/* $NetBSD: in.c,v 1.143 2012/06/08 15:01:51 gdt Exp $ */ /* * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Public Access Networks Corporation ("Panix"). It was developed under * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __KERNEL_RCSID(0, "$NetBSD: in.c,v 1.143 2012/06/08 15:01:51 gdt Exp $"); #include "opt_inet.h" #include "opt_inet_conf.h" #include "opt_mrouting.h" #include "opt_pfil_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSELSRC #include #endif #ifdef PFIL_HOOKS #include #endif static u_int in_mask2len(struct in_addr *); static void in_len2mask(struct in_addr *, u_int); static int in_lifaddr_ioctl(struct socket *, u_long, void *, struct ifnet *, struct lwp *); static int in_addprefix(struct in_ifaddr *, int); static int in_scrubprefix(struct in_ifaddr *); #ifndef SUBNETSARELOCAL #define SUBNETSARELOCAL 1 #endif #ifndef HOSTZEROBROADCAST #define HOSTZEROBROADCAST 1 #endif int subnetsarelocal = SUBNETSARELOCAL; int hostzeroisbroadcast = HOSTZEROBROADCAST; /* * This list is used to keep track of in_multi chains which belong to * deleted interface addresses. We use in_ifaddr so that a chain head * won't be deallocated until all multicast address record are deleted. */ static TAILQ_HEAD(, in_ifaddr) in_mk = TAILQ_HEAD_INITIALIZER(in_mk); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). If subnetsarelocal * is true, this includes other subnets of the local net. * Otherwise, it includes only the directly-connected (sub)nets. */ int in_localaddr(struct in_addr in) { struct in_ifaddr *ia; if (subnetsarelocal) { TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) if ((in.s_addr & ia->ia_netmask) == ia->ia_net) return (1); } else { TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) if ((in.s_addr & ia->ia_subnetmask) == ia->ia_subnet) return (1); } return (0); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_int32_t net; if (IN_EXPERIMENTAL(in.s_addr) || IN_MULTICAST(in.s_addr)) return (0); if (IN_CLASSA(in.s_addr)) { net = in.s_addr & IN_CLASSA_NET; if (net == 0 || net == htonl(IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) return (0); } return (1); } /* * Trim a mask in a sockaddr */ void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Routine to take an Internet address and convert into a * "dotted quad" representation for printing. */ const char * in_fmtaddr(struct in_addr addr) { static char buf[sizeof("123.456.789.123")]; addr.s_addr = ntohl(addr.s_addr); snprintf(buf, sizeof(buf), "%d.%d.%d.%d", (addr.s_addr >> 24) & 0xFF, (addr.s_addr >> 16) & 0xFF, (addr.s_addr >> 8) & 0xFF, (addr.s_addr >> 0) & 0xFF); return buf; } /* * Maintain the "in_maxmtu" variable, which is the largest * mtu for non-local interfaces with AF_INET addresses assigned * to them that are up. */ unsigned long in_maxmtu; void in_setmaxmtu(void) { struct in_ifaddr *ia; struct ifnet *ifp; unsigned long maxmtu = 0; TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) { if ((ifp = ia->ia_ifp) == 0) continue; if ((ifp->if_flags & (IFF_UP|IFF_LOOPBACK)) != IFF_UP) continue; if (ifp->if_mtu > maxmtu) maxmtu = ifp->if_mtu; } if (maxmtu) in_maxmtu = maxmtu; } static u_int in_mask2len(struct in_addr *mask) { u_int x, y; u_char *p; p = (u_char *)mask; for (x = 0; x < sizeof(*mask); x++) { if (p[x] != 0xff) break; } y = 0; if (x < sizeof(*mask)) { for (y = 0; y < NBBY; y++) { if ((p[x] & (0x80 >> y)) == 0) break; } } return x * NBBY + y; } static void in_len2mask(struct in_addr *mask, u_int len) { u_int i; u_char *p; p = (u_char *)mask; memset(mask, 0, sizeof(*mask)); for (i = 0; i < len / NBBY; i++) p[i] = 0xff; if (len % NBBY) p[i] = (0xff00 >> (len % NBBY)) & 0xff; } /* * Generic internet control operations (ioctl's). * Ifp is 0 if not an interface-specific ioctl. */ /* ARGSUSED */ int in_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, struct lwp *l) { struct ifreq *ifr = (struct ifreq *)data; struct in_ifaddr *ia = NULL; struct in_aliasreq *ifra = (struct in_aliasreq *)data; struct sockaddr_in oldaddr; int error, hostIsNew, maskIsNew; int newifaddr = 0; switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: case SIOCGLIFADDR: if (ifp == NULL) return EINVAL; return in_lifaddr_ioctl(so, cmd, data, ifp, l); case SIOCGIFADDRPREF: case SIOCSIFADDRPREF: if (ifp == NULL) return EINVAL; return ifaddrpref_ioctl(so, cmd, data, ifp, l); } /* * Find address for this interface, if it exists. */ if (ifp != NULL) IFP_TO_IA(ifp, ia); switch (cmd) { case SIOCAIFADDR: case SIOCDIFADDR: case SIOCGIFALIAS: if (ifra->ifra_addr.sin_family == AF_INET) LIST_FOREACH(ia, &IN_IFADDR_HASH(ifra->ifra_addr.sin_addr.s_addr), ia_hash) { if (ia->ia_ifp == ifp && in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr)) break; } if ((cmd == SIOCDIFADDR || cmd == SIOCGIFALIAS) && ia == NULL) return (EADDRNOTAVAIL); if (cmd == SIOCDIFADDR && ifra->ifra_addr.sin_family == AF_UNSPEC) { ifra->ifra_addr.sin_family = AF_INET; } /* FALLTHROUGH */ case SIOCSIFADDR: case SIOCSIFDSTADDR: if (ifra->ifra_addr.sin_family != AF_INET) return (EAFNOSUPPORT); /* FALLTHROUGH */ case SIOCSIFNETMASK: if (ifp == NULL) panic("in_control"); if (cmd == SIOCGIFALIAS) break; if (ia == NULL && (cmd == SIOCSIFNETMASK || cmd == SIOCSIFDSTADDR)) return (EADDRNOTAVAIL); if (l == NULL) return (EPERM); if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0) return (EPERM); if (ia == NULL) { ia = malloc(sizeof(*ia), M_IFADDR, M_WAITOK|M_ZERO); if (ia == NULL) return (ENOBUFS); TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_list); IFAREF(&ia->ia_ifa); ifa_insert(ifp, &ia->ia_ifa); ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); ia->ia_ifa.ifa_netmask = sintosa(&ia->ia_sockmask); #ifdef IPSELSRC ia->ia_ifa.ifa_getifa = in_getifa; #else /* IPSELSRC */ ia->ia_ifa.ifa_getifa = NULL; #endif /* IPSELSRC */ ia->ia_sockmask.sin_len = 8; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); ia->ia_broadaddr.sin_family = AF_INET; } ia->ia_ifp = ifp; ia->ia_idsalt = cprng_fast32() % 65535; LIST_INIT(&ia->ia_multiaddrs); newifaddr = 1; } break; case SIOCSIFBRDADDR: if (l == NULL) return (EPERM); if (kauth_authorize_network(l->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd, NULL) != 0) return (EPERM); /* FALLTHROUGH */ case SIOCGIFADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFBRDADDR: if (ia == NULL) return (EADDRNOTAVAIL); break; } error = 0; switch (cmd) { case SIOCGIFADDR: ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_addr)); break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) return (EINVAL); ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_broadaddr)); break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) return (EINVAL); ifreq_setdstaddr(cmd, ifr, sintocsa(&ia->ia_dstaddr)); break; case SIOCGIFNETMASK: ifreq_setaddr(cmd, ifr, sintocsa(&ia->ia_sockmask)); break; case SIOCSIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) return (EINVAL); oldaddr = ia->ia_dstaddr; ia->ia_dstaddr = *satocsin(ifreq_getdstaddr(cmd, ifr)); if ((error = if_addr_init(ifp, &ia->ia_ifa, false)) != 0) { ia->ia_dstaddr = oldaddr; return error; } if (ia->ia_flags & IFA_ROUTE) { ia->ia_ifa.ifa_dstaddr = sintosa(&oldaddr); rtinit(&ia->ia_ifa, RTM_DELETE, RTF_HOST); ia->ia_ifa.ifa_dstaddr = sintosa(&ia->ia_dstaddr); rtinit(&ia->ia_ifa, RTM_ADD, RTF_HOST|RTF_UP); } break; case SIOCSIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) return EINVAL; ia->ia_broadaddr = *satocsin(ifreq_getbroadaddr(cmd, ifr)); break; case SIOCSIFADDR: error = in_ifinit(ifp, ia, satocsin(ifreq_getaddr(cmd, ifr)), 1); #ifdef PFIL_HOOKS if (error == 0) (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCSIFADDR, ifp, PFIL_IFADDR); #endif break; case SIOCSIFNETMASK: in_ifscrub(ifp, ia); ia->ia_sockmask = *satocsin(ifreq_getaddr(cmd, ifr)); ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; error = in_ifinit(ifp, ia, NULL, 0); break; case SIOCAIFADDR: maskIsNew = 0; hostIsNew = 1; if (ia->ia_addr.sin_family != AF_INET) ; else if (ifra->ifra_addr.sin_len == 0) { ifra->ifra_addr = ia->ia_addr; hostIsNew = 0; } else if (in_hosteq(ia->ia_addr.sin_addr, ifra->ifra_addr.sin_addr)) hostIsNew = 0; if (ifra->ifra_mask.sin_len) { /* Only scrub if we control the prefix route, * otherwise userland gets a bogus message */ if ((ia->ia_flags & IFA_ROUTE)) in_ifscrub(ifp, ia); ia->ia_sockmask = ifra->ifra_mask; ia->ia_subnetmask = ia->ia_sockmask.sin_addr.s_addr; maskIsNew = 1; } if ((ifp->if_flags & IFF_POINTOPOINT) && (ifra->ifra_dstaddr.sin_family == AF_INET)) { /* Only scrub if we control the prefix route, * otherwise userland gets a bogus message */ if ((ia->ia_flags & IFA_ROUTE)) in_ifscrub(ifp, ia); ia->ia_dstaddr = ifra->ifra_dstaddr; maskIsNew = 1; /* We lie; but the effect's the same */ } if (ifra->ifra_addr.sin_family == AF_INET && (hostIsNew || maskIsNew)) { error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0); } if ((ifp->if_flags & IFF_BROADCAST) && (ifra->ifra_broadaddr.sin_family == AF_INET)) ia->ia_broadaddr = ifra->ifra_broadaddr; #ifdef PFIL_HOOKS if (error == 0) (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR, ifp, PFIL_IFADDR); #endif break; case SIOCGIFALIAS: ifra->ifra_mask = ia->ia_sockmask; if ((ifp->if_flags & IFF_POINTOPOINT) && (ia->ia_dstaddr.sin_family == AF_INET)) ifra->ifra_dstaddr = ia->ia_dstaddr; else if ((ifp->if_flags & IFF_BROADCAST) && (ia->ia_broadaddr.sin_family == AF_INET)) ifra->ifra_broadaddr = ia->ia_broadaddr; else memset(&ifra->ifra_broadaddr, 0, sizeof(ifra->ifra_broadaddr)); break; case SIOCDIFADDR: in_purgeaddr(&ia->ia_ifa); #ifdef PFIL_HOOKS (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR, ifp, PFIL_IFADDR); #endif break; #ifdef MROUTING case SIOCGETVIFCNT: case SIOCGETSGCNT: error = mrt_ioctl(so, cmd, data); break; #endif /* MROUTING */ default: return ENOTTY; } if (error != 0 && newifaddr) { KASSERT(ia != NULL); in_purgeaddr(&ia->ia_ifa); } return error; } void in_purgeaddr(struct ifaddr *ifa) { struct ifnet *ifp = ifa->ifa_ifp; struct in_ifaddr *ia = (void *) ifa; in_ifscrub(ifp, ia); LIST_REMOVE(ia, ia_hash); ifa_remove(ifp, &ia->ia_ifa); TAILQ_REMOVE(&in_ifaddrhead, ia, ia_list); if (ia->ia_allhosts != NULL) in_delmulti(ia->ia_allhosts); IFAFREE(&ia->ia_ifa); in_setmaxmtu(); } void in_purgeif(struct ifnet *ifp) /* MUST be called at splsoftnet() */ { if_purgeaddrs(ifp, AF_INET, in_purgeaddr); igmp_purgeif(ifp); /* manipulates pools */ #ifdef MROUTING ip_mrouter_detach(ifp); #endif } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (???) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * EINVAL since we can't deduce hostid part of the address. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in_ioctl() */ static int in_lifaddr_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp, struct lwp *l) { struct if_laddrreq *iflr = (struct if_laddrreq *)data; struct ifaddr *ifa; struct sockaddr *sa; /* sanity checks */ if (data == NULL || ifp == NULL) { panic("invalid argument to in_lifaddr_ioctl"); /*NOTRECHED*/ } switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if ((iflr->flags & IFLR_PREFIX) == 0) break; /*FALLTHROUGH*/ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ sa = (struct sockaddr *)&iflr->addr; if (sa->sa_family != AF_INET) return EINVAL; if (sa->sa_len != sizeof(struct sockaddr_in)) return EINVAL; /* XXX need improvement */ sa = (struct sockaddr *)&iflr->dstaddr; if (sa->sa_family != AF_UNSPEC && sa->sa_family != AF_INET) return EINVAL; if (sa->sa_len != 0 && sa->sa_len != sizeof(struct sockaddr_in)) return EINVAL; break; default: /*shouldn't happen*/ #if 0 panic("invalid cmd to in_lifaddr_ioctl"); /*NOTREACHED*/ #else return EOPNOTSUPP; #endif } if (sizeof(struct in_addr) * NBBY < iflr->prefixlen) return EINVAL; switch (cmd) { case SIOCALIFADDR: { struct in_aliasreq ifra; if (iflr->flags & IFLR_PREFIX) return EINVAL; /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR). */ memset(&ifra, 0, sizeof(ifra)); memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name)); memcpy(&ifra.ifra_addr, &iflr->addr, ((struct sockaddr *)&iflr->addr)->sa_len); if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/ memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr, ((struct sockaddr *)&iflr->dstaddr)->sa_len); } ifra.ifra_mask.sin_family = AF_INET; ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); return in_control(so, SIOCAIFADDR, (void *)&ifra, ifp, l); } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in_ifaddr *ia; struct in_addr mask, candidate, match; struct sockaddr_in *sin; int cmp; memset(&mask, 0, sizeof(mask)); memset(&match, 0, sizeof(match)); /* XXX gcc */ if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in_len2mask(&mask, iflr->prefixlen); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; match.s_addr &= mask.s_addr; /* if you set extra bits, that's wrong */ if (match.s_addr != sin->sin_addr.s_addr) return EINVAL; cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /*XXX*/ } else { /* on deleting an address, do exact match */ in_len2mask(&mask, 32); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; cmp = 1; } } IFADDR_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (cmp == 0) break; candidate.s_addr = ((struct sockaddr_in *)ifa->ifa_addr)->sin_addr.s_addr; candidate.s_addr &= mask.s_addr; if (candidate.s_addr == match.s_addr) break; } if (ifa == NULL) return EADDRNOTAVAIL; ia = (struct in_ifaddr *)ifa; if (cmd == SIOCGLIFADDR) { /* fill in the if_laddrreq structure */ memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { memcpy(&iflr->dstaddr, &ia->ia_dstaddr, ia->ia_dstaddr.sin_len); } else memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr)); iflr->prefixlen = in_mask2len(&ia->ia_sockmask.sin_addr); iflr->flags = 0; /*XXX*/ return 0; } else { struct in_aliasreq ifra; /* fill in_aliasreq and do ioctl(SIOCDIFADDR) */ memset(&ifra, 0, sizeof(ifra)); memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name)); memcpy(&ifra.ifra_addr, &ia->ia_addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr, ia->ia_dstaddr.sin_len); } memcpy(&ifra.ifra_dstaddr, &ia->ia_sockmask, ia->ia_sockmask.sin_len); return in_control(so, SIOCDIFADDR, (void *)&ifra, ifp, l); } } } return EOPNOTSUPP; /*just for safety*/ } /* * Delete any existing route for an interface. */ void in_ifscrub(struct ifnet *ifp, struct in_ifaddr *ia) { in_scrubprefix(ia); } /* * Initialize an interface's internet address * and routing table entry. */ int in_ifinit(struct ifnet *ifp, struct in_ifaddr *ia, const struct sockaddr_in *sin, int scrub) { u_int32_t i; struct sockaddr_in oldaddr; int s = splnet(), flags = RTF_UP, error; if (sin == NULL) sin = &ia->ia_addr; /* * Set up new addresses. */ oldaddr = ia->ia_addr; if (ia->ia_addr.sin_family == AF_INET) LIST_REMOVE(ia, ia_hash); ia->ia_addr = *sin; LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if ((error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0) goto bad; splx(s); if (scrub) { ia->ia_ifa.ifa_addr = sintosa(&oldaddr); in_ifscrub(ifp, ia); ia->ia_ifa.ifa_addr = sintosa(&ia->ia_addr); } i = ia->ia_addr.sin_addr.s_addr; if (IN_CLASSA(i)) ia->ia_netmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_netmask = IN_CLASSB_NET; else ia->ia_netmask = IN_CLASSC_NET; /* * The subnet mask usually includes at least the standard network part, * but may may be smaller in the case of supernetting. * If it is set, we believe it. */ if (ia->ia_subnetmask == 0) { ia->ia_subnetmask = ia->ia_netmask; ia->ia_sockmask.sin_addr.s_addr = ia->ia_subnetmask; } else ia->ia_netmask &= ia->ia_subnetmask; ia->ia_net = i & ia->ia_netmask; ia->ia_subnet = i & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); /* re-calculate the "in_maxmtu" value */ in_setmaxmtu(); /* * Add route for the network. */ ia->ia_ifa.ifa_metric = ifp->if_metric; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_addr.s_addr = ia->ia_subnet | ~ia->ia_subnetmask; ia->ia_netbroadcast.s_addr = ia->ia_net | ~ia->ia_netmask; } else if (ifp->if_flags & IFF_LOOPBACK) { ia->ia_dstaddr = ia->ia_addr; flags |= RTF_HOST; } else if (ifp->if_flags & IFF_POINTOPOINT) { if (ia->ia_dstaddr.sin_family != AF_INET) return (0); flags |= RTF_HOST; } error = in_addprefix(ia, flags); /* * If the interface supports multicast, join the "all hosts" * multicast group on that interface. */ if ((ifp->if_flags & IFF_MULTICAST) != 0 && ia->ia_allhosts == NULL) { struct in_addr addr; addr.s_addr = INADDR_ALLHOSTS_GROUP; ia->ia_allhosts = in_addmulti(&addr, ifp); } return (error); bad: splx(s); LIST_REMOVE(ia, ia_hash); ia->ia_addr = oldaddr; if (ia->ia_addr.sin_family == AF_INET) LIST_INSERT_HEAD(&IN_IFADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); return (error); } #define rtinitflags(x) \ ((((x)->ia_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) != 0) \ ? RTF_HOST : 0) /* * add a route to prefix ("connected route" in cisco terminology). * does nothing if there's some interface address with the same prefix already. */ static int in_addprefix(struct in_ifaddr *target, int flags) { struct in_ifaddr *ia; struct in_addr prefix, mask, p; int error; if ((flags & RTF_HOST) != 0) prefix = target->ia_dstaddr.sin_addr; else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) { if (rtinitflags(ia)) p = ia->ia_dstaddr.sin_addr; else { p = ia->ia_addr.sin_addr; p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; } if (prefix.s_addr != p.s_addr) continue; /* * if we got a matching prefix route inserted by other * interface address, we don't need to bother * * XXX RADIX_MPATH implications here? -dyoung * * But we should still notify userland of the new address */ if (ia->ia_flags & IFA_ROUTE) { rt_newaddrmsg(RTM_NEWADDR, &target->ia_ifa, 0, NULL); return 0; } } /* * noone seem to have prefix route. insert it. */ error = rtinit(&target->ia_ifa, RTM_ADD, flags); if (error == 0) target->ia_flags |= IFA_ROUTE; else if (error == EEXIST) { /* * the fact the route already exists is not an error. */ error = 0; } return error; } /* * remove a route to prefix ("connected route" in cisco terminology). * re-installs the route by using another interface address, if there's one * with the same prefix (otherwise we lose the route mistakenly). */ static int in_scrubprefix(struct in_ifaddr *target) { struct in_ifaddr *ia; struct in_addr prefix, mask, p; int error; /* If we don't have IFA_ROUTE we should still inform userland */ if ((target->ia_flags & IFA_ROUTE) == 0) { rt_newaddrmsg(RTM_DELADDR, &target->ia_ifa, 0, NULL); return 0; } if (rtinitflags(target)) prefix = target->ia_dstaddr.sin_addr; else { prefix = target->ia_addr.sin_addr; mask = target->ia_sockmask.sin_addr; prefix.s_addr &= mask.s_addr; } TAILQ_FOREACH(ia, &in_ifaddrhead, ia_list) { if (rtinitflags(ia)) p = ia->ia_dstaddr.sin_addr; else { p = ia->ia_addr.sin_addr; p.s_addr &= ia->ia_sockmask.sin_addr.s_addr; } if (prefix.s_addr != p.s_addr) continue; /* * if we got a matching prefix route, move IFA_ROUTE to him */ if ((ia->ia_flags & IFA_ROUTE) == 0) { rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); target->ia_flags &= ~IFA_ROUTE; error = rtinit(&ia->ia_ifa, RTM_ADD, rtinitflags(ia) | RTF_UP); if (error == 0) ia->ia_flags |= IFA_ROUTE; return error; } } /* * noone seem to have prefix route. remove it. */ rtinit(&target->ia_ifa, RTM_DELETE, rtinitflags(target)); target->ia_flags &= ~IFA_ROUTE; return 0; } #undef rtinitflags /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; if (in.s_addr == INADDR_BROADCAST || in_nullhost(in)) return 1; if ((ifp->if_flags & IFF_BROADCAST) == 0) return 0; /* * Look through the list of addresses for a match * with a broadcast address. */ #define ia (ifatoia(ifa)) IFADDR_FOREACH(ifa, ifp) if (ifa->ifa_addr->sa_family == AF_INET && !in_hosteq(in, ia->ia_addr.sin_addr) && (in_hosteq(in, ia->ia_broadaddr.sin_addr) || in_hosteq(in, ia->ia_netbroadcast) || (hostzeroisbroadcast && /* * Check for old-style (host 0) broadcast. */ (in.s_addr == ia->ia_subnet || in.s_addr == ia->ia_net)))) return 1; return (0); #undef ia } /* * Add an address to the list of IP multicast addresses for a given interface. */ struct in_multi * in_addmulti(struct in_addr *ap, struct ifnet *ifp) { struct sockaddr_in sin; struct in_multi *inm; int s = splsoftnet(); /* * See if address already in list. */ IN_LOOKUP_MULTI(*ap, ifp, inm); if (inm != NULL) { /* * Found it; just increment the reference count. */ ++inm->inm_refcount; } else { /* * New address; allocate a new multicast record * and link it into the interface's multicast list. */ inm = pool_get(&inmulti_pool, PR_NOWAIT); if (inm == NULL) { splx(s); return (NULL); } inm->inm_addr = *ap; inm->inm_ifp = ifp; inm->inm_refcount = 1; LIST_INSERT_HEAD( &IN_MULTI_HASH(inm->inm_addr.s_addr, ifp), inm, inm_list); /* * Ask the network driver to update its multicast reception * filter appropriately for the new address. */ sockaddr_in_init(&sin, ap, 0); if (if_mcast_op(ifp, SIOCADDMULTI, sintosa(&sin)) != 0) { LIST_REMOVE(inm, inm_list); pool_put(&inmulti_pool, inm); splx(s); return (NULL); } /* * Let IGMP know that we have joined a new IP multicast group. */ if (igmp_joingroup(inm) != 0) { LIST_REMOVE(inm, inm_list); pool_put(&inmulti_pool, inm); splx(s); return (NULL); } in_multientries++; } splx(s); return (inm); } /* * Delete a multicast address record. */ void in_delmulti(struct in_multi *inm) { struct sockaddr_in sin; int s = splsoftnet(); if (--inm->inm_refcount == 0) { /* * No remaining claims to this record; let IGMP know that * we are leaving the multicast group. */ igmp_leavegroup(inm); /* * Unlink from list. */ LIST_REMOVE(inm, inm_list); in_multientries--; /* * Notify the network driver to update its multicast reception * filter. */ sockaddr_in_init(&sin, &inm->inm_addr, 0); if_mcast_op(inm->inm_ifp, SIOCDELMULTI, sintosa(&sin)); pool_put(&inmulti_pool, inm); } splx(s); }