/* * Copyright (c) 1982, 1986, 1989 Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)if.h 7.11 (Berkeley) 3/19/91 * $Id: if.h,v 1.6 1993/12/10 11:45:25 cgd Exp $ */ #ifndef _NET_IF_H_ #define _NET_IF_H_ /* * Structures defining a network interface, providing a packet * transport mechanism (ala level 0 of the PUP protocols). * * Each interface accepts output datagrams of a specified maximum * length, and provides higher level routines with input datagrams * received from its medium. * * Output occurs when the routine if_output is called, with three parameters: * (*ifp->if_output)(ifp, m, dst) * Here m is the mbuf chain to be sent and dst is the destination address. * The output routine encapsulates the supplied datagram if necessary, * and then transmits it on its medium. * * On input, each interface unwraps the data received by it, and either * places it on the input queue of a internetwork datagram routine * and posts the associated software interrupt, or passes the datagram to a raw * packet input routine. * * Routines exist for locating interfaces by their addresses * or for locating a interface on a certain network, as well as more general * routing and gateway routines maintaining information used to locate * interfaces. These routines live in the files if.c and route.c */ #ifndef _TIME_ /* XXX fast fix for SNMP, going away soon */ #ifdef KERNEL #include "../sys/time.h" #else #include #endif #endif /* * Structure defining a queue for a network interface. * * (Would like to call this struct ``if'', but C isn't PL/1.) */ struct ifnet { char *if_name; /* name, e.g. ``en'' or ``lo'' */ short if_unit; /* sub-unit for lower level driver */ short if_mtu; /* maximum transmission unit */ short if_flags; /* up/down, broadcast, etc. */ short if_timer; /* time 'til if_watchdog called */ int if_metric; /* routing metric (external only) */ struct ifaddr *if_addrlist; /* linked list of addresses per if */ struct ifqueue { struct mbuf *ifq_head; struct mbuf *ifq_tail; int ifq_len; int ifq_maxlen; int ifq_drops; } if_snd; /* output queue */ /* procedure handles */ int (*if_init)(); /* init routine */ int (*if_output)(); /* output routine (enqueue) */ int (*if_start)(); /* initiate output routine */ int (*if_done)(); /* output complete routine */ int (*if_ioctl)(); /* ioctl routine */ int (*if_reset)(); /* bus reset routine */ int (*if_watchdog)(); /* timer routine */ /* generic interface statistics */ int if_ipackets; /* packets received on interface */ int if_ierrors; /* input errors on interface */ int if_opackets; /* packets sent on interface */ int if_oerrors; /* output errors on interface */ int if_collisions; /* collisions on csma interfaces */ /* end statistics */ struct ifnet *if_next; u_char if_type; /* ethernet, tokenring, etc */ u_char if_addrlen; /* media address length */ u_char if_hdrlen; /* media header length */ u_char if_index; /* numeric abbreviation for this if */ /* more statistics here to avoid recompiling netstat */ struct timeval if_lastchange; /* last updated */ int if_ibytes; /* total number of octets received */ int if_obytes; /* total number of octets sent */ int if_imcasts; /* packets received via multicast */ int if_omcasts; /* packets sent via multicast */ int if_iqdrops; /* dropped on input, this interface */ int if_noproto; /* destined for unsupported protocol */ int if_baudrate; /* linespeed */ int if_pcount; /* number of promiscuous listeners */ }; #define IFF_UP 0x1 /* interface is up */ #define IFF_BROADCAST 0x2 /* broadcast address valid */ #define IFF_DEBUG 0x4 /* turn on debugging */ #define IFF_LOOPBACK 0x8 /* is a loopback net */ #define IFF_POINTOPOINT 0x10 /* interface is point-to-point link */ #define IFF_NOTRAILERS 0x20 /* avoid use of trailers */ #define IFF_RUNNING 0x40 /* resources allocated */ #define IFF_NOARP 0x80 /* no address resolution protocol */ /* next two not supported now, but reserved: */ #define IFF_PROMISC 0x100 /* receive all packets */ #define IFF_ALLMULTI 0x200 /* receive all multicast packets */ #define IFF_OACTIVE 0x400 /* transmission in progress */ #define IFF_SIMPLEX 0x800 /* can't hear own transmissions */ #define IFF_LINK0 0x1000 /* per link layer defined bit */ #define IFF_LINK1 0x2000 /* per link layer defined bit */ #define IFF_LINK2 0x4000 /* per link layer defined bit */ #define IFF_MULTICAST 0x8000 /* supports multicast */ /* flags set internally only: */ #define IFF_CANTCHANGE \ (IFF_BROADCAST|IFF_POINTOPOINT|IFF_RUNNING|IFF_OACTIVE| \ IFF_SIMPLEX|IFF_MULTICAST) /* * Output queues (ifp->if_snd) and internetwork datagram level (pup level 1) * input routines have queues of messages stored on ifqueue structures * (defined above). Entries are added to and deleted from these structures * by these macros, which should be called with ipl raised to splimp(). */ #define IF_QFULL(ifq) ((ifq)->ifq_len >= (ifq)->ifq_maxlen) #define IF_DROP(ifq) ((ifq)->ifq_drops++) #define IF_ENQUEUE(ifq, m) { \ (m)->m_nextpkt = 0; \ if ((ifq)->ifq_tail == 0) \ (ifq)->ifq_head = m; \ else \ (ifq)->ifq_tail->m_nextpkt = m; \ (ifq)->ifq_tail = m; \ (ifq)->ifq_len++; \ } #define IF_PREPEND(ifq, m) { \ (m)->m_nextpkt = (ifq)->ifq_head; \ if ((ifq)->ifq_tail == 0) \ (ifq)->ifq_tail = (m); \ (ifq)->ifq_head = (m); \ (ifq)->ifq_len++; \ } #define IF_DEQUEUE(ifq, m) { \ (m) = (ifq)->ifq_head; \ if (m) { \ if (((ifq)->ifq_head = (m)->m_nextpkt) == 0) \ (ifq)->ifq_tail = 0; \ (m)->m_nextpkt = 0; \ (ifq)->ifq_len--; \ } \ } #define IFQ_MAXLEN 50 #define IFNET_SLOWHZ 1 /* granularity is 1 second */ /* * The ifaddr structure contains information about one address * of an interface. They are maintained by the different address families, * are allocated and attached when an address is set, and are linked * together so all addresses for an interface can be located. */ struct ifaddr { struct sockaddr *ifa_addr; /* address of interface */ struct sockaddr *ifa_dstaddr; /* other end of p-to-p link */ #define ifa_broadaddr ifa_dstaddr /* broadcast address interface */ struct sockaddr *ifa_netmask; /* used to determine subnet */ struct ifnet *ifa_ifp; /* back-pointer to interface */ struct ifaddr *ifa_next; /* next address for interface */ int (*ifa_rtrequest)(); /* check or clean routes (+ or -)'d */ struct rtentry *ifa_rt; /* ??? for ROUTETOIF */ u_short ifa_flags; /* mostly rt_flags for cloning */ u_short ifa_llinfolen; /* extra to malloc for link info */ }; #define IFA_ROUTE RTF_UP /* route installed */ /* * Interface request structure used for socket * ioctl's. All interface ioctl's must have parameter * definitions which begin with ifr_name. The * remainder may be interface specific. */ struct ifreq { #define IFNAMSIZ 16 char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; short ifru_flags; int ifru_metric; caddr_t ifru_data; } ifr_ifru; #define ifr_addr ifr_ifru.ifru_addr /* address */ #define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link */ #define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */ #define ifr_flags ifr_ifru.ifru_flags /* flags */ #define ifr_metric ifr_ifru.ifru_metric /* metric */ #define ifr_data ifr_ifru.ifru_data /* for use by interface */ }; struct ifaliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr ifra_addr; struct sockaddr ifra_broadaddr; struct sockaddr ifra_mask; }; /* * Structure used in SIOCGIFCONF request. * Used to retrieve interface configuration * for machine (useful for programs which * must know all networks accessible). */ struct ifconf { int ifc_len; /* size of associated buffer */ union { caddr_t ifcu_buf; struct ifreq *ifcu_req; } ifc_ifcu; #define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */ #define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */ }; #ifdef KERNEL #include "../net/if_arp.h" struct ifqueue rawintrq; /* raw packet input queue */ struct ifnet *ifnet; struct ifaddr *ifa_ifwithaddr(), *ifa_ifwithnet(); struct ifaddr *ifa_ifwithdstaddr(); #else KERNEL #include #endif KERNEL #endif /* !_NET_IF_H_ */