/* $NetBSD: esp.c,v 1.26 2000/12/29 17:23:32 briggs Exp $ */ /* * Copyright (c) 1997 Jason R. Thorpe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project * by Jason R. Thorpe. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1994 Peter Galbavy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Peter Galbavy * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Based on aic6360 by Jarle Greipsland * * Acknowledgements: Many of the algorithms used in this driver are * inspired by the work of Julian Elischer (julian@tfs.com) and * Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million! */ /* * Initial m68k mac support from Allen Briggs * (basically consisting of the match, a bit of the attach, and the * "DMA" glue functions). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void espattach __P((struct device *, struct device *, void *)); int espmatch __P((struct device *, struct cfdata *, void *)); /* Linkup to the rest of the kernel */ struct cfattach esp_ca = { sizeof(struct esp_softc), espmatch, espattach }; /* * Functions and the switch for the MI code. */ u_char esp_read_reg __P((struct ncr53c9x_softc *, int)); void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char)); int esp_dma_isintr __P((struct ncr53c9x_softc *)); void esp_dma_reset __P((struct ncr53c9x_softc *)); int esp_dma_intr __P((struct ncr53c9x_softc *)); int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *, size_t *, int, size_t *)); void esp_dma_go __P((struct ncr53c9x_softc *)); void esp_dma_stop __P((struct ncr53c9x_softc *)); int esp_dma_isactive __P((struct ncr53c9x_softc *)); void esp_quick_write_reg __P((struct ncr53c9x_softc *, int, u_char)); int esp_quick_dma_intr __P((struct ncr53c9x_softc *)); int esp_quick_dma_setup __P((struct ncr53c9x_softc *, caddr_t *, size_t *, int, size_t *)); void esp_quick_dma_go __P((struct ncr53c9x_softc *)); void esp_intr __P((void *sc)); void esp_dualbus_intr __P((void *sc)); static struct esp_softc *esp0 = NULL, *esp1 = NULL; static __inline__ int esp_dafb_have_dreq __P((struct esp_softc *esc)); static __inline__ int esp_iosb_have_dreq __P((struct esp_softc *esc)); int (*esp_have_dreq) __P((struct esp_softc *esc)); struct ncr53c9x_glue esp_glue = { esp_read_reg, esp_write_reg, esp_dma_isintr, esp_dma_reset, esp_dma_intr, esp_dma_setup, esp_dma_go, esp_dma_stop, esp_dma_isactive, NULL, /* gl_clear_latched_intr */ }; int espmatch(parent, cf, aux) struct device *parent; struct cfdata *cf; void *aux; { int found = 0; if ((cf->cf_unit == 0) && mac68k_machine.scsi96) { found = 1; } if ((cf->cf_unit == 1) && mac68k_machine.scsi96_2) { found = 1; } return found; } /* * Attach this instance, and then all the sub-devices */ void espattach(parent, self, aux) struct device *parent, *self; void *aux; { struct obio_attach_args *oa = (struct obio_attach_args *)aux; extern vaddr_t SCSIBase; struct esp_softc *esc = (void *)self; struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x; int quick = 0; unsigned long reg_offset; reg_offset = SCSIBase - IOBase; esc->sc_tag = oa->oa_tag; /* * For Wombat, Primus and Optimus motherboards, DREQ is * visible on bit 0 of the IOSB's emulated VIA2 vIFR (and * the scsi registers are offset 0x1000 bytes from IOBase). * * For the Q700/900/950 it's at f9800024 for bus 0 and * f9800028 for bus 1 (900/950). For these machines, that is also * a (12-bit) configuration register for DAFB's control of the * pseudo-DMA timing. The default value is 0x1d1. */ esp_have_dreq = esp_dafb_have_dreq; if (sc->sc_dev.dv_unit == 0) { if (reg_offset == 0x10000) { quick = 1; esp_have_dreq = esp_iosb_have_dreq; } else if (reg_offset == 0x18000) { quick = 0; } else { if (bus_space_map(esc->sc_tag, 0xf9800024, 4, 0, &esc->sc_bsh)) { printf("failed to map 4 at 0xf9800024.\n"); } else { quick = 1; bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1); } } } else { if (bus_space_map(esc->sc_tag, 0xf9800028, 4, 0, &esc->sc_bsh)) { printf("failed to map 4 at 0xf9800028.\n"); } else { quick = 1; bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1); } } if (quick) { esp_glue.gl_write_reg = esp_quick_write_reg; esp_glue.gl_dma_intr = esp_quick_dma_intr; esp_glue.gl_dma_setup = esp_quick_dma_setup; esp_glue.gl_dma_go = esp_quick_dma_go; } /* * Set up the glue for MI code early; we use some of it here. */ sc->sc_glue = &esp_glue; /* * Save the regs */ if (sc->sc_dev.dv_unit == 0) { esp0 = esc; esc->sc_reg = (volatile u_char *) SCSIBase; via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc); esc->irq_mask = V2IF_SCSIIRQ; if (reg_offset == 0x10000) { /* From the Q650 developer's note */ sc->sc_freq = 16500000; } else { sc->sc_freq = 25000000; } if (esp_glue.gl_dma_go == esp_quick_dma_go) { printf(" (quick)"); } } else { esp1 = esc; esc->sc_reg = (volatile u_char *) SCSIBase + 0x402; via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL); esc->irq_mask = 0; sc->sc_freq = 25000000; if (esp_glue.gl_dma_go == esp_quick_dma_go) { printf(" (quick)"); } } printf(": address %p", esc->sc_reg); sc->sc_id = 7; /* gimme Mhz */ sc->sc_freq /= 1000000; /* * It is necessary to try to load the 2nd config register here, * to find out what rev the esp chip is, else the esp_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */ sc->sc_cfg2 = NCRCFG2_SCSI2; sc->sc_cfg3 = 0; sc->sc_rev = NCR_VARIANT_NCR53C96; /* * This is the value used to start sync negotiations * Note that the NCR register "SYNCTP" is programmed * in "clocks per byte", and has a minimum value of 4. * The SCSI period used in negotiation is one-fourth * of the time (in nanoseconds) needed to transfer one byte. * Since the chip's clock is given in MHz, we have the following * formula: 4 * period = (1000 / freq) * 4 */ sc->sc_minsync = 1000 / sc->sc_freq; /* We need this to fit into the TCR... */ sc->sc_maxxfer = 64 * 1024; if (!quick) { sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */ sc->sc_maxxfer = 8 * 1024; } /* * Configure interrupts. */ if (esc->irq_mask) { via2_reg(vPCR) = 0x22; via2_reg(vIFR) = esc->irq_mask; via2_reg(vIER) = 0x80 | esc->irq_mask; } /* * Now try to attach all the sub-devices */ ncr53c9x_attach(sc, NULL, NULL); } /* * Glue functions. */ u_char esp_read_reg(sc, reg) struct ncr53c9x_softc *sc; int reg; { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_reg[reg * 16]; } void esp_write_reg(sc, reg, val) struct ncr53c9x_softc *sc; int reg; u_char val; { struct esp_softc *esc = (struct esp_softc *)sc; u_char v = val; if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) { v = NCRCMD_TRANS; } esc->sc_reg[reg * 16] = v; } void esp_dma_stop(sc) struct ncr53c9x_softc *sc; { } int esp_dma_isactive(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_active; } int esp_dma_isintr(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; return esc->sc_reg[NCR_STAT * 16] & 0x80; } void esp_dma_reset(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_active = 0; esc->sc_tc = 0; } int esp_dma_intr(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg; u_char *p; u_int espphase, espstat, espintr; int cnt, s; if (esc->sc_active == 0) { printf("dma_intr--inactive DMA\n"); return -1; } if ((sc->sc_espintr & NCRINTR_BS) == 0) { esc->sc_active = 0; return 0; } cnt = esc->sc_dmasize; if (esc->sc_dmasize == 0) { printf("data interrupt, but no count left."); } p = *esc->sc_dmaaddr; espphase = sc->sc_phase; espstat = (u_int) sc->sc_espstat; espintr = (u_int) sc->sc_espintr; cmdreg = esc->sc_reg + NCR_CMD * 16; fiforeg = esc->sc_reg + NCR_FIFO * 16; statreg = esc->sc_reg + NCR_STAT * 16; intrreg = esc->sc_reg + NCR_INTR * 16; do { if (esc->sc_datain) { *p++ = *fiforeg; cnt--; if (espphase == DATA_IN_PHASE) { *cmdreg = NCRCMD_TRANS; } else { esc->sc_active = 0; } } else { if ( (espphase == DATA_OUT_PHASE) || (espphase == MESSAGE_OUT_PHASE)) { *fiforeg = *p++; cnt--; *cmdreg = NCRCMD_TRANS; } else { esc->sc_active = 0; } } if (esc->sc_active) { while (!(*statreg & 0x80)); s = splhigh(); espstat = *statreg; espintr = *intrreg; espphase = (espintr & NCRINTR_DIS) ? /* Disconnected */ BUSFREE_PHASE : espstat & PHASE_MASK; splx(s); } } while (esc->sc_active && (espintr & NCRINTR_BS)); sc->sc_phase = espphase; sc->sc_espstat = (u_char) espstat; sc->sc_espintr = (u_char) espintr; *esc->sc_dmaaddr = p; esc->sc_dmasize = cnt; if (esc->sc_dmasize == 0) { esc->sc_tc = NCRSTAT_TC; } sc->sc_espstat |= esc->sc_tc; return 0; } int esp_dma_setup(sc, addr, len, datain, dmasize) struct ncr53c9x_softc *sc; caddr_t *addr; size_t *len; int datain; size_t *dmasize; { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_dmaaddr = addr; esc->sc_dmalen = len; esc->sc_datain = datain; esc->sc_dmasize = *dmasize; esc->sc_tc = 0; return 0; } void esp_dma_go(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; if (esc->sc_datain == 0) { esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr; (*esc->sc_dmalen)--; (*esc->sc_dmaaddr)++; } esc->sc_active = 1; } void esp_quick_write_reg(sc, reg, val) struct ncr53c9x_softc *sc; int reg; u_char val; { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_reg[reg * 16] = val; } #if DEBUG int mac68k_esp_debug=0; #endif int esp_quick_dma_intr(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; int trans=0, resid=0; if (esc->sc_active == 0) panic("dma_intr--inactive DMA\n"); esc->sc_active = 0; if (esc->sc_dmasize == 0) { int res; res = NCR_READ_REG(sc, NCR_TCL); res += NCR_READ_REG(sc, NCR_TCM) << 8; printf("dmaintr: DMA xfer of zero xferred %d\n", res); return 0; } if ((sc->sc_espstat & NCRSTAT_TC) == 0) { resid += NCR_READ_REG(sc, NCR_TCL); resid += NCR_READ_REG(sc, NCR_TCM) << 8; if (resid == 0) resid = 65536; } trans = esc->sc_dmasize - resid; if (trans < 0) { printf("dmaintr: trans < 0????"); trans = *esc->sc_dmalen; } NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid)); #if DEBUG if (mac68k_esp_debug) { printf("eqd_intr: trans %d, resid %d.\n", trans, resid); } #endif *esc->sc_dmaaddr += trans; *esc->sc_dmalen -= trans; return 0; } int esp_quick_dma_setup(sc, addr, len, datain, dmasize) struct ncr53c9x_softc *sc; caddr_t *addr; size_t *len; int datain; size_t *dmasize; { struct esp_softc *esc = (struct esp_softc *)sc; esc->sc_dmaaddr = addr; esc->sc_dmalen = len; if (*len & 1) { esc->sc_pad = 1; } else { esc->sc_pad = 0; } esc->sc_datain = datain; esc->sc_dmasize = *dmasize; /* this should not happen if maxxfer is < 64k */ if (esc->sc_dmasize == 65536) { *dmasize = 0; } #if DIAGNOSTIC if (esc->sc_dmasize == 0) { printf("esp_quick_dma_setup called with %lx, %lx, %d, %lx\n", (long) *addr, (long) *len, datain, (long) esc->sc_dmasize); } #endif #if DEBUG if (mac68k_esp_debug) { printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n", (long) *addr, (long) *len, datain, (long) esc->sc_dmasize); } #endif return 0; } static __inline__ int esp_dafb_have_dreq(esc) struct esp_softc *esc; { return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200); } static __inline__ int esp_iosb_have_dreq(esc) struct esp_softc *esc; { return (via2_reg(vIFR) & V2IF_SCSIDRQ); } static volatile int espspl=-1; /* * Apple "DMA" is weird. * * Basically, the CPU acts like the DMA controller. The DREQ/ off the * chip goes to a register that we've mapped at attach time (on the * IOSB or DAFB, depending on the machine). Apple also provides some * space for which the memory controller handshakes data to/from the * NCR chip with the DACK/ line. This space appears to be mapped over * and over, every 4 bytes, but only the lower 16 bits are valid (but * reading the upper 16 bits will handshake DACK/ just fine, so if you * read *u_int16_t++ = *u_int16_t++ in a loop, you'll get * 0xff0xff0xff0xff... * * When you're attempting to read or write memory to this DACK/ed space, * and the NCR is not ready for some timeout period, the system will * generate a bus error. This might be for one of several reasons: * * 1) (on write) The FIFO is full and is not draining. * 2) (on read) The FIFO is empty and is not filling. * 3) An interrupt condition has occurred. * 4) Anything else? * * So if a bus error occurs, we first turn off the nofault bus error handler, * then we check for an interrupt (which would render the first two * possibilities moot). If there's no interrupt, check for a DREQ/. If we * have that, then attempt to resume stuffing (or unstuffing) the FIFO. If * neither condition holds, pause briefly and check again. * * NOTE!!! In order to make allowances for the hardware structure of * the mac, spl values in here are hardcoded!!!!!!!!! * This is done to allow serial interrupts to get in during * scsi transfers. This is ugly. */ void esp_quick_dma_go(sc) struct ncr53c9x_softc *sc; { struct esp_softc *esc = (struct esp_softc *)sc; extern long mac68k_a2_fromfault; extern int *nofault; label_t faultbuf; u_int16_t volatile *pdma; u_int16_t *addr; int len, res; u_short cnt32, cnt2; u_char volatile *statreg; esc->sc_active = 1; espspl = splhigh(); addr = (u_int16_t *) *esc->sc_dmaaddr; len = esc->sc_dmasize; restart_dmago: #if DEBUG if (mac68k_esp_debug) { printf("eqdg: a %lx, l %lx, in? %d ... ", (long) addr, (long) len, esc->sc_datain); } #endif nofault = (int *) &faultbuf; if (setjmp((label_t *) nofault)) { int i=0; nofault = (int *) 0; #if DEBUG if (mac68k_esp_debug) { printf("be\n"); } #endif /* * Bus error... * So, we first check for an interrupt. If we have * one, go handle it. Next we check for DREQ/. If * we have it, then we restart the transfer. If * neither, then loop until we get one or the other. */ statreg = esc->sc_reg + NCR_STAT * 16; for (;;) { spl2(); /* Give serial a chance... */ splhigh(); /* That's enough... */ if (*statreg & 0x80) { goto gotintr; } if (esp_have_dreq(esc)) { /* * Get the length from the address * differential. */ addr = (u_int16_t *) mac68k_a2_fromfault; len = esc->sc_dmasize - ((long) addr - (long) *esc->sc_dmaaddr); if (esc->sc_datain == 0) { /* * Let the FIFO drain before we read * the transfer count. * Do we need to do this? * Can we do this? */ while (NCR_READ_REG(sc, NCR_FFLAG) & 0x1f); /* * Get the length from the transfer * counters. */ res = NCR_READ_REG(sc, NCR_TCL); res += NCR_READ_REG(sc, NCR_TCM) << 8; /* * If they don't agree, * adjust accordingly. */ while (res > len) { len+=2; addr--; } if (res != len) { panic("esp_quick_dma_go: res %d != len %d\n", res, len); } } break; } DELAY(1); if (i++ > 1000000) panic("esp_dma_go: Bus error, but no condition! Argh!"); } goto restart_dmago; } len &= ~1; statreg = esc->sc_reg + NCR_STAT * 16; pdma = (u_int16_t *) (esc->sc_reg + 0x100); /* * These loops are unrolled into assembly for two reasons: * 1) We can make sure that they are as efficient as possible, and * 2) (more importantly) we need the address that we are reading * from or writing to to be in a2. */ cnt32 = len / 32; cnt2 = (len % 32) / 2; if (esc->sc_datain == 0) { /* while (cnt32--) { 16 instances of *pdma = *addr++; } */ /* while (cnt2--) { *pdma = *addr++; } */ __asm __volatile (" movl %1, %%a2 movl %2, %%a3 movw %3, %%d2 cmpw #0, %%d2 beq 2f subql #1, %%d2 1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw %%a2@+,%%a3@; movw %%a2@+,%%a3@ movw #8704,%%sr movw #9728,%%sr dbra %%d2, 1b 2: movw %4, %%d2 cmpw #0, %%d2 beq 4f subql #1, %%d2 3: movw %%a2@+,%%a3@ dbra %%d2, 3b 4: movl %%a2, %0" : "=g" (addr) : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2) : "a2", "a3", "d2"); if (esc->sc_pad) { unsigned char *c; c = (unsigned char *) addr; /* Wait for DREQ */ while (!esp_have_dreq(esc)) { if (*statreg & 0x80) { nofault = (int *) 0; goto gotintr; } } *(unsigned char *)pdma = *c; } } else { /* while (cnt32--) { 16 instances of *addr++ = *pdma; } */ /* while (cnt2--) { *addr++ = *pdma; } */ __asm __volatile (" movl %1, %%a2 movl %2, %%a3 movw %3, %%d2 cmpw #0, %%d2 beq 6f subql #1, %%d2 5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw %%a3@,%%a2@+; movw %%a3@,%%a2@+ movw #8704,%%sr movw #9728,%%sr dbra %%d2, 5b 6: movw %4, %%d2 cmpw #0, %%d2 beq 8f subql #1, %%d2 7: movw %%a3@,%%a2@+ dbra %%d2, 7b 8: movl %%a2, %0" : "=g" (addr) : "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2) : "a2", "a3", "d2"); if (esc->sc_pad) { unsigned char *c; c = (unsigned char *) addr; /* Wait for DREQ */ while (!esp_have_dreq(esc)) { if (*statreg & 0x80) { nofault = (int *) 0; goto gotintr; } } *c = *(unsigned char *)pdma; } } nofault = (int *) 0; /* * If we have not received an interrupt yet, we should shortly, * and we can't prevent it, so return and wait for it. */ if ((*statreg & 0x80) == 0) { #if DEBUG if (mac68k_esp_debug) { printf("g.\n"); } #endif if (espspl != -1) splx(espspl); espspl = -1; return; } gotintr: #if DEBUG if (mac68k_esp_debug) { printf("g!\n"); } #endif ncr53c9x_intr(sc); if (espspl != -1) splx(espspl); espspl = -1; } void esp_intr(sc) void *sc; { struct esp_softc *esc = (struct esp_softc *)sc; if (esc->sc_reg[NCR_STAT * 16] & 0x80) { ncr53c9x_intr((struct ncr53c9x_softc *) esp0); } } void esp_dualbus_intr(sc) void *sc; { if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) { ncr53c9x_intr((struct ncr53c9x_softc *) esp0); } if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) { ncr53c9x_intr((struct ncr53c9x_softc *) esp1); } }