/* $NetBSD: zs.c,v 1.18 2003/07/15 02:59:26 lukem Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. */ /* * news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c */ #include __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.18 2003/07/15 02:59:26 lukem Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include int zs_getc(void *); void zs_putc(void *, int); /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); /* * The news68k machines use three different clocks for the ZS chips. */ #define NPCLK 3 #define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */ #define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */ #define PCLK2 (9600 * 384) /* external: 3.6864MHz */ static const u_int pclk[NPCLK] = { PCLK0, PCLK1, PCLK2, }; /* * Define interrupt levels. */ #define ZSHARD_PRI 5 #define ZS_IVECT 64 #define ZS_DELAY() /* delay(2) */ /* The layout of this is hardware-dependent (padding, order). */ struct zschan { volatile u_char zc_csr; /* ctrl,status, and indirect access */ volatile u_char zc_data; /* data */ }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; static u_char zs_sir; /* Default speed for all channels */ static int zs_defspeed = 9600; /* console status from cninit */ static struct zs_chanstate zs_conschan_store; static struct zs_chanstate *zs_conschan; static struct zschan *zc_cons; static u_char zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ ZS_IVECT, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE, }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match(struct device *, struct cfdata *, void *); static void zs_attach(struct device *, struct device *, void *); static int zs_print(void *, const char *name); CFATTACH_DECL(zsc, sizeof(struct zsc_softc), zs_match, zs_attach, NULL, NULL); extern struct cfdriver zsc_cd; static int zshard(void *); void zssoft(void *); #if 0 static int zs_get_speed(struct zs_chanstate *); #endif /* * Is the zs chip present? */ static int zs_match(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { struct hb_attach_args *ha = aux; u_int addr; if (strcmp(ha->ha_name, "zsc")) return 0; /* XXX no default address */ if (ha->ha_address == (u_int)-1) return 0; addr = IIOV(ha->ha_address); /* This returns -1 on a fault (bus error). */ if (badaddr((void *)addr, 1)) return 0; return 1; } /* * Attach a found zs. */ static void zs_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct zsc_softc *zsc = (void *) self; struct cfdata *cf = self->dv_cfdata; struct hb_attach_args *ha = aux; struct zsc_attach_args zsc_args; struct zsdevice *zs; struct zschan *zc; struct zs_chanstate *cs; int s, channel, clk; zs = (void *)IIOV(ha->ha_address); clk = cf->cf_flags; if (clk < 0 || clk >= NPCLK) clk = 0; printf("\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; cs = &zsc->zsc_cs_store[channel]; simple_lock_init(&cs->cs_lock); zsc->zsc_cs[channel] = cs; zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b; if (ha->ha_vect != -1) zs_init_reg[2] = ha->ha_vect; if (zc == zc_cons) { memcpy(cs, zs_conschan, sizeof(struct zs_chanstate)); zs_conschan = cs; zsc_args.hwflags = ZS_HWFLAG_CONSOLE; } else { cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); cs->cs_defspeed = zs_defspeed; zsc_args.hwflags = 0; } cs->cs_defcflag = zs_def_cflag; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = pclk[clk] / 16; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { s = splhigh(); zs_write_reg(cs, 9, 0); splx(s); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(self, (void *)&zsc_args, zs_print)) { /* No sub-driver. Just reset it. */ u_char reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splhigh(); zs_write_reg(cs, 9, reset); splx(s); } } /* * Now safe to install interrupt handlers. */ hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; s = splhigh(); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); splx(s); if (zs_sir == 0) zs_sir = allocate_sir(zssoft, zsc); } static int zs_print(aux, name) void *aux; const char *name; { struct zsc_attach_args *args = aux; if (name != NULL) aprint_normal("%s: ", name); if (args->channel != -1) aprint_normal(" channel %d", args->channel); return UNCONF; } /* * For news68k-port, we don't use autovectored interrupt. * We do not need to look at all of the zs chips. */ static int zshard(arg) void *arg; { struct zsc_softc *zsc = arg; int rval; rval = zsc_intr_hard(zsc); /* We are at splzs here, so no need to lock. */ if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) { setsoftint(zs_sir); } return rval; } /* * Shared among the all chips. We have to look at all of them. */ void zssoft(arg) void *arg; { struct zsc_softc *zsc; int s, unit; /* Make sure we call the tty layer at spltty. */ s = spltty(); for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = zsc_cd.cd_devs[unit]; if (zsc == NULL) continue; (void) zsc_intr_soft(zsc); } splx(s); } /* * Compute the current baud rate given a ZS channel. */ #if 0 static int zs_get_speed(cs) struct zs_chanstate *cs; { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return TCONST_TO_BPS(cs->cs_brg_clk, tconst); } #endif /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(cs, bps) struct zs_chanstate *cs; int bps; /* bits per second */ { int tconst, real_bps; if (bps == 0) return 0; #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return EINVAL; /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ if (real_bps != bps) return EINVAL; cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return 0; } int zs_set_modes(cs, cflag) struct zs_chanstate *cs; int cflag; /* bits per second */ { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } splx(s); /* Caller will stuff the pending registers. */ return 0; } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(cs, reg) struct zs_chanstate *cs; u_char reg; { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(cs, reg, val) struct zs_chanstate *cs; u_char reg, val; { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(cs) struct zs_chanstate *cs; { u_char val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_data(cs) struct zs_chanstate *cs; { u_char val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(cs, val) struct zs_chanstate *cs; u_char val; { *cs->cs_reg_data = val; ZS_DELAY(); } void zs_abort(cs) struct zs_chanstate *cs; { #ifdef DDB Debugger(); #endif } /* * Polled input char. */ int zs_getc(arg) void *arg; { struct zs_chanstate *cs = arg; int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = *cs->cs_reg_data; ZS_DELAY(); splx(s); return c; } /* * Polled output char. */ void zs_putc(arg, c) void *arg; int c; { struct zs_chanstate *cs = arg; int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); *cs->cs_reg_data = c; ZS_DELAY(); splx(s); } /*****************************************************************/ static void zscnprobe(struct consdev *); static void zscninit(struct consdev *); static int zscngetc(dev_t); static void zscnputc(dev_t, int); struct consdev consdev_zs = { zscnprobe, zscninit, zscngetc, zscnputc, nullcnpollc, NULL, NULL, NULL, NODEV, CN_DEAD }; static void zscnprobe(cn) struct consdev *cn; { } static void zscninit(cn) struct consdev *cn; { struct zs_chanstate *cs; extern const struct cdevsw zstty_cdevsw; extern int tty00_is_console; extern volatile u_char *sccport0a; cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0); if (tty00_is_console) cn->cn_pri = CN_REMOTE; else cn->cn_pri = CN_NORMAL; zc_cons = (struct zschan *)sccport0a; /* XXX */ zs_conschan = cs = &zs_conschan_store; /* Setup temporary chanstate. */ cs->cs_reg_csr = &zc_cons->zc_csr; cs->cs_reg_data = &zc_cons->zc_data; /* Initialize the pending registers. */ memcpy(cs->cs_preg, zs_init_reg, 16); cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS; cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */ cs->cs_preg[13] = 0; cs->cs_defspeed = 9600; /* Clear the master interrupt enable. */ zs_write_reg(cs, 9, 0); /* Reset the whole SCC chip. */ zs_write_reg(cs, 9, ZSWR9_HARD_RESET); /* Copy "pending" to "current" and H/W */ zs_loadchannelregs(cs); } static int zscngetc(dev) dev_t dev; { return zs_getc((void *)zs_conschan); } static void zscnputc(dev, c) dev_t dev; int c; { zs_putc((void *)zs_conschan, c); }