapreg_map(pa, FRITZPCI_PORT0_IO_MAPOFF, PCI_MAPREG_TYPE_IO, 0, &sc->sc_maps[0].t, &sc->sc_maps[0].h, &psc->sc_base, &psc->sc_size) != 0) { printf("%s: can't map card\n", sc->sc_dev.dv_xname); return; } /* setup access routines */ sc->clearirq = NULL; sc->readreg = avma1pp2_read_reg; sc->writereg = avma1pp2_write_reg; sc->readfifo = avma1pp2_read_fifo; sc->writefifo = avma1pp2_write_fifo; /* setup card type */ sc->sc_cardtyp = CARD_TYPEP_AVMA1PCIV2; /* setup IOM bus type */ sc->sc_bustyp = BUS_TYPE_IOM2; /* this is no IPAC based card */ sc->sc_ipac = 0; sc->sc_bfifolen = HSCX_FIFO_LEN; /* setup interrupt mapping */ avma1pp2_map_int(psc, pa); /* init the card */ v = bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, 0); bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, 0); DELAY(SEC_DELAY/20); /* 50 ms */ bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_RESET); DELAY(SEC_DELAY/20); /* 50 ms */ bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, 0); DELAY(SEC_DELAY/20); /* 50 ms */ bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_TIMERRESET); DELAY(SEC_DELAY/100); /* 10 ms */ bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_ENABLE_INT); DELAY(SEC_DELAY/100); /* 10 ms */ /* setup i4b infrastructure (have to roll our own here) */ /* sc->sc_isac_version = ((ISAC_READ(I_RBCH)) >> 5) & 0x03; */ printf("%s: ISACSX %s\n", sc->sc_dev.dv_xname, "PSB3186"); /* init the ISAC */ isic_isacsx_init(sc); v = ISAC_READ(I_CIR0); /* Leo: reset generates status change */ /* init the "HSCX" */ avma1pp2_bchannel_setup(sc, HSCX_CH_A, BPROT_NONE, 0); avma1pp2_bchannel_setup(sc, HSCX_CH_B, BPROT_NONE, 0); /* can't use the normal B-Channel stuff */ avma1pp2_init_linktab(sc); /* set trace level */ sc->sc_trace = TRACE_OFF; sc->sc_state = ISAC_IDLE; sc->sc_ibuf = NULL; sc->sc_ib = NULL; sc->sc_ilen = 0; sc->sc_obuf = NULL; sc->sc_op = NULL; sc->sc_ol = 0; sc->sc_freeflag = 0; sc->sc_obuf2 = NULL; sc->sc_freeflag2 = 0; /* init higher protocol layers */ drv = isdn_attach_isdnif(sc->sc_dev.dv_xname, "AVM Fritz!PCI V2", &sc->sc_l2, &ifpci2_l3_driver, NBCH_BRI); sc->sc_l3token = drv; sc->sc_l2.driver = &isic_std_driver; sc->sc_l2.l1_token = sc; sc->sc_l2.drv = drv; isdn_layer2_status_ind(&sc->sc_l2, drv, STI_ATTACH, 1); isdn_isdnif_ready(drv->isdnif); } static int ifpci2_detach(struct device *self, int flags) { struct ifpci_softc *psc = (struct ifpci_softc *)self; bus_space_unmap(psc->sc_isic.sc_maps[0].t, psc->sc_isic.sc_maps[0].h, psc->sc_size); bus_space_free(psc->sc_isic.sc_maps[0].t, psc->sc_isic.sc_maps[0].h, psc->sc_size); pci_intr_disestablish(psc->sc_pc, psc->sc_ih); return (0); } int ifpci2_activate(struct device *self, enum devact act) { struct ifpci_softc *psc = (struct ifpci_softc *)self; int error = 0, s; s = splnet(); switch (act) { case DVACT_ACTIVATE: error = EOPNOTSUPP; break; case DVACT_DEACTIVATE: psc->sc_isic.sc_intr_valid = ISIC_INTR_DYING; isdn_layer2_status_ind(&psc->sc_isic.sc_l2, psc->sc_isic.sc_l3token, STI_ATTACH, 0); isdn_detach_isdnif(psc->sc_isic.sc_l3token); psc->sc_isic.sc_l3token = NULL; break; } splx(s); return (error); } /*---------------------------------------------------------------------------* * AVM read fifo routines *---------------------------------------------------------------------------*/ static void avma1pp2_read_fifo(struct isic_softc *sc, int what, void *buf, size_t size) { int i; switch (what) { case ISIC_WHAT_ISAC: bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_INDEX, 0); /* evidently each byte must be read as a long */ for (i = 0; i < size; i++) ((u_int8_t *)buf)[i] = (u_int8_t)bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_DATA); break; case ISIC_WHAT_HSCXA: hscx_read_fifo(0, buf, size, sc); break; case ISIC_WHAT_HSCXB: hscx_read_fifo(1, buf, size, sc); break; } } static void hscx_read_fifo(int chan, void *buf, size_t len, struct isic_softc *sc) { u_int32_t *ip; size_t cnt; int dataoff; dataoff = chan ? HSCX_FIFO2 : HSCX_FIFO1; ip = (u_int32_t *)buf; cnt = 0; /* what if len isn't a multiple of sizeof(int) and buf is */ /* too small ???? */ while (cnt < len) { *ip++ = bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, dataoff); cnt += 4; } } /*---------------------------------------------------------------------------* * AVM write fifo routines *---------------------------------------------------------------------------*/ static void avma1pp2_write_fifo(struct isic_softc *sc, int what, const void *buf, size_t size) { int i; switch (what) { case ISIC_WHAT_ISAC: bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_INDEX, 0); /* evidently each byte must be written as a long */ for (i = 0; i < size; i++) bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_DATA, ((const unsigned char *)buf)[i]); break; case ISIC_WHAT_HSCXA: hscx_write_fifo(0, buf, size, sc); break; case ISIC_WHAT_HSCXB: hscx_write_fifo(1, buf, size, sc); break; } } static void hscx_write_fifo(int chan, const void *buf, size_t len, struct isic_softc *sc) { const u_int32_t *ip; size_t cnt; int dataoff; l1_bchan_state_t *Bchan = &sc->sc_chan[chan]; dataoff = chan ? HSCX_FIFO2 : HSCX_FIFO1; sc->avma1pp_cmd &= ~HSCX_CMD_XME; sc->avma1pp_txl = 0; if (Bchan->out_mbuf_cur == NULL) { if (Bchan->bprot != BPROT_NONE) sc->avma1pp_cmd |= HSCX_CMD_XME; } if (len != sc->sc_bfifolen) sc->avma1pp_txl = len; cnt = 0; /* borrow cnt */ AVMA1PPSETCMDLONG(cnt); hscx_write_reg(chan, cnt, sc); ip = (const u_int32_t *)buf; cnt = 0; while (cnt < len) { bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, dataoff, *ip); ip++; cnt += 4; } } /*---------------------------------------------------------------------------* * AVM write register routines *---------------------------------------------------------------------------*/ static void avma1pp2_write_reg(struct isic_softc *sc, int what, bus_size_t offs, u_int8_t data) { switch (what) { case ISIC_WHAT_ISAC: bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_INDEX, offs); bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_DATA, data); break; case ISIC_WHAT_HSCXA: hscx_write_reg(0, data, sc); break; case ISIC_WHAT_HSCXB: hscx_write_reg(1, data, sc); break; } } static void hscx_write_reg(int chan, u_int val, struct isic_softc *sc) { u_int off; off = (chan == 0 ? HSCX_STAT1 : HSCX_STAT2); bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, off, val); } /*---------------------------------------------------------------------------* * AVM read register routines *---------------------------------------------------------------------------*/ static u_int8_t avma1pp2_read_reg(struct isic_softc *sc, int what, bus_size_t offs) { u_int8_t val; switch (what) { case ISIC_WHAT_ISAC: bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_INDEX, offs); val = (u_int8_t)bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISACSX_DATA); return(val); case ISIC_WHAT_HSCXA: return hscx_read_reg(0, sc); case ISIC_WHAT_HSCXB: return hscx_read_reg(1, sc); } return 0; } static u_char hscx_read_reg(int chan, struct isic_softc *sc) { return(hscx_read_reg_int(chan, sc) & 0xff); } /* * need to be able to return an int because the RBCH is in the 2nd * byte. */ static u_int hscx_read_reg_int(int chan, struct isic_softc *sc) { u_int off; off = (chan == 0 ? HSCX_STAT1 : HSCX_STAT2); return(bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, off)); } /* * this is the real interrupt routine */ static void avma1pp2_hscx_intr(int h_chan, u_int stat, struct isic_softc *sc) { register l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int activity = -1; u_int param = 0; NDBGL1(L1_H_IRQ, "%#x", stat); if((stat & HSCX_INT_XDU) && (chan->bprot != BPROT_NONE))/* xmit data underrun */ { chan->stat_XDU++; NDBGL1(L1_H_XFRERR, "xmit data underrun"); /* abort the transmission */ sc->avma1pp_txl = 0; sc->avma1pp_cmd |= HSCX_CMD_XRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd &= ~HSCX_CMD_XRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); if (chan->out_mbuf_head != NULL) /* don't continue to transmit this buffer */ { i4b_Bfreembuf(chan->out_mbuf_head); chan->out_mbuf_cur = chan->out_mbuf_head = NULL; } } /* * The following is based on examination of the Linux driver. * * The logic here is different than with a "real" HSCX; all kinds * of information (interrupt/status bits) are in stat. * HSCX_INT_RPR indicates a receive interrupt * HSCX_STAT_RDO indicates an overrun condition, abort - * otherwise read the bytes ((stat & HSCX_STZT_RML_MASK) >> 8) * HSCX_STAT_RME indicates end-of-frame and apparently any * CRC/framing errors are only reported in this state. * if ((stat & HSCX_STAT_CRCVFRRAB) != HSCX_STAT_CRCVFR) * CRC/framing error */ if(stat & HSCX_INT_RPR) { register int fifo_data_len; int error = 0; /* always have to read the FIFO, so use a scratch buffer */ u_char scrbuf[HSCX_FIFO_LEN]; if(stat & HSCX_STAT_RDO) { chan->stat_RDO++; NDBGL1(L1_H_XFRERR, "receive data overflow"); error++; } /* * check whether we're receiving data for an inactive B-channel * and discard it. This appears to happen for telephony when * both B-channels are active and one is deactivated. Since * it is not really possible to deactivate the channel in that * case (the ASIC seems to deactivate _both_ channels), the * "deactivated" channel keeps receiving data which can lead * to exhaustion of mbufs and a kernel panic. * * This is a hack, but it's the only solution I can think of * without having the documentation for the ASIC. * GJ - 28 Nov 1999 */ if (chan->state == HSCX_IDLE) { NDBGL1(L1_H_XFRERR, "toss data from %d", h_chan); error++; } fifo_data_len = ((stat & HSCX_STAT_RML_MASK) >> 8); if(fifo_data_len == 0) fifo_data_len = sc->sc_bfifolen; /* ALWAYS read data from HSCX fifo */ HSCX_RDFIFO(h_chan, scrbuf, fifo_data_len); chan->rxcount += fifo_data_len; /* all error conditions checked, now decide and take action */ if(error == 0) { if(chan->in_mbuf == NULL) { if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL) panic("L1 avma1pp2_hscx_intr: RME, cannot allocate mbuf!"); chan->in_cbptr = chan->in_mbuf->m_data; chan->in_len = 0; } if((chan->in_len + fifo_data_len) <= BCH_MAX_DATALEN) { /* OK to copy the data */ memcpy(chan->in_cbptr, scrbuf, fifo_data_len); chan->in_cbptr += fifo_data_len; chan->in_len += fifo_data_len; /* setup mbuf data length */ chan->in_mbuf->m_len = chan->in_len; chan->in_mbuf->m_pkthdr.len = chan->in_len; if(sc->sc_trace & TRACE_B_RX) { struct i4b_trace_hdr hdr; hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_NT; hdr.count = ++sc->sc_trace_bcount; isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data); } if (stat & HSCX_STAT_RME) { if((stat & HSCX_STAT_CRCVFRRAB) == HSCX_STAT_CRCVFR) { (*chan->l4_driver->bch_rx_data_ready)(chan->l4_driver_softc); activity = ACT_RX; /* mark buffer ptr as unused */ chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } else { chan->stat_CRC++; NDBGL1(L1_H_XFRERR, "CRC/RAB"); if (chan->in_mbuf != NULL) { i4b_Bfreembuf(chan->in_mbuf); chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } } } } /* END enough space in mbuf */ else { if(chan->bprot == BPROT_NONE) { /* setup mbuf data length */ chan->in_mbuf->m_len = chan->in_len; chan->in_mbuf->m_pkthdr.len = chan->in_len; if(sc->sc_trace & TRACE_B_RX) { struct i4b_trace_hdr hdr; hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_NT; hdr.count = ++sc->sc_trace_bcount; isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data); } if(!(isdn_bchan_silence(chan->in_mbuf->m_data, chan->in_mbuf->m_len))) activity = ACT_RX; /* move rx'd data to rx queue */ if (!(IF_QFULL(&chan->rx_queue))) { IF_ENQUEUE(&chan->rx_queue, chan->in_mbuf); } else { i4b_Bfreembuf(chan->in_mbuf); } /* signal upper layer that data are available */ (*chan->l4_driver->bch_rx_data_ready)(chan->l4_driver_softc); /* alloc new buffer */ if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL) panic("L1 avma1pp2_hscx_intr: RPF, cannot allocate new mbuf!"); /* setup new data ptr */ chan->in_cbptr = chan->in_mbuf->m_data; /* OK to copy the data */ memcpy(chan->in_cbptr, scrbuf, fifo_data_len); chan->in_cbptr += fifo_data_len; chan->in_len = fifo_data_len; chan->rxcount += fifo_data_len; } else { NDBGL1(L1_H_XFRERR, "RAWHDLC rx buffer overflow in RPF, in_len=%d", chan->in_len); chan->in_cbptr = chan->in_mbuf->m_data; chan->in_len = 0; } } } /* if(error == 0) */ else { /* land here for RDO */ if (chan->in_mbuf != NULL) { i4b_Bfreembuf(chan->in_mbuf); chan->in_mbuf = NULL; chan->in_cbptr = NULL; chan->in_len = 0; } sc->avma1pp_txl = 0; sc->avma1pp_cmd |= HSCX_CMD_RRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd &= ~HSCX_CMD_RRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); } } /* transmit fifo empty, new data can be written to fifo */ if(stat & HSCX_INT_XPR) { /* * for a description what is going on here, please have * a look at isic_bchannel_start() in i4b_bchan.c ! */ NDBGL1(L1_H_IRQ, "%s: chan %d - XPR, Tx Fifo Empty!", sc->sc_dev.dv_xname, h_chan); if(chan->out_mbuf_cur == NULL) /* last frame is transmitted */ { IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head); if(chan->out_mbuf_head == NULL) { chan->state &= ~HSCX_TX_ACTIVE; (*chan->l4_driver->bch_tx_queue_empty)(chan->l4_driver_softc); } else { chan->state |= HSCX_TX_ACTIVE; chan->out_mbuf_cur = chan->out_mbuf_head; chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; if(sc->sc_trace & TRACE_B_TX) { struct i4b_trace_hdr hdr; hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } if(chan->bprot == BPROT_NONE) { if(!(isdn_bchan_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len))) activity = ACT_TX; } else { activity = ACT_TX; } } } isic_hscx_fifo(chan, sc); } /* call timeout handling routine */ if(activity == ACT_RX || activity == ACT_TX) (*chan->l4_driver->bch_activity)(chan->l4_driver_softc, activity); } /* * this is the main routine which checks each channel and then calls * the real interrupt routine as appropriate */ static void avma1pp2_hscx_int_handler(struct isic_softc *sc) { u_int stat; /* has to be a u_int because the byte count is in the 2nd byte */ stat = hscx_read_reg_int(0, sc); if (stat & HSCX_INT_MASK) avma1pp2_hscx_intr(0, stat, sc); stat = hscx_read_reg_int(1, sc); if (stat & HSCX_INT_MASK) avma1pp2_hscx_intr(1, stat, sc); } static void avma1pp2_disable(struct isic_softc *sc) { /* could be still be wrong, but seems to prevent hangs */ bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, 0x00); } static int avma1pp2_intr(void *parm) { struct isic_softc *sc = parm; int ret = 0; #define OURS ret = 1 u_char stat; if (sc->sc_intr_valid != ISIC_INTR_VALID) return 0; stat = bus_space_read_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET); NDBGL1(L1_H_IRQ, "stat %x", stat); /* was there an interrupt from this card ? */ if ((stat & ASL_IRQ_Pending) == 0) return 0; /* no */ /* For slow machines loop as long as an interrupt is active */ for (; ((stat & ASL_IRQ_Pending) != 0) ;) { /* interrupts are high active */ if (stat & ASL_IRQ_TIMER) NDBGL1(L1_H_IRQ, "timer interrupt ???"); if (stat & ASL_IRQ_HSCX) { NDBGL1(L1_H_IRQ, "HSCX"); avma1pp2_hscx_int_handler(sc); } if (stat & ASL_IRQ_ISAC) { u_char isacsx_irq_stat; NDBGL1(L1_H_IRQ, "ISAC"); for(;;) { /* ISTA tells us whether it was a C/I or HDLC int. */ isacsx_irq_stat = ISAC_READ(I_ISTA); if(isacsx_irq_stat) isic_isacsx_irq(sc, isacsx_irq_stat); /* isac handler */ else break; } /* * XXX: Leo: Note that Linux doesn't do this mask * frobbing... */ ISAC_WRITE(I_MASKD, 0xff); ISAC_WRITE(I_MASK, 0xff); DELAY(100); ISAC_WRITE(I_MASKD, isacsx_imaskd); ISAC_WRITE(I_MASK, isacsx_imask); } stat = bus_space_read_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET); NDBGL1(L1_H_IRQ, "stat %x", stat); OURS; } return ret; } static void avma1pp2_map_int(struct ifpci_softc *psc, struct pci_attach_args *pa) { struct isic_softc *sc = &psc->sc_isic; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); avma1pp2_disable(sc); return; } psc->sc_pc = pc; intrstr = pci_intr_string(pc, ih); psc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, avma1pp2_intr, sc); if (psc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); avma1pp2_disable(sc); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); } static void avma1pp2_hscx_init(struct isic_softc *sc, int h_chan, int activate) { l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; u_int param = 0; NDBGL1(L1_BCHAN, "%s: channel=%d, %s", sc->sc_dev.dv_xname, h_chan, activate ? "activate" : "deactivate"); sc->avma1pp_cmd = sc->avma1pp_prot = sc->avma1pp_txl = 0; if (activate == 0) { /* only deactivate if both channels are idle */ if (sc->sc_chan[HSCX_CH_A].state != HSCX_IDLE || sc->sc_chan[HSCX_CH_B].state != HSCX_IDLE) { return; } sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_TRANS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); return; } if(chan->bprot == BPROT_RHDLC) { NDBGL1(L1_BCHAN, "BPROT_RHDLC"); /* HDLC Frames, transparent mode 0 */ sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_ITF_FLG; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd = HSCX_CMD_XRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd = 0; } else { NDBGL1(L1_BCHAN, "BPROT_NONE??"); /* Raw Telephony, extended transparent mode 1 */ sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS; sc->avma1pp_prot = HSCX_MODE_TRANS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd = HSCX_CMD_XRS; AVMA1PPSETCMDLONG(param); hscx_write_reg(h_chan, param, sc); sc->avma1pp_cmd = 0; } } static void avma1pp2_bchannel_setup(isdn_layer1token t, int h_chan, int bprot, int activate) { struct isic_softc *sc = (struct isic_softc*)t; l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s = splnet(); if(activate == 0) { /* deactivation */ chan->state = HSCX_IDLE; avma1pp2_hscx_init(sc, h_chan, activate); } NDBGL1(L1_BCHAN, "%s: channel=%d, %s", sc->sc_dev.dv_xname, h_chan, activate ? "activate" : "deactivate"); /* general part */ chan->channel = h_chan; /* B channel */ chan->bprot = bprot; /* B channel protocol */ chan->state = HSCX_IDLE; /* B channel state */ /* receiver part */ i4b_Bcleanifq(&chan->rx_queue); /* clean rx queue */ chan->rx_queue.ifq_maxlen = IFQ_MAXLEN; chan->rxcount = 0; /* reset rx counter */ i4b_Bfreembuf(chan->in_mbuf); /* clean rx mbuf */ chan->in_mbuf = NULL; /* reset mbuf ptr */ chan->in_cbptr = NULL; /* reset mbuf curr ptr */ chan->in_len = 0; /* reset mbuf data len */ /* transmitter part */ i4b_Bcleanifq(&chan->tx_queue); /* clean tx queue */ chan->tx_queue.ifq_maxlen = IFQ_MAXLEN; chan->txcount = 0; /* reset tx counter */ i4b_Bfreembuf(chan->out_mbuf_head); /* clean tx mbuf */ chan->out_mbuf_head = NULL; /* reset head mbuf ptr */ chan->out_mbuf_cur = NULL; /* reset current mbuf ptr */ chan->out_mbuf_cur_ptr = NULL; /* reset current mbuf data ptr */ chan->out_mbuf_cur_len = 0; /* reset current mbuf data cnt */ if(activate != 0) { /* activation */ avma1pp2_hscx_init(sc, h_chan, activate); chan->state |= HSCX_AVMA1PP_ACTIVE; } splx(s); } static void avma1pp2_bchannel_start(isdn_layer1token t, int h_chan) { struct isic_softc *sc = (struct isic_softc*)t; register l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s; int activity = -1; s = splnet(); /* enter critical section */ if(chan->state & HSCX_TX_ACTIVE) /* already running ? */ { splx(s); return; /* yes, leave */ } /* get next mbuf from queue */ IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head); if(chan->out_mbuf_head == NULL) /* queue empty ? */ { splx(s); /* leave critical section */ return; /* yes, exit */ } /* init current mbuf values */ chan->out_mbuf_cur = chan->out_mbuf_head; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; /* activity indicator for timeout handling */ if(chan->bprot == BPROT_NONE) { if(!(isdn_bchan_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len))) activity = ACT_TX; } else { activity = ACT_TX; } chan->state |= HSCX_TX_ACTIVE; /* we start transmitting */ if(sc->sc_trace & TRACE_B_TX) /* if trace, send mbuf to trace dev */ { struct i4b_trace_hdr hdr; hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } isic_hscx_fifo(chan, sc); /* call timeout handling routine */ if(activity == ACT_RX || activity == ACT_TX) (*chan->l4_driver->bch_activity)(chan->l4_driver_softc, activity); splx(s); } /*---------------------------------------------------------------------------* * return the address of isic drivers linktab *---------------------------------------------------------------------------*/ static isdn_link_t * avma1pp2_ret_linktab(void *token, int channel) { struct l2_softc *l2sc = token; struct isic_softc *sc = l2sc->l1_token; l1_bchan_state_t *chan = &sc->sc_chan[channel]; return(&chan->isdn_linktab); } /*---------------------------------------------------------------------------* * set the driver linktab in the b channel softc *---------------------------------------------------------------------------*/ static void avma1pp2_set_link(void *token, int channel, const struct isdn_l4_driver_functions *l4_driver, void *l4_driver_softc) { struct l2_softc *l2sc = token; struct isic_softc *sc = l2sc->l1_token; l1_bchan_state_t *chan = &sc->sc_chan[channel]; chan->l4_driver = l4_driver; chan->l4_driver_softc = l4_driver_softc; } static const struct isdn_l4_bchannel_functions avma1pp2_l4_bchannel_functions = { avma1pp2_bchannel_setup, avma1pp2_bchannel_start, avma1pp2_bchannel_stat }; /*---------------------------------------------------------------------------* * initialize our local linktab *---------------------------------------------------------------------------*/ static void avma1pp2_init_linktab(struct isic_softc *sc) { l1_bchan_state_t *chan = &sc->sc_chan[HSCX_CH_A]; isdn_link_t *lt = &chan->isdn_linktab; /* local setup */ lt->l1token = sc; lt->channel = HSCX_CH_A; lt->bchannel_driver = &avma1pp2_l4_bchannel_functions; lt->tx_queue = &chan->tx_queue; /* used by non-HDLC data transfers, i.e. telephony drivers */ lt->rx_queue = &chan->rx_queue; /* used by HDLC data transfers, i.e. ipr and isp drivers */ lt->rx_mbuf = &chan->in_mbuf; chan = &sc->sc_chan[HSCX_CH_B]; lt = &chan->isdn_linktab; lt->l1token = sc; lt->channel = HSCX_CH_B; lt->bchannel_driver = &avma1pp2_l4_bchannel_functions; lt->tx_queue = &chan->tx_queue; /* used by non-HDLC data transfers, i.e. telephony drivers */ lt->rx_queue = &chan->rx_queue; /* used by HDLC data transfers, i.e. ipr and isp drivers */ lt->rx_mbuf = &chan->in_mbuf; } /* * use this instead of isic_bchannel_stat in i4b_bchan.c because it's static */ static void avma1pp2_bchannel_stat(isdn_layer1token t, int h_chan, bchan_statistics_t *bsp) { struct isic_softc *sc = (struct isic_softc*)t; l1_bchan_state_t *chan = &sc->sc_chan[h_chan]; int s; s = splnet(); bsp->outbytes = chan->txcount; bsp->inbytes = chan->rxcount; chan->txcount = 0; chan->rxcount = 0; splx(s); } /*---------------------------------------------------------------------------* * fill HSCX fifo with data from the current mbuf * Put this here until it can go into i4b_hscx.c *---------------------------------------------------------------------------*/ static int isic_hscx_fifo(l1_bchan_state_t *chan, struct isic_softc *sc) { int len; int nextlen; int i; int cmd; /* using a scratch buffer simplifies writing to the FIFO */ u_char scrbuf[HSCX_FIFO_LEN]; len = 0; cmd = 0; /* * fill the HSCX tx fifo with data from the current mbuf. if * current mbuf holds less data than HSCX fifo length, try to * get the next mbuf from (a possible) mbuf chain. if there is * not enough data in a single mbuf or in a chain, then this * is the last mbuf and we tell the HSCX that it has to send * CRC and closing flag */ while(chan->out_mbuf_cur && len != sc->sc_bfifolen) { nextlen = min(chan->out_mbuf_cur_len, sc->sc_bfifolen - len); #ifdef NOTDEF printf("i:mh=%p, mc=%p, mcp=%p, mcl=%d l=%d nl=%d # ", chan->out_mbuf_head, chan->out_mbuf_cur, chan->out_mbuf_cur_ptr, chan->out_mbuf_cur_len, len, nextlen); #endif cmd |= HSCX_CMDR_XTF; /* collect the data in the scratch buffer */ for (i = 0; i < nextlen; i++) scrbuf[i + len] = chan->out_mbuf_cur_ptr[i]; len += nextlen; chan->txcount += nextlen; chan->out_mbuf_cur_ptr += nextlen; chan->out_mbuf_cur_len -= nextlen; if(chan->out_mbuf_cur_len == 0) { if((chan->out_mbuf_cur = chan->out_mbuf_cur->m_next) != NULL) { chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data; chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len; if(sc->sc_trace & TRACE_B_TX) { struct i4b_trace_hdr hdr; hdr.type = (chan->channel == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2); hdr.dir = FROM_TE; hdr.count = ++sc->sc_trace_bcount; isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data); } } else { if (chan->bprot != BPROT_NONE) cmd |= HSCX_CMDR_XME; i4b_Bfreembuf(chan->out_mbuf_head); chan->out_mbuf_head = NULL; } } } /* write what we have from the scratch buf to the HSCX fifo */ if (len != 0) HSCX_WRFIFO(chan->channel, scrbuf, len); return(cmd); }