/* $NetBSD: subr_pool.c,v 1.185 2010/05/12 08:11:16 rmind Exp $ */ /*- * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010 * The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace * Simulation Facility, NASA Ames Research Center, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.185 2010/05/12 08:11:16 rmind Exp $"); #include "opt_ddb.h" #include "opt_pool.h" #include "opt_poollog.h" #include "opt_lockdebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Pool resource management utility. * * Memory is allocated in pages which are split into pieces according to * the pool item size. Each page is kept on one of three lists in the * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', * for empty, full and partially-full pages respectively. The individual * pool items are on a linked list headed by `ph_itemlist' in each page * header. The memory for building the page list is either taken from * the allocated pages themselves (for small pool items) or taken from * an internal pool of page headers (`phpool'). */ /* List of all pools */ static TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); /* Private pool for page header structures */ #define PHPOOL_MAX 8 static struct pool phpool[PHPOOL_MAX]; #define PHPOOL_FREELIST_NELEM(idx) \ (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) #ifdef POOL_SUBPAGE /* Pool of subpages for use by normal pools. */ static struct pool psppool; #endif static SLIST_HEAD(, pool_allocator) pa_deferinitq = SLIST_HEAD_INITIALIZER(pa_deferinitq); static void *pool_page_alloc_meta(struct pool *, int); static void pool_page_free_meta(struct pool *, void *); /* allocator for pool metadata */ struct pool_allocator pool_allocator_meta = { pool_page_alloc_meta, pool_page_free_meta, .pa_backingmapptr = &kmem_map, }; /* # of seconds to retain page after last use */ int pool_inactive_time = 10; /* Next candidate for drainage (see pool_drain()) */ static struct pool *drainpp; /* This lock protects both pool_head and drainpp. */ static kmutex_t pool_head_lock; static kcondvar_t pool_busy; /* This lock protects initialization of a potentially shared pool allocator */ static kmutex_t pool_allocator_lock; typedef uint32_t pool_item_bitmap_t; #define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) #define BITMAP_MASK (BITMAP_SIZE - 1) struct pool_item_header { /* Page headers */ LIST_ENTRY(pool_item_header) ph_pagelist; /* pool page list */ SPLAY_ENTRY(pool_item_header) ph_node; /* Off-page page headers */ void * ph_page; /* this page's address */ uint32_t ph_time; /* last referenced */ uint16_t ph_nmissing; /* # of chunks in use */ uint16_t ph_off; /* start offset in page */ union { /* !PR_NOTOUCH */ struct { LIST_HEAD(, pool_item) phu_itemlist; /* chunk list for this page */ } phu_normal; /* PR_NOTOUCH */ struct { pool_item_bitmap_t phu_bitmap[1]; } phu_notouch; } ph_u; }; #define ph_itemlist ph_u.phu_normal.phu_itemlist #define ph_bitmap ph_u.phu_notouch.phu_bitmap struct pool_item { #ifdef DIAGNOSTIC u_int pi_magic; #endif #define PI_MAGIC 0xdeaddeadU /* Other entries use only this list entry */ LIST_ENTRY(pool_item) pi_list; }; #define POOL_NEEDS_CATCHUP(pp) \ ((pp)->pr_nitems < (pp)->pr_minitems) /* * Pool cache management. * * Pool caches provide a way for constructed objects to be cached by the * pool subsystem. This can lead to performance improvements by avoiding * needless object construction/destruction; it is deferred until absolutely * necessary. * * Caches are grouped into cache groups. Each cache group references up * to PCG_NUMOBJECTS constructed objects. When a cache allocates an * object from the pool, it calls the object's constructor and places it * into a cache group. When a cache group frees an object back to the * pool, it first calls the object's destructor. This allows the object * to persist in constructed form while freed to the cache. * * The pool references each cache, so that when a pool is drained by the * pagedaemon, it can drain each individual cache as well. Each time a * cache is drained, the most idle cache group is freed to the pool in * its entirety. * * Pool caches are layed on top of pools. By layering them, we can avoid * the complexity of cache management for pools which would not benefit * from it. */ static struct pool pcg_normal_pool; static struct pool pcg_large_pool; static struct pool cache_pool; static struct pool cache_cpu_pool; /* List of all caches. */ TAILQ_HEAD(,pool_cache) pool_cache_head = TAILQ_HEAD_INITIALIZER(pool_cache_head); int pool_cache_disable; /* global disable for caching */ static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ static bool pool_cache_put_slow(pool_cache_cpu_t *, int, void *); static bool pool_cache_get_slow(pool_cache_cpu_t *, int, void **, paddr_t *, int); static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); static void pool_cache_invalidate_cpu(pool_cache_t, u_int); static void pool_cache_xcall(pool_cache_t); static int pool_catchup(struct pool *); static void pool_prime_page(struct pool *, void *, struct pool_item_header *); static void pool_update_curpage(struct pool *); static int pool_grow(struct pool *, int); static void *pool_allocator_alloc(struct pool *, int); static void pool_allocator_free(struct pool *, void *); static void pool_print_pagelist(struct pool *, struct pool_pagelist *, void (*)(const char *, ...)); static void pool_print1(struct pool *, const char *, void (*)(const char *, ...)); static int pool_chk_page(struct pool *, const char *, struct pool_item_header *); /* * Pool log entry. An array of these is allocated in pool_init(). */ struct pool_log { const char *pl_file; long pl_line; int pl_action; #define PRLOG_GET 1 #define PRLOG_PUT 2 void *pl_addr; }; #ifdef POOL_DIAGNOSTIC /* Number of entries in pool log buffers */ #ifndef POOL_LOGSIZE #define POOL_LOGSIZE 10 #endif int pool_logsize = POOL_LOGSIZE; static inline void pr_log(struct pool *pp, void *v, int action, const char *file, long line) { int n; struct pool_log *pl; if ((pp->pr_roflags & PR_LOGGING) == 0) return; if (pp->pr_log == NULL) { if (kmem_map != NULL) pp->pr_log = malloc( pool_logsize * sizeof(struct pool_log), M_TEMP, M_NOWAIT | M_ZERO); if (pp->pr_log == NULL) return; pp->pr_curlogentry = 0; pp->pr_logsize = pool_logsize; } /* * Fill in the current entry. Wrap around and overwrite * the oldest entry if necessary. */ n = pp->pr_curlogentry; pl = &pp->pr_log[n]; pl->pl_file = file; pl->pl_line = line; pl->pl_action = action; pl->pl_addr = v; if (++n >= pp->pr_logsize) n = 0; pp->pr_curlogentry = n; } static void pr_printlog(struct pool *pp, struct pool_item *pi, void (*pr)(const char *, ...)) { int i = pp->pr_logsize; int n = pp->pr_curlogentry; if (pp->pr_log == NULL) return; /* * Print all entries in this pool's log. */ while (i-- > 0) { struct pool_log *pl = &pp->pr_log[n]; if (pl->pl_action != 0) { if (pi == NULL || pi == pl->pl_addr) { (*pr)("\tlog entry %d:\n", i); (*pr)("\t\taction = %s, addr = %p\n", pl->pl_action == PRLOG_GET ? "get" : "put", pl->pl_addr); (*pr)("\t\tfile: %s at line %lu\n", pl->pl_file, pl->pl_line); } } if (++n >= pp->pr_logsize) n = 0; } } static inline void pr_enter(struct pool *pp, const char *file, long line) { if (__predict_false(pp->pr_entered_file != NULL)) { printf("pool %s: reentrancy at file %s line %ld\n", pp->pr_wchan, file, line); printf(" previous entry at file %s line %ld\n", pp->pr_entered_file, pp->pr_entered_line); panic("pr_enter"); } pp->pr_entered_file = file; pp->pr_entered_line = line; } static inline void pr_leave(struct pool *pp) { if (__predict_false(pp->pr_entered_file == NULL)) { printf("pool %s not entered?\n", pp->pr_wchan); panic("pr_leave"); } pp->pr_entered_file = NULL; pp->pr_entered_line = 0; } static inline void pr_enter_check(struct pool *pp, void (*pr)(const char *, ...)) { if (pp->pr_entered_file != NULL) (*pr)("\n\tcurrently entered from file %s line %ld\n", pp->pr_entered_file, pp->pr_entered_line); } #else #define pr_log(pp, v, action, file, line) #define pr_printlog(pp, pi, pr) #define pr_enter(pp, file, line) #define pr_leave(pp) #define pr_enter_check(pp, pr) #endif /* POOL_DIAGNOSTIC */ static inline unsigned int pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph, const void *v) { const char *cp = v; unsigned int idx; KASSERT(pp->pr_roflags & PR_NOTOUCH); idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; KASSERT(idx < pp->pr_itemsperpage); return idx; } static inline void pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph, void *obj) { unsigned int idx = pr_item_notouch_index(pp, ph, obj); pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); KASSERT((*bitmap & mask) == 0); *bitmap |= mask; } static inline void * pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph) { pool_item_bitmap_t *bitmap = ph->ph_bitmap; unsigned int idx; int i; for (i = 0; ; i++) { int bit; KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); bit = ffs32(bitmap[i]); if (bit) { pool_item_bitmap_t mask; bit--; idx = (i * BITMAP_SIZE) + bit; mask = 1 << bit; KASSERT((bitmap[i] & mask) != 0); bitmap[i] &= ~mask; break; } } KASSERT(idx < pp->pr_itemsperpage); return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; } static inline void pr_item_notouch_init(const struct pool *pp, struct pool_item_header *ph) { pool_item_bitmap_t *bitmap = ph->ph_bitmap; const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); int i; for (i = 0; i < n; i++) { bitmap[i] = (pool_item_bitmap_t)-1; } } static inline int phtree_compare(struct pool_item_header *a, struct pool_item_header *b) { /* * we consider pool_item_header with smaller ph_page bigger. * (this unnatural ordering is for the benefit of pr_find_pagehead.) */ if (a->ph_page < b->ph_page) return (1); else if (a->ph_page > b->ph_page) return (-1); else return (0); } SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); static inline struct pool_item_header * pr_find_pagehead_noalign(struct pool *pp, void *v) { struct pool_item_header *ph, tmp; tmp.ph_page = (void *)(uintptr_t)v; ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); if (ph == NULL) { ph = SPLAY_ROOT(&pp->pr_phtree); if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); } KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); } return ph; } /* * Return the pool page header based on item address. */ static inline struct pool_item_header * pr_find_pagehead(struct pool *pp, void *v) { struct pool_item_header *ph, tmp; if ((pp->pr_roflags & PR_NOALIGN) != 0) { ph = pr_find_pagehead_noalign(pp, v); } else { void *page = (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); if ((pp->pr_roflags & PR_PHINPAGE) != 0) { ph = (struct pool_item_header *)((char *)page + pp->pr_phoffset); } else { tmp.ph_page = page; ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); } } KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || ((char *)ph->ph_page <= (char *)v && (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); return ph; } static void pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) { struct pool_item_header *ph; while ((ph = LIST_FIRST(pq)) != NULL) { LIST_REMOVE(ph, ph_pagelist); pool_allocator_free(pp, ph->ph_page); if ((pp->pr_roflags & PR_PHINPAGE) == 0) pool_put(pp->pr_phpool, ph); } } /* * Remove a page from the pool. */ static inline void pr_rmpage(struct pool *pp, struct pool_item_header *ph, struct pool_pagelist *pq) { KASSERT(mutex_owned(&pp->pr_lock)); /* * If the page was idle, decrement the idle page count. */ if (ph->ph_nmissing == 0) { #ifdef DIAGNOSTIC if (pp->pr_nidle == 0) panic("pr_rmpage: nidle inconsistent"); if (pp->pr_nitems < pp->pr_itemsperpage) panic("pr_rmpage: nitems inconsistent"); #endif pp->pr_nidle--; } pp->pr_nitems -= pp->pr_itemsperpage; /* * Unlink the page from the pool and queue it for release. */ LIST_REMOVE(ph, ph_pagelist); if ((pp->pr_roflags & PR_PHINPAGE) == 0) SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); LIST_INSERT_HEAD(pq, ph, ph_pagelist); pp->pr_npages--; pp->pr_npagefree++; pool_update_curpage(pp); } static bool pa_starved_p(struct pool_allocator *pa) { if (pa->pa_backingmap != NULL) { return vm_map_starved_p(pa->pa_backingmap); } return false; } static int pool_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) { struct pool *pp = obj; struct pool_allocator *pa = pp->pr_alloc; KASSERT(&pp->pr_reclaimerentry == ce); pool_reclaim(pp); if (!pa_starved_p(pa)) { return CALLBACK_CHAIN_ABORT; } return CALLBACK_CHAIN_CONTINUE; } static void pool_reclaim_register(struct pool *pp) { struct vm_map *map = pp->pr_alloc->pa_backingmap; int s; if (map == NULL) { return; } s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ callback_register(&vm_map_to_kernel(map)->vmk_reclaim_callback, &pp->pr_reclaimerentry, pp, pool_reclaim_callback); splx(s); #ifdef DIAGNOSTIC /* Diagnostic drain attempt. */ uvm_km_va_drain(map, 0); #endif } static void pool_reclaim_unregister(struct pool *pp) { struct vm_map *map = pp->pr_alloc->pa_backingmap; int s; if (map == NULL) { return; } s = splvm(); /* not necessary for INTRSAFE maps, but don't care. */ callback_unregister(&vm_map_to_kernel(map)->vmk_reclaim_callback, &pp->pr_reclaimerentry); splx(s); } static void pa_reclaim_register(struct pool_allocator *pa) { struct vm_map *map = *pa->pa_backingmapptr; struct pool *pp; KASSERT(pa->pa_backingmap == NULL); if (map == NULL) { SLIST_INSERT_HEAD(&pa_deferinitq, pa, pa_q); return; } pa->pa_backingmap = map; TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) { pool_reclaim_register(pp); } } /* * Initialize all the pools listed in the "pools" link set. */ void pool_subsystem_init(void) { struct pool_allocator *pa; mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&pool_busy, "poolbusy"); while ((pa = SLIST_FIRST(&pa_deferinitq)) != NULL) { KASSERT(pa->pa_backingmapptr != NULL); KASSERT(*pa->pa_backingmapptr != NULL); SLIST_REMOVE_HEAD(&pa_deferinitq, pa_q); pa_reclaim_register(pa); } pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 0, 0, "pcache", &pool_allocator_nointr, IPL_NONE); pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 0, 0, "pcachecpu", &pool_allocator_nointr, IPL_NONE); } /* * Initialize the given pool resource structure. * * We export this routine to allow other kernel parts to declare * static pools that must be initialized before malloc() is available. */ void pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, const char *wchan, struct pool_allocator *palloc, int ipl) { struct pool *pp1; size_t trysize, phsize; int off, slack; #ifdef DEBUG /* * Check that the pool hasn't already been initialised and * added to the list of all pools. */ TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { if (pp == pp1) panic("pool_init: pool %s already initialised", wchan); } #endif #ifdef POOL_DIAGNOSTIC /* * Always log if POOL_DIAGNOSTIC is defined. */ if (pool_logsize != 0) flags |= PR_LOGGING; #endif if (palloc == NULL) palloc = &pool_allocator_kmem; #ifdef POOL_SUBPAGE if (size > palloc->pa_pagesz) { if (palloc == &pool_allocator_kmem) palloc = &pool_allocator_kmem_fullpage; else if (palloc == &pool_allocator_nointr) palloc = &pool_allocator_nointr_fullpage; } #endif /* POOL_SUBPAGE */ if (!cold) mutex_enter(&pool_allocator_lock); if (palloc->pa_refcnt++ == 0) { if (palloc->pa_pagesz == 0) palloc->pa_pagesz = PAGE_SIZE; TAILQ_INIT(&palloc->pa_list); mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; if (palloc->pa_backingmapptr != NULL) { pa_reclaim_register(palloc); } } if (!cold) mutex_exit(&pool_allocator_lock); if (align == 0) align = ALIGN(1); if ((flags & PR_NOTOUCH) == 0 && size < sizeof(struct pool_item)) size = sizeof(struct pool_item); size = roundup(size, align); #ifdef DIAGNOSTIC if (size > palloc->pa_pagesz) panic("pool_init: pool item size (%zu) too large", size); #endif /* * Initialize the pool structure. */ LIST_INIT(&pp->pr_emptypages); LIST_INIT(&pp->pr_fullpages); LIST_INIT(&pp->pr_partpages); pp->pr_cache = NULL; pp->pr_curpage = NULL; pp->pr_npages = 0; pp->pr_minitems = 0; pp->pr_minpages = 0; pp->pr_maxpages = UINT_MAX; pp->pr_roflags = flags; pp->pr_flags = 0; pp->pr_size = size; pp->pr_align = align; pp->pr_wchan = wchan; pp->pr_alloc = palloc; pp->pr_nitems = 0; pp->pr_nout = 0; pp->pr_hardlimit = UINT_MAX; pp->pr_hardlimit_warning = NULL; pp->pr_hardlimit_ratecap.tv_sec = 0; pp->pr_hardlimit_ratecap.tv_usec = 0; pp->pr_hardlimit_warning_last.tv_sec = 0; pp->pr_hardlimit_warning_last.tv_usec = 0; pp->pr_drain_hook = NULL; pp->pr_drain_hook_arg = NULL; pp->pr_freecheck = NULL; /* * Decide whether to put the page header off page to avoid * wasting too large a part of the page or too big item. * Off-page page headers go on a hash table, so we can match * a returned item with its header based on the page address. * We use 1/16 of the page size and about 8 times of the item * size as the threshold (XXX: tune) * * However, we'll put the header into the page if we can put * it without wasting any items. * * Silently enforce `0 <= ioff < align'. */ pp->pr_itemoffset = ioff %= align; /* See the comment below about reserved bytes. */ trysize = palloc->pa_pagesz - ((align - ioff) % align); phsize = ALIGN(sizeof(struct pool_item_header)); if ((pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) == 0 && (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) || trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) { /* Use the end of the page for the page header */ pp->pr_roflags |= PR_PHINPAGE; pp->pr_phoffset = off = palloc->pa_pagesz - phsize; } else { /* The page header will be taken from our page header pool */ pp->pr_phoffset = 0; off = palloc->pa_pagesz; SPLAY_INIT(&pp->pr_phtree); } /* * Alignment is to take place at `ioff' within the item. This means * we must reserve up to `align - 1' bytes on the page to allow * appropriate positioning of each item. */ pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size; KASSERT(pp->pr_itemsperpage != 0); if ((pp->pr_roflags & PR_NOTOUCH)) { int idx; for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); idx++) { /* nothing */ } if (idx >= PHPOOL_MAX) { /* * if you see this panic, consider to tweak * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. */ panic("%s: too large itemsperpage(%d) for PR_NOTOUCH", pp->pr_wchan, pp->pr_itemsperpage); } pp->pr_phpool = &phpool[idx]; } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) { pp->pr_phpool = &phpool[0]; } #if defined(DIAGNOSTIC) else { pp->pr_phpool = NULL; } #endif /* * Use the slack between the chunks and the page header * for "cache coloring". */ slack = off - pp->pr_itemsperpage * pp->pr_size; pp->pr_maxcolor = (slack / align) * align; pp->pr_curcolor = 0; pp->pr_nget = 0; pp->pr_nfail = 0; pp->pr_nput = 0; pp->pr_npagealloc = 0; pp->pr_npagefree = 0; pp->pr_hiwat = 0; pp->pr_nidle = 0; pp->pr_refcnt = 0; pp->pr_log = NULL; pp->pr_entered_file = NULL; pp->pr_entered_line = 0; mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); cv_init(&pp->pr_cv, wchan); pp->pr_ipl = ipl; /* * Initialize private page header pool and cache magazine pool if we * haven't done so yet. * XXX LOCKING. */ if (phpool[0].pr_size == 0) { int idx; for (idx = 0; idx < PHPOOL_MAX; idx++) { static char phpool_names[PHPOOL_MAX][6+1+6+1]; int nelem; size_t sz; nelem = PHPOOL_FREELIST_NELEM(idx); snprintf(phpool_names[idx], sizeof(phpool_names[idx]), "phpool-%d", nelem); sz = sizeof(struct pool_item_header); if (nelem) { sz = offsetof(struct pool_item_header, ph_bitmap[howmany(nelem, BITMAP_SIZE)]); } pool_init(&phpool[idx], sz, 0, 0, 0, phpool_names[idx], &pool_allocator_meta, IPL_VM); } #ifdef POOL_SUBPAGE pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0, PR_RECURSIVE, "psppool", &pool_allocator_meta, IPL_VM); #endif size = sizeof(pcg_t) + (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, "pcgnormal", &pool_allocator_meta, IPL_VM); size = sizeof(pcg_t) + (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, "pcglarge", &pool_allocator_meta, IPL_VM); } /* Insert into the list of all pools. */ if (!cold) mutex_enter(&pool_head_lock); TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) break; } if (pp1 == NULL) TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); else TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); if (!cold) mutex_exit(&pool_head_lock); /* Insert this into the list of pools using this allocator. */ if (!cold) mutex_enter(&palloc->pa_lock); TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); if (!cold) mutex_exit(&palloc->pa_lock); pool_reclaim_register(pp); } /* * De-commision a pool resource. */ void pool_destroy(struct pool *pp) { struct pool_pagelist pq; struct pool_item_header *ph; /* Remove from global pool list */ mutex_enter(&pool_head_lock); while (pp->pr_refcnt != 0) cv_wait(&pool_busy, &pool_head_lock); TAILQ_REMOVE(&pool_head, pp, pr_poollist); if (drainpp == pp) drainpp = NULL; mutex_exit(&pool_head_lock); /* Remove this pool from its allocator's list of pools. */ pool_reclaim_unregister(pp); mutex_enter(&pp->pr_alloc->pa_lock); TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); mutex_exit(&pp->pr_alloc->pa_lock); mutex_enter(&pool_allocator_lock); if (--pp->pr_alloc->pa_refcnt == 0) mutex_destroy(&pp->pr_alloc->pa_lock); mutex_exit(&pool_allocator_lock); mutex_enter(&pp->pr_lock); KASSERT(pp->pr_cache == NULL); #ifdef DIAGNOSTIC if (pp->pr_nout != 0) { pr_printlog(pp, NULL, printf); panic("pool_destroy: pool busy: still out: %u", pp->pr_nout); } #endif KASSERT(LIST_EMPTY(&pp->pr_fullpages)); KASSERT(LIST_EMPTY(&pp->pr_partpages)); /* Remove all pages */ LIST_INIT(&pq); while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) pr_rmpage(pp, ph, &pq); mutex_exit(&pp->pr_lock); pr_pagelist_free(pp, &pq); #ifdef POOL_DIAGNOSTIC if (pp->pr_log != NULL) { free(pp->pr_log, M_TEMP); pp->pr_log = NULL; } #endif cv_destroy(&pp->pr_cv); mutex_destroy(&pp->pr_lock); } void pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) { /* XXX no locking -- must be used just after pool_init() */ #ifdef DIAGNOSTIC if (pp->pr_drain_hook != NULL) panic("pool_set_drain_hook(%s): already set", pp->pr_wchan); #endif pp->pr_drain_hook = fn; pp->pr_drain_hook_arg = arg; } static struct pool_item_header * pool_alloc_item_header(struct pool *pp, void *storage, int flags) { struct pool_item_header *ph; if ((pp->pr_roflags & PR_PHINPAGE) != 0) ph = (struct pool_item_header *) ((char *)storage + pp->pr_phoffset); else ph = pool_get(pp->pr_phpool, flags); return (ph); } /* * Grab an item from the pool. */ void * #ifdef POOL_DIAGNOSTIC _pool_get(struct pool *pp, int flags, const char *file, long line) #else pool_get(struct pool *pp, int flags) #endif { struct pool_item *pi; struct pool_item_header *ph; void *v; #ifdef DIAGNOSTIC if (pp->pr_itemsperpage == 0) panic("pool_get: pool '%s': pr_itemsperpage is zero, " "pool not initialized?", pp->pr_wchan); if ((cpu_intr_p() || cpu_softintr_p()) && pp->pr_ipl == IPL_NONE && !cold && panicstr == NULL) panic("pool '%s' is IPL_NONE, but called from " "interrupt context\n", pp->pr_wchan); #endif if (flags & PR_WAITOK) { ASSERT_SLEEPABLE(); } mutex_enter(&pp->pr_lock); pr_enter(pp, file, line); startover: /* * Check to see if we've reached the hard limit. If we have, * and we can wait, then wait until an item has been returned to * the pool. */ #ifdef DIAGNOSTIC if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) { pr_leave(pp); mutex_exit(&pp->pr_lock); panic("pool_get: %s: crossed hard limit", pp->pr_wchan); } #endif if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { if (pp->pr_drain_hook != NULL) { /* * Since the drain hook is going to free things * back to the pool, unlock, call the hook, re-lock, * and check the hardlimit condition again. */ pr_leave(pp); mutex_exit(&pp->pr_lock); (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); mutex_enter(&pp->pr_lock); pr_enter(pp, file, line); if (pp->pr_nout < pp->pr_hardlimit) goto startover; } if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { /* * XXX: A warning isn't logged in this case. Should * it be? */ pp->pr_flags |= PR_WANTED; pr_leave(pp); cv_wait(&pp->pr_cv, &pp->pr_lock); pr_enter(pp, file, line); goto startover; } /* * Log a message that the hard limit has been hit. */ if (pp->pr_hardlimit_warning != NULL && ratecheck(&pp->pr_hardlimit_warning_last, &pp->pr_hardlimit_ratecap)) log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); pp->pr_nfail++; pr_leave(pp); mutex_exit(&pp->pr_lock); return (NULL); } /* * The convention we use is that if `curpage' is not NULL, then * it points at a non-empty bucket. In particular, `curpage' * never points at a page header which has PR_PHINPAGE set and * has no items in its bucket. */ if ((ph = pp->pr_curpage) == NULL) { int error; #ifdef DIAGNOSTIC if (pp->pr_nitems != 0) { mutex_exit(&pp->pr_lock); printf("pool_get: %s: curpage NULL, nitems %u\n", pp->pr_wchan, pp->pr_nitems); panic("pool_get: nitems inconsistent"); } #endif /* * Call the back-end page allocator for more memory. * Release the pool lock, as the back-end page allocator * may block. */ pr_leave(pp); error = pool_grow(pp, flags); pr_enter(pp, file, line); if (error != 0) { /* * We were unable to allocate a page or item * header, but we released the lock during * allocation, so perhaps items were freed * back to the pool. Check for this case. */ if (pp->pr_curpage != NULL) goto startover; pp->pr_nfail++; pr_leave(pp); mutex_exit(&pp->pr_lock); return (NULL); } /* Start the allocation process over. */ goto startover; } if (pp->pr_roflags & PR_NOTOUCH) { #ifdef DIAGNOSTIC if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) { pr_leave(pp); mutex_exit(&pp->pr_lock); panic("pool_get: %s: page empty", pp->pr_wchan); } #endif v = pr_item_notouch_get(pp, ph); #ifdef POOL_DIAGNOSTIC pr_log(pp, v, PRLOG_GET, file, line); #endif } else { v = pi = LIST_FIRST(&ph->ph_itemlist); if (__predict_false(v == NULL)) { pr_leave(pp); mutex_exit(&pp->pr_lock); panic("pool_get: %s: page empty", pp->pr_wchan); } #ifdef DIAGNOSTIC if (__predict_false(pp->pr_nitems == 0)) { pr_leave(pp); mutex_exit(&pp->pr_lock); printf("pool_get: %s: items on itemlist, nitems %u\n", pp->pr_wchan, pp->pr_nitems); panic("pool_get: nitems inconsistent"); } #endif #ifdef POOL_DIAGNOSTIC pr_log(pp, v, PRLOG_GET, file, line); #endif #ifdef DIAGNOSTIC if (__predict_false(pi->pi_magic != PI_MAGIC)) { pr_printlog(pp, pi, printf); panic("pool_get(%s): free list modified: " "magic=%x; page %p; item addr %p\n", pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); } #endif /* * Remove from item list. */ LIST_REMOVE(pi, pi_list); } pp->pr_nitems--; pp->pr_nout++; if (ph->ph_nmissing == 0) { #ifdef DIAGNOSTIC if (__predict_false(pp->pr_nidle == 0)) panic("pool_get: nidle inconsistent"); #endif pp->pr_nidle--; /* * This page was previously empty. Move it to the list of * partially-full pages. This page is already curpage. */ LIST_REMOVE(ph, ph_pagelist); LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); } ph->ph_nmissing++; if (ph->ph_nmissing == pp->pr_itemsperpage) { #ifdef DIAGNOSTIC if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 && !LIST_EMPTY(&ph->ph_itemlist))) { pr_leave(pp); mutex_exit(&pp->pr_lock); panic("pool_get: %s: nmissing inconsistent", pp->pr_wchan); } #endif /* * This page is now full. Move it to the full list * and select a new current page. */ LIST_REMOVE(ph, ph_pagelist); LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); pool_update_curpage(pp); } pp->pr_nget++; pr_leave(pp); /* * If we have a low water mark and we are now below that low * water mark, add more items to the pool. */ if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { /* * XXX: Should we log a warning? Should we set up a timeout * to try again in a second or so? The latter could break * a caller's assumptions about interrupt protection, etc. */ } mutex_exit(&pp->pr_lock); KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0); FREECHECK_OUT(&pp->pr_freecheck, v); return (v); } /* * Internal version of pool_put(). Pool is already locked/entered. */ static void pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) { struct pool_item *pi = v; struct pool_item_header *ph; KASSERT(mutex_owned(&pp->pr_lock)); FREECHECK_IN(&pp->pr_freecheck, v); LOCKDEBUG_MEM_CHECK(v, pp->pr_size); #ifdef DIAGNOSTIC if (__predict_false(pp->pr_nout == 0)) { printf("pool %s: putting with none out\n", pp->pr_wchan); panic("pool_put"); } #endif if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { pr_printlog(pp, NULL, printf); panic("pool_put: %s: page header missing", pp->pr_wchan); } /* * Return to item list. */ if (pp->pr_roflags & PR_NOTOUCH) { pr_item_notouch_put(pp, ph, v); } else { #ifdef DIAGNOSTIC pi->pi_magic = PI_MAGIC; #endif #ifdef DEBUG { int i, *ip = v; for (i = 0; i < pp->pr_size / sizeof(int); i++) { *ip++ = PI_MAGIC; } } #endif LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); } KDASSERT(ph->ph_nmissing != 0); ph->ph_nmissing--; pp->pr_nput++; pp->pr_nitems++; pp->pr_nout--; /* Cancel "pool empty" condition if it exists */ if (pp->pr_curpage == NULL) pp->pr_curpage = ph; if (pp->pr_flags & PR_WANTED) { pp->pr_flags &= ~PR_WANTED; cv_broadcast(&pp->pr_cv); } /* * If this page is now empty, do one of two things: * * (1) If we have more pages than the page high water mark, * free the page back to the system. ONLY CONSIDER * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE * CLAIM. * * (2) Otherwise, move the page to the empty page list. * * Either way, select a new current page (so we use a partially-full * page if one is available). */ if (ph->ph_nmissing == 0) { pp->pr_nidle++; if (pp->pr_npages > pp->pr_minpages && pp->pr_npages > pp->pr_maxpages) { pr_rmpage(pp, ph, pq); } else { LIST_REMOVE(ph, ph_pagelist); LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); /* * Update the timestamp on the page. A page must * be idle for some period of time before it can * be reclaimed by the pagedaemon. This minimizes * ping-pong'ing for memory. * * note for 64-bit time_t: truncating to 32-bit is not * a problem for our usage. */ ph->ph_time = time_uptime; } pool_update_curpage(pp); } /* * If the page was previously completely full, move it to the * partially-full list and make it the current page. The next * allocation will get the item from this page, instead of * further fragmenting the pool. */ else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { LIST_REMOVE(ph, ph_pagelist); LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); pp->pr_curpage = ph; } } /* * Return resource to the pool. */ #ifdef POOL_DIAGNOSTIC void _pool_put(struct pool *pp, void *v, const char *file, long line) { struct pool_pagelist pq; LIST_INIT(&pq); mutex_enter(&pp->pr_lock); pr_enter(pp, file, line); pr_log(pp, v, PRLOG_PUT, file, line); pool_do_put(pp, v, &pq); pr_leave(pp); mutex_exit(&pp->pr_lock); pr_pagelist_free(pp, &pq); } #undef pool_put #endif /* POOL_DIAGNOSTIC */ void pool_put(struct pool *pp, void *v) { struct pool_pagelist pq; LIST_INIT(&pq); mutex_enter(&pp->pr_lock); pool_do_put(pp, v, &pq); mutex_exit(&pp->pr_lock); pr_pagelist_free(pp, &pq); } #ifdef POOL_DIAGNOSTIC #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__) #endif /* * pool_grow: grow a pool by a page. * * => called with pool locked. * => unlock and relock the pool. * => return with pool locked. */ static int pool_grow(struct pool *pp, int flags) { struct pool_item_header *ph = NULL; char *cp; mutex_exit(&pp->pr_lock); cp = pool_allocator_alloc(pp, flags); if (__predict_true(cp != NULL)) { ph = pool_alloc_item_header(pp, cp, flags); } if (__predict_false(cp == NULL || ph == NULL)) { if (cp != NULL) { pool_allocator_free(pp, cp); } mutex_enter(&pp->pr_lock); return ENOMEM; } mutex_enter(&pp->pr_lock); pool_prime_page(pp, cp, ph); pp->pr_npagealloc++; return 0; } /* * Add N items to the pool. */ int pool_prime(struct pool *pp, int n) { int newpages; int error = 0; mutex_enter(&pp->pr_lock); newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; while (newpages-- > 0) { error = pool_grow(pp, PR_NOWAIT); if (error) { break; } pp->pr_minpages++; } if (pp->pr_minpages >= pp->pr_maxpages) pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ mutex_exit(&pp->pr_lock); return error; } /* * Add a page worth of items to the pool. * * Note, we must be called with the pool descriptor LOCKED. */ static void pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) { struct pool_item *pi; void *cp = storage; const unsigned int align = pp->pr_align; const unsigned int ioff = pp->pr_itemoffset; int n; KASSERT(mutex_owned(&pp->pr_lock)); #ifdef DIAGNOSTIC if ((pp->pr_roflags & PR_NOALIGN) == 0 && ((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0) panic("pool_prime_page: %s: unaligned page", pp->pr_wchan); #endif /* * Insert page header. */ LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); LIST_INIT(&ph->ph_itemlist); ph->ph_page = storage; ph->ph_nmissing = 0; ph->ph_time = time_uptime; if ((pp->pr_roflags & PR_PHINPAGE) == 0) SPLAY_INSERT(phtree, &pp->pr_phtree, ph); pp->pr_nidle++; /* * Color this page. */ ph->ph_off = pp->pr_curcolor; cp = (char *)cp + ph->ph_off; if ((pp->pr_curcolor += align) > pp->pr_maxcolor) pp->pr_curcolor = 0; /* * Adjust storage to apply aligment to `pr_itemoffset' in each item. */ if (ioff != 0) cp = (char *)cp + align - ioff; KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); /* * Insert remaining chunks on the bucket list. */ n = pp->pr_itemsperpage; pp->pr_nitems += n; if (pp->pr_roflags & PR_NOTOUCH) { pr_item_notouch_init(pp, ph); } else { while (n--) { pi = (struct pool_item *)cp; KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0); /* Insert on page list */ LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); #ifdef DIAGNOSTIC pi->pi_magic = PI_MAGIC; #endif cp = (char *)cp + pp->pr_size; KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0); } } /* * If the pool was depleted, point at the new page. */ if (pp->pr_curpage == NULL) pp->pr_curpage = ph; if (++pp->pr_npages > pp->pr_hiwat) pp->pr_hiwat = pp->pr_npages; } /* * Used by pool_get() when nitems drops below the low water mark. This * is used to catch up pr_nitems with the low water mark. * * Note 1, we never wait for memory here, we let the caller decide what to do. * * Note 2, we must be called with the pool already locked, and we return * with it locked. */ static int pool_catchup(struct pool *pp) { int error = 0; while (POOL_NEEDS_CATCHUP(pp)) { error = pool_grow(pp, PR_NOWAIT); if (error) { break; } } return error; } static void pool_update_curpage(struct pool *pp) { pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); if (pp->pr_curpage == NULL) { pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); } KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || (pp->pr_curpage != NULL && pp->pr_nitems > 0)); } void pool_setlowat(struct pool *pp, int n) { mutex_enter(&pp->pr_lock); pp->pr_minitems = n; pp->pr_minpages = (n == 0) ? 0 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; /* Make sure we're caught up with the newly-set low water mark. */ if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { /* * XXX: Should we log a warning? Should we set up a timeout * to try again in a second or so? The latter could break * a caller's assumptions about interrupt protection, etc. */ } mutex_exit(&pp->pr_lock); } void pool_sethiwat(struct pool *pp, int n) { mutex_enter(&pp->pr_lock); pp->pr_maxpages = (n == 0) ? 0 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; mutex_exit(&pp->pr_lock); } void pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) { mutex_enter(&pp->pr_lock); pp->pr_hardlimit = n; pp->pr_hardlimit_warning = warnmess; pp->pr_hardlimit_ratecap.tv_sec = ratecap; pp->pr_hardlimit_warning_last.tv_sec = 0; pp->pr_hardlimit_warning_last.tv_usec = 0; /* * In-line version of pool_sethiwat(), because we don't want to * release the lock. */ pp->pr_maxpages = (n == 0) ? 0 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; mutex_exit(&pp->pr_lock); } /* * Release all complete pages that have not been used recently. * * Might be called from interrupt context. */ int #ifdef POOL_DIAGNOSTIC _pool_reclaim(struct pool *pp, const char *file, long line) #else pool_reclaim(struct pool *pp) #endif { struct pool_item_header *ph, *phnext; struct pool_pagelist pq; uint32_t curtime; bool klock; int rv; if (cpu_intr_p() || cpu_softintr_p()) { KASSERT(pp->pr_ipl != IPL_NONE); } if (pp->pr_drain_hook != NULL) { /* * The drain hook must be called with the pool unlocked. */ (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); } /* * XXXSMP Because we do not want to cause non-MPSAFE code * to block. */ if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || pp->pr_ipl == IPL_SOFTSERIAL) { KERNEL_LOCK(1, NULL); klock = true; } else klock = false; /* Reclaim items from the pool's cache (if any). */ if (pp->pr_cache != NULL) pool_cache_invalidate(pp->pr_cache); if (mutex_tryenter(&pp->pr_lock) == 0) { if (klock) { KERNEL_UNLOCK_ONE(NULL); } return (0); } pr_enter(pp, file, line); LIST_INIT(&pq); curtime = time_uptime; for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { phnext = LIST_NEXT(ph, ph_pagelist); /* Check our minimum page claim */ if (pp->pr_npages <= pp->pr_minpages) break; KASSERT(ph->ph_nmissing == 0); if (curtime - ph->ph_time < pool_inactive_time && !pa_starved_p(pp->pr_alloc)) continue; /* * If freeing this page would put us below * the low water mark, stop now. */ if ((pp->pr_nitems - pp->pr_itemsperpage) < pp->pr_minitems) break; pr_rmpage(pp, ph, &pq); } pr_leave(pp); mutex_exit(&pp->pr_lock); if (LIST_EMPTY(&pq)) rv = 0; else { pr_pagelist_free(pp, &pq); rv = 1; } if (klock) { KERNEL_UNLOCK_ONE(NULL); } return (rv); } /* * Drain pools, one at a time. This is a two stage process; * drain_start kicks off a cross call to drain CPU-level caches * if the pool has an associated pool_cache. drain_end waits * for those cross calls to finish, and then drains the cache * (if any) and pool. * * Note, must never be called from interrupt context. */ void pool_drain_start(struct pool **ppp, uint64_t *wp) { struct pool *pp; KASSERT(!TAILQ_EMPTY(&pool_head)); pp = NULL; /* Find next pool to drain, and add a reference. */ mutex_enter(&pool_head_lock); do { if (drainpp == NULL) { drainpp = TAILQ_FIRST(&pool_head); } if (drainpp != NULL) { pp = drainpp; drainpp = TAILQ_NEXT(pp, pr_poollist); } /* * Skip completely idle pools. We depend on at least * one pool in the system being active. */ } while (pp == NULL || pp->pr_npages == 0); pp->pr_refcnt++; mutex_exit(&pool_head_lock); /* If there is a pool_cache, drain CPU level caches. */ *ppp = pp; if (pp->pr_cache != NULL) { *wp = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pp->pr_cache, NULL); } } void pool_drain_end(struct pool *pp, uint64_t where) { if (pp == NULL) return; KASSERT(pp->pr_refcnt > 0); /* Wait for remote draining to complete. */ if (pp->pr_cache != NULL) xc_wait(where); /* Drain the cache (if any) and pool.. */ pool_reclaim(pp); /* Finally, unlock the pool. */ mutex_enter(&pool_head_lock); pp->pr_refcnt--; cv_broadcast(&pool_busy); mutex_exit(&pool_head_lock); } /* * Diagnostic helpers. */ void pool_print(struct pool *pp, const char *modif) { pool_print1(pp, modif, printf); } void pool_printall(const char *modif, void (*pr)(const char *, ...)) { struct pool *pp; TAILQ_FOREACH(pp, &pool_head, pr_poollist) { pool_printit(pp, modif, pr); } } void pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) { if (pp == NULL) { (*pr)("Must specify a pool to print.\n"); return; } pool_print1(pp, modif, pr); } static void pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, void (*pr)(const char *, ...)) { struct pool_item_header *ph; #ifdef DIAGNOSTIC struct pool_item *pi; #endif LIST_FOREACH(ph, pl, ph_pagelist) { (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", ph->ph_page, ph->ph_nmissing, ph->ph_time); #ifdef DIAGNOSTIC if (!(pp->pr_roflags & PR_NOTOUCH)) { LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { if (pi->pi_magic != PI_MAGIC) { (*pr)("\t\t\titem %p, magic 0x%x\n", pi, pi->pi_magic); } } } #endif } } static void pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) { struct pool_item_header *ph; pool_cache_t pc; pcg_t *pcg; pool_cache_cpu_t *cc; uint64_t cpuhit, cpumiss; int i, print_log = 0, print_pagelist = 0, print_cache = 0; char c; while ((c = *modif++) != '\0') { if (c == 'l') print_log = 1; if (c == 'p') print_pagelist = 1; if (c == 'c') print_cache = 1; } if ((pc = pp->pr_cache) != NULL) { (*pr)("POOL CACHE"); } else { (*pr)("POOL"); } (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, pp->pr_roflags); (*pr)("\talloc %p\n", pp->pr_alloc); (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); (*pr)("\tnget %lu, nfail %lu, nput %lu\n", pp->pr_nget, pp->pr_nfail, pp->pr_nput); (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); if (print_pagelist == 0) goto skip_pagelist; if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) (*pr)("\n\tempty page list:\n"); pool_print_pagelist(pp, &pp->pr_emptypages, pr); if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) (*pr)("\n\tfull page list:\n"); pool_print_pagelist(pp, &pp->pr_fullpages, pr); if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) (*pr)("\n\tpartial-page list:\n"); pool_print_pagelist(pp, &pp->pr_partpages, pr); if (pp->pr_curpage == NULL) (*pr)("\tno current page\n"); else (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); skip_pagelist: if (print_log == 0) goto skip_log; (*pr)("\n"); if ((pp->pr_roflags & PR_LOGGING) == 0) (*pr)("\tno log\n"); else { pr_printlog(pp, NULL, pr); } skip_log: #define PR_GROUPLIST(pcg) \ (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ for (i = 0; i < pcg->pcg_size; i++) { \ if (pcg->pcg_objects[i].pcgo_pa != \ POOL_PADDR_INVALID) { \ (*pr)("\t\t\t%p, 0x%llx\n", \ pcg->pcg_objects[i].pcgo_va, \ (unsigned long long) \ pcg->pcg_objects[i].pcgo_pa); \ } else { \ (*pr)("\t\t\t%p\n", \ pcg->pcg_objects[i].pcgo_va); \ } \ } if (pc != NULL) { cpuhit = 0; cpumiss = 0; for (i = 0; i < __arraycount(pc->pc_cpus); i++) { if ((cc = pc->pc_cpus[i]) == NULL) continue; cpuhit += cc->cc_hits; cpumiss += cc->cc_misses; } (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); (*pr)("\tcache layer hits %llu misses %llu\n", pc->pc_hits, pc->pc_misses); (*pr)("\tcache layer entry uncontended %llu contended %llu\n", pc->pc_hits + pc->pc_misses - pc->pc_contended, pc->pc_contended); (*pr)("\tcache layer empty groups %u full groups %u\n", pc->pc_nempty, pc->pc_nfull); if (print_cache) { (*pr)("\tfull cache groups:\n"); for (pcg = pc->pc_fullgroups; pcg != NULL; pcg = pcg->pcg_next) { PR_GROUPLIST(pcg); } (*pr)("\tempty cache groups:\n"); for (pcg = pc->pc_emptygroups; pcg != NULL; pcg = pcg->pcg_next) { PR_GROUPLIST(pcg); } } } #undef PR_GROUPLIST pr_enter_check(pp, pr); } static int pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) { struct pool_item *pi; void *page; int n; if ((pp->pr_roflags & PR_NOALIGN) == 0) { page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); if (page != ph->ph_page && (pp->pr_roflags & PR_PHINPAGE) != 0) { if (label != NULL) printf("%s: ", label); printf("pool(%p:%s): page inconsistency: page %p;" " at page head addr %p (p %p)\n", pp, pp->pr_wchan, ph->ph_page, ph, page); return 1; } } if ((pp->pr_roflags & PR_NOTOUCH) != 0) return 0; for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; pi != NULL; pi = LIST_NEXT(pi,pi_list), n++) { #ifdef DIAGNOSTIC if (pi->pi_magic != PI_MAGIC) { if (label != NULL) printf("%s: ", label); printf("pool(%s): free list modified: magic=%x;" " page %p; item ordinal %d; addr %p\n", pp->pr_wchan, pi->pi_magic, ph->ph_page, n, pi); panic("pool"); } #endif if ((pp->pr_roflags & PR_NOALIGN) != 0) { continue; } page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); if (page == ph->ph_page) continue; if (label != NULL) printf("%s: ", label); printf("pool(%p:%s): page inconsistency: page %p;" " item ordinal %d; addr %p (p %p)\n", pp, pp->pr_wchan, ph->ph_page, n, pi, page); return 1; } return 0; } int pool_chk(struct pool *pp, const char *label) { struct pool_item_header *ph; int r = 0; mutex_enter(&pp->pr_lock); LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { r = pool_chk_page(pp, label, ph); if (r) { goto out; } } LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { r = pool_chk_page(pp, label, ph); if (r) { goto out; } } LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { r = pool_chk_page(pp, label, ph); if (r) { goto out; } } out: mutex_exit(&pp->pr_lock); return (r); } /* * pool_cache_init: * * Initialize a pool cache. */ pool_cache_t pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, const char *wchan, struct pool_allocator *palloc, int ipl, int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) { pool_cache_t pc; pc = pool_get(&cache_pool, PR_WAITOK); if (pc == NULL) return NULL; pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, palloc, ipl, ctor, dtor, arg); return pc; } /* * pool_cache_bootstrap: * * Kernel-private version of pool_cache_init(). The caller * provides initial storage. */ void pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, u_int align_offset, u_int flags, const char *wchan, struct pool_allocator *palloc, int ipl, int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) { CPU_INFO_ITERATOR cii; pool_cache_t pc1; struct cpu_info *ci; struct pool *pp; pp = &pc->pc_pool; if (palloc == NULL && ipl == IPL_NONE) palloc = &pool_allocator_nointr; pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); if (ctor == NULL) { ctor = (int (*)(void *, void *, int))nullop; } if (dtor == NULL) { dtor = (void (*)(void *, void *))nullop; } pc->pc_emptygroups = NULL; pc->pc_fullgroups = NULL; pc->pc_partgroups = NULL; pc->pc_ctor = ctor; pc->pc_dtor = dtor; pc->pc_arg = arg; pc->pc_hits = 0; pc->pc_misses = 0; pc->pc_nempty = 0; pc->pc_npart = 0; pc->pc_nfull = 0; pc->pc_contended = 0; pc->pc_refcnt = 0; pc->pc_freecheck = NULL; if ((flags & PR_LARGECACHE) != 0) { pc->pc_pcgsize = PCG_NOBJECTS_LARGE; pc->pc_pcgpool = &pcg_large_pool; } else { pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; pc->pc_pcgpool = &pcg_normal_pool; } /* Allocate per-CPU caches. */ memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); pc->pc_ncpu = 0; if (ncpu < 2) { /* XXX For sparc: boot CPU is not attached yet. */ pool_cache_cpu_init1(curcpu(), pc); } else { for (CPU_INFO_FOREACH(cii, ci)) { pool_cache_cpu_init1(ci, pc); } } /* Add to list of all pools. */ if (__predict_true(!cold)) mutex_enter(&pool_head_lock); TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) break; } if (pc1 == NULL) TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); else TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); if (__predict_true(!cold)) mutex_exit(&pool_head_lock); membar_sync(); pp->pr_cache = pc; } /* * pool_cache_destroy: * * Destroy a pool cache. */ void pool_cache_destroy(pool_cache_t pc) { struct pool *pp = &pc->pc_pool; u_int i; /* Remove it from the global list. */ mutex_enter(&pool_head_lock); while (pc->pc_refcnt != 0) cv_wait(&pool_busy, &pool_head_lock); TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); mutex_exit(&pool_head_lock); /* First, invalidate the entire cache. */ pool_cache_invalidate(pc); /* Disassociate it from the pool. */ mutex_enter(&pp->pr_lock); pp->pr_cache = NULL; mutex_exit(&pp->pr_lock); /* Destroy per-CPU data */ for (i = 0; i < __arraycount(pc->pc_cpus); i++) pool_cache_invalidate_cpu(pc, i); /* Finally, destroy it. */ mutex_destroy(&pc->pc_lock); pool_destroy(pp); pool_put(&cache_pool, pc); } /* * pool_cache_cpu_init1: * * Called for each pool_cache whenever a new CPU is attached. */ static void pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) { pool_cache_cpu_t *cc; int index; index = ci->ci_index; KASSERT(index < __arraycount(pc->pc_cpus)); if ((cc = pc->pc_cpus[index]) != NULL) { KASSERT(cc->cc_cpuindex == index); return; } /* * The first CPU is 'free'. This needs to be the case for * bootstrap - we may not be able to allocate yet. */ if (pc->pc_ncpu == 0) { cc = &pc->pc_cpu0; pc->pc_ncpu = 1; } else { mutex_enter(&pc->pc_lock); pc->pc_ncpu++; mutex_exit(&pc->pc_lock); cc = pool_get(&cache_cpu_pool, PR_WAITOK); } cc->cc_ipl = pc->pc_pool.pr_ipl; cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); cc->cc_cache = pc; cc->cc_cpuindex = index; cc->cc_hits = 0; cc->cc_misses = 0; cc->cc_current = __UNCONST(&pcg_dummy); cc->cc_previous = __UNCONST(&pcg_dummy); pc->pc_cpus[index] = cc; } /* * pool_cache_cpu_init: * * Called whenever a new CPU is attached. */ void pool_cache_cpu_init(struct cpu_info *ci) { pool_cache_t pc; mutex_enter(&pool_head_lock); TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { pc->pc_refcnt++; mutex_exit(&pool_head_lock); pool_cache_cpu_init1(ci, pc); mutex_enter(&pool_head_lock); pc->pc_refcnt--; cv_broadcast(&pool_busy); } mutex_exit(&pool_head_lock); } /* * pool_cache_reclaim: * * Reclaim memory from a pool cache. */ bool pool_cache_reclaim(pool_cache_t pc) { return pool_reclaim(&pc->pc_pool); } static void pool_cache_destruct_object1(pool_cache_t pc, void *object) { (*pc->pc_dtor)(pc->pc_arg, object); pool_put(&pc->pc_pool, object); } /* * pool_cache_destruct_object: * * Force destruction of an object and its release back into * the pool. */ void pool_cache_destruct_object(pool_cache_t pc, void *object) { FREECHECK_IN(&pc->pc_freecheck, object); pool_cache_destruct_object1(pc, object); } /* * pool_cache_invalidate_groups: * * Invalidate a chain of groups and destruct all objects. */ static void pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) { void *object; pcg_t *next; int i; for (; pcg != NULL; pcg = next) { next = pcg->pcg_next; for (i = 0; i < pcg->pcg_avail; i++) { object = pcg->pcg_objects[i].pcgo_va; pool_cache_destruct_object1(pc, object); } if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { pool_put(&pcg_large_pool, pcg); } else { KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); pool_put(&pcg_normal_pool, pcg); } } } /* * pool_cache_invalidate: * * Invalidate a pool cache (destruct and release all of the * cached objects). Does not reclaim objects from the pool. * * Note: For pool caches that provide constructed objects, there * is an assumption that another level of synchronization is occurring * between the input to the constructor and the cache invalidation. */ void pool_cache_invalidate(pool_cache_t pc) { pcg_t *full, *empty, *part; #if 0 uint64_t where; if (ncpu < 2 || !mp_online) { /* * We might be called early enough in the boot process * for the CPU data structures to not be fully initialized. * In this case, simply gather the local CPU's cache now * since it will be the only one running. */ pool_cache_xcall(pc); } else { /* * Gather all of the CPU-specific caches into the * global cache. */ where = xc_broadcast(0, (xcfunc_t)pool_cache_xcall, pc, NULL); xc_wait(where); } #endif mutex_enter(&pc->pc_lock); full = pc->pc_fullgroups; empty = pc->pc_emptygroups; part = pc->pc_partgroups; pc->pc_fullgroups = NULL; pc->pc_emptygroups = NULL; pc->pc_partgroups = NULL; pc->pc_nfull = 0; pc->pc_nempty = 0; pc->pc_npart = 0; mutex_exit(&pc->pc_lock); pool_cache_invalidate_groups(pc, full); pool_cache_invalidate_groups(pc, empty); pool_cache_invalidate_groups(pc, part); } /* * pool_cache_invalidate_cpu: * * Invalidate all CPU-bound cached objects in pool cache, the CPU being * identified by its associated index. * It is caller's responsibility to ensure that no operation is * taking place on this pool cache while doing this invalidation. * WARNING: as no inter-CPU locking is enforced, trying to invalidate * pool cached objects from a CPU different from the one currently running * may result in an undefined behaviour. */ static void pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) { pool_cache_cpu_t *cc; pcg_t *pcg; if ((cc = pc->pc_cpus[index]) == NULL) return; if ((pcg = cc->cc_current) != &pcg_dummy) { pcg->pcg_next = NULL; pool_cache_invalidate_groups(pc, pcg); } if ((pcg = cc->cc_previous) != &pcg_dummy) { pcg->pcg_next = NULL; pool_cache_invalidate_groups(pc, pcg); } if (cc != &pc->pc_cpu0) pool_put(&cache_cpu_pool, cc); } void pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) { pool_set_drain_hook(&pc->pc_pool, fn, arg); } void pool_cache_setlowat(pool_cache_t pc, int n) { pool_setlowat(&pc->pc_pool, n); } void pool_cache_sethiwat(pool_cache_t pc, int n) { pool_sethiwat(&pc->pc_pool, n); } void pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) { pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); } static bool __noinline pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, paddr_t *pap, int flags) { pcg_t *pcg, *cur; uint64_t ncsw; pool_cache_t pc; void *object; KASSERT(cc->cc_current->pcg_avail == 0); KASSERT(cc->cc_previous->pcg_avail == 0); pc = cc->cc_cache; cc->cc_misses++; /* * Nothing was available locally. Try and grab a group * from the cache. */ if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { ncsw = curlwp->l_ncsw; mutex_enter(&pc->pc_lock); pc->pc_contended++; /* * If we context switched while locking, then * our view of the per-CPU data is invalid: * retry. */ if (curlwp->l_ncsw != ncsw) { mutex_exit(&pc->pc_lock); return true; } } if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { /* * If there's a full group, release our empty * group back to the cache. Install the full * group as cc_current and return. */ if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { KASSERT(cur->pcg_avail == 0); cur->pcg_next = pc->pc_emptygroups; pc->pc_emptygroups = cur; pc->pc_nempty++; } KASSERT(pcg->pcg_avail == pcg->pcg_size); cc->cc_current = pcg; pc->pc_fullgroups = pcg->pcg_next; pc->pc_hits++; pc->pc_nfull--; mutex_exit(&pc->pc_lock); return true; } /* * Nothing available locally or in cache. Take the slow * path: fetch a new object from the pool and construct * it. */ pc->pc_misses++; mutex_exit(&pc->pc_lock); splx(s); object = pool_get(&pc->pc_pool, flags); *objectp = object; if (__predict_false(object == NULL)) return false; if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { pool_put(&pc->pc_pool, object); *objectp = NULL; return false; } KASSERT((((vaddr_t)object + pc->pc_pool.pr_itemoffset) & (pc->pc_pool.pr_align - 1)) == 0); if (pap != NULL) { #ifdef POOL_VTOPHYS *pap = POOL_VTOPHYS(object); #else *pap = POOL_PADDR_INVALID; #endif } FREECHECK_OUT(&pc->pc_freecheck, object); return false; } /* * pool_cache_get{,_paddr}: * * Get an object from a pool cache (optionally returning * the physical address of the object). */ void * pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) { pool_cache_cpu_t *cc; pcg_t *pcg; void *object; int s; KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), ("pool '%s' is IPL_NONE, but called from interrupt context\n", pc->pc_pool.pr_wchan)); if (flags & PR_WAITOK) { ASSERT_SLEEPABLE(); } /* Lock out interrupts and disable preemption. */ s = splvm(); while (/* CONSTCOND */ true) { /* Try and allocate an object from the current group. */ cc = pc->pc_cpus[curcpu()->ci_index]; KASSERT(cc->cc_cache == pc); pcg = cc->cc_current; if (__predict_true(pcg->pcg_avail > 0)) { object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; if (__predict_false(pap != NULL)) *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; #if defined(DIAGNOSTIC) pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; KASSERT(pcg->pcg_avail < pcg->pcg_size); KASSERT(object != NULL); #endif cc->cc_hits++; splx(s); FREECHECK_OUT(&pc->pc_freecheck, object); return object; } /* * That failed. If the previous group isn't empty, swap * it with the current group and allocate from there. */ pcg = cc->cc_previous; if (__predict_true(pcg->pcg_avail > 0)) { cc->cc_previous = cc->cc_current; cc->cc_current = pcg; continue; } /* * Can't allocate from either group: try the slow path. * If get_slow() allocated an object for us, or if * no more objects are available, it will return false. * Otherwise, we need to retry. */ if (!pool_cache_get_slow(cc, s, &object, pap, flags)) break; } return object; } static bool __noinline pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) { pcg_t *pcg, *cur; uint64_t ncsw; pool_cache_t pc; KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); pc = cc->cc_cache; pcg = NULL; cc->cc_misses++; /* * If there are no empty groups in the cache then allocate one * while still unlocked. */ if (__predict_false(pc->pc_emptygroups == NULL)) { if (__predict_true(!pool_cache_disable)) { pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); } if (__predict_true(pcg != NULL)) { pcg->pcg_avail = 0; pcg->pcg_size = pc->pc_pcgsize; } } /* Lock the cache. */ if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { ncsw = curlwp->l_ncsw; mutex_enter(&pc->pc_lock); pc->pc_contended++; /* * If we context switched while locking, then our view of * the per-CPU data is invalid: retry. */ if (__predict_false(curlwp->l_ncsw != ncsw)) { mutex_exit(&pc->pc_lock); if (pcg != NULL) { pool_put(pc->pc_pcgpool, pcg); } return true; } } /* If there are no empty groups in the cache then allocate one. */ if (pcg == NULL && pc->pc_emptygroups != NULL) { pcg = pc->pc_emptygroups; pc->pc_emptygroups = pcg->pcg_next; pc->pc_nempty--; } /* * If there's a empty group, release our full group back * to the cache. Install the empty group to the local CPU * and return. */ if (pcg != NULL) { KASSERT(pcg->pcg_avail == 0); if (__predict_false(cc->cc_previous == &pcg_dummy)) { cc->cc_previous = pcg; } else { cur = cc->cc_current; if (__predict_true(cur != &pcg_dummy)) { KASSERT(cur->pcg_avail == cur->pcg_size); cur->pcg_next = pc->pc_fullgroups; pc->pc_fullgroups = cur; pc->pc_nfull++; } cc->cc_current = pcg; } pc->pc_hits++; mutex_exit(&pc->pc_lock); return true; } /* * Nothing available locally or in cache, and we didn't * allocate an empty group. Take the slow path and destroy * the object here and now. */ pc->pc_misses++; mutex_exit(&pc->pc_lock); splx(s); pool_cache_destruct_object(pc, object); return false; } /* * pool_cache_put{,_paddr}: * * Put an object back to the pool cache (optionally caching the * physical address of the object). */ void pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) { pool_cache_cpu_t *cc; pcg_t *pcg; int s; KASSERT(object != NULL); FREECHECK_IN(&pc->pc_freecheck, object); /* Lock out interrupts and disable preemption. */ s = splvm(); while (/* CONSTCOND */ true) { /* If the current group isn't full, release it there. */ cc = pc->pc_cpus[curcpu()->ci_index]; KASSERT(cc->cc_cache == pc); pcg = cc->cc_current; if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; pcg->pcg_avail++; cc->cc_hits++; splx(s); return; } /* * That failed. If the previous group isn't full, swap * it with the current group and try again. */ pcg = cc->cc_previous; if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { cc->cc_previous = cc->cc_current; cc->cc_current = pcg; continue; } /* * Can't free to either group: try the slow path. * If put_slow() releases the object for us, it * will return false. Otherwise we need to retry. */ if (!pool_cache_put_slow(cc, s, object)) break; } } /* * pool_cache_xcall: * * Transfer objects from the per-CPU cache to the global cache. * Run within a cross-call thread. */ static void pool_cache_xcall(pool_cache_t pc) { pool_cache_cpu_t *cc; pcg_t *prev, *cur, **list; int s; s = splvm(); mutex_enter(&pc->pc_lock); cc = pc->pc_cpus[curcpu()->ci_index]; cur = cc->cc_current; cc->cc_current = __UNCONST(&pcg_dummy); prev = cc->cc_previous; cc->cc_previous = __UNCONST(&pcg_dummy); if (cur != &pcg_dummy) { if (cur->pcg_avail == cur->pcg_size) { list = &pc->pc_fullgroups; pc->pc_nfull++; } else if (cur->pcg_avail == 0) { list = &pc->pc_emptygroups; pc->pc_nempty++; } else { list = &pc->pc_partgroups; pc->pc_npart++; } cur->pcg_next = *list; *list = cur; } if (prev != &pcg_dummy) { if (prev->pcg_avail == prev->pcg_size) { list = &pc->pc_fullgroups; pc->pc_nfull++; } else if (prev->pcg_avail == 0) { list = &pc->pc_emptygroups; pc->pc_nempty++; } else { list = &pc->pc_partgroups; pc->pc_npart++; } prev->pcg_next = *list; *list = prev; } mutex_exit(&pc->pc_lock); splx(s); } /* * Pool backend allocators. * * Each pool has a backend allocator that handles allocation, deallocation, * and any additional draining that might be needed. * * We provide two standard allocators: * * pool_allocator_kmem - the default when no allocator is specified * * pool_allocator_nointr - used for pools that will not be accessed * in interrupt context. */ void *pool_page_alloc(struct pool *, int); void pool_page_free(struct pool *, void *); #ifdef POOL_SUBPAGE struct pool_allocator pool_allocator_kmem_fullpage = { pool_page_alloc, pool_page_free, 0, .pa_backingmapptr = &kmem_map, }; #else struct pool_allocator pool_allocator_kmem = { pool_page_alloc, pool_page_free, 0, .pa_backingmapptr = &kmem_map, }; #endif void *pool_page_alloc_nointr(struct pool *, int); void pool_page_free_nointr(struct pool *, void *); #ifdef POOL_SUBPAGE struct pool_allocator pool_allocator_nointr_fullpage = { pool_page_alloc_nointr, pool_page_free_nointr, 0, .pa_backingmapptr = &kernel_map, }; #else struct pool_allocator pool_allocator_nointr = { pool_page_alloc_nointr, pool_page_free_nointr, 0, .pa_backingmapptr = &kernel_map, }; #endif #ifdef POOL_SUBPAGE void *pool_subpage_alloc(struct pool *, int); void pool_subpage_free(struct pool *, void *); struct pool_allocator pool_allocator_kmem = { pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, .pa_backingmapptr = &kmem_map, }; void *pool_subpage_alloc_nointr(struct pool *, int); void pool_subpage_free_nointr(struct pool *, void *); struct pool_allocator pool_allocator_nointr = { pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE, .pa_backingmapptr = &kmem_map, }; #endif /* POOL_SUBPAGE */ static void * pool_allocator_alloc(struct pool *pp, int flags) { struct pool_allocator *pa = pp->pr_alloc; void *res; res = (*pa->pa_alloc)(pp, flags); if (res == NULL && (flags & PR_WAITOK) == 0) { /* * We only run the drain hook here if PR_NOWAIT. * In other cases, the hook will be run in * pool_reclaim(). */ if (pp->pr_drain_hook != NULL) { (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); res = (*pa->pa_alloc)(pp, flags); } } return res; } static void pool_allocator_free(struct pool *pp, void *v) { struct pool_allocator *pa = pp->pr_alloc; (*pa->pa_free)(pp, v); } void * pool_page_alloc(struct pool *pp, int flags) { bool waitok = (flags & PR_WAITOK) ? true : false; return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, waitok)); } void pool_page_free(struct pool *pp, void *v) { uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v); } static void * pool_page_alloc_meta(struct pool *pp, int flags) { bool waitok = (flags & PR_WAITOK) ? true : false; return ((void *) uvm_km_alloc_poolpage(kmem_map, waitok)); } static void pool_page_free_meta(struct pool *pp, void *v) { uvm_km_free_poolpage(kmem_map, (vaddr_t) v); } #ifdef POOL_SUBPAGE /* Sub-page allocator, for machines with large hardware pages. */ void * pool_subpage_alloc(struct pool *pp, int flags) { return pool_get(&psppool, flags); } void pool_subpage_free(struct pool *pp, void *v) { pool_put(&psppool, v); } /* We don't provide a real nointr allocator. Maybe later. */ void * pool_subpage_alloc_nointr(struct pool *pp, int flags) { return (pool_subpage_alloc(pp, flags)); } void pool_subpage_free_nointr(struct pool *pp, void *v) { pool_subpage_free(pp, v); } #endif /* POOL_SUBPAGE */ void * pool_page_alloc_nointr(struct pool *pp, int flags) { bool waitok = (flags & PR_WAITOK) ? true : false; return ((void *) uvm_km_alloc_poolpage_cache(kernel_map, waitok)); } void pool_page_free_nointr(struct pool *pp, void *v) { uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v); } #if defined(DDB) static bool pool_in_page(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) { return (uintptr_t)ph->ph_page <= addr && addr < (uintptr_t)ph->ph_page + pp->pr_alloc->pa_pagesz; } static bool pool_in_item(struct pool *pp, void *item, uintptr_t addr) { return (uintptr_t)item <= addr && addr < (uintptr_t)item + pp->pr_size; } static bool pool_in_cg(struct pool *pp, struct pool_cache_group *pcg, uintptr_t addr) { int i; if (pcg == NULL) { return false; } for (i = 0; i < pcg->pcg_avail; i++) { if (pool_in_item(pp, pcg->pcg_objects[i].pcgo_va, addr)) { return true; } } return false; } static bool pool_allocated(struct pool *pp, struct pool_item_header *ph, uintptr_t addr) { if ((pp->pr_roflags & PR_NOTOUCH) != 0) { unsigned int idx = pr_item_notouch_index(pp, ph, (void *)addr); pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); pool_item_bitmap_t mask = 1 << (idx & BITMAP_MASK); return (*bitmap & mask) == 0; } else { struct pool_item *pi; LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { if (pool_in_item(pp, pi, addr)) { return false; } } return true; } } void pool_whatis(uintptr_t addr, void (*pr)(const char *, ...)) { struct pool *pp; TAILQ_FOREACH(pp, &pool_head, pr_poollist) { struct pool_item_header *ph; uintptr_t item; bool allocated = true; bool incache = false; bool incpucache = false; char cpucachestr[32]; if ((pp->pr_roflags & PR_PHINPAGE) != 0) { LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { if (pool_in_page(pp, ph, addr)) { goto found; } } LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { if (pool_in_page(pp, ph, addr)) { allocated = pool_allocated(pp, ph, addr); goto found; } } LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { if (pool_in_page(pp, ph, addr)) { allocated = false; goto found; } } continue; } else { ph = pr_find_pagehead_noalign(pp, (void *)addr); if (ph == NULL || !pool_in_page(pp, ph, addr)) { continue; } allocated = pool_allocated(pp, ph, addr); } found: if (allocated && pp->pr_cache) { pool_cache_t pc = pp->pr_cache; struct pool_cache_group *pcg; int i; for (pcg = pc->pc_fullgroups; pcg != NULL; pcg = pcg->pcg_next) { if (pool_in_cg(pp, pcg, addr)) { incache = true; goto print; } } for (i = 0; i < __arraycount(pc->pc_cpus); i++) { pool_cache_cpu_t *cc; if ((cc = pc->pc_cpus[i]) == NULL) { continue; } if (pool_in_cg(pp, cc->cc_current, addr) || pool_in_cg(pp, cc->cc_previous, addr)) { struct cpu_info *ci = cpu_lookup(i); incpucache = true; snprintf(cpucachestr, sizeof(cpucachestr), "cached by CPU %u", ci->ci_index); goto print; } } } print: item = (uintptr_t)ph->ph_page + ph->ph_off; item = item + rounddown(addr - item, pp->pr_size); (*pr)("%p is %p+%zu in POOL '%s' (%s)\n", (void *)addr, item, (size_t)(addr - item), pp->pr_wchan, incpucache ? cpucachestr : incache ? "cached" : allocated ? "allocated" : "free"); } } #endif /* defined(DDB) */