/* $NetBSD: vm_machdep.c,v 1.16 2002/04/03 23:33:29 thorpej Exp $ */ /* * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * vm_machdep.h * * vm machine specific bits * * Created : 08/10/94 */ #include "opt_armfpe.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ARMFPE #include #endif extern pv_addr_t systempage; int process_read_regs __P((struct proc *p, struct reg *regs)); int process_read_fpregs __P((struct proc *p, struct fpreg *regs)); void switch_exit __P((struct proc *p)); extern void proc_trampoline __P((void)); /* * Special compilation symbols: * * STACKCHECKS - Fill undefined and supervisor stacks with a known pattern * on forking and check the pattern on exit, reporting * the amount of stack used. */ /* * Finish a fork operation, with process p2 nearly set up. * Copy and update the pcb and trap frame, making the child ready to run. * * Rig the child's kernel stack so that it will start out in * proc_trampoline() and call child_return() with p2 as an * argument. This causes the newly-created child process to go * directly to user level with an apparent return value of 0 from * fork(), while the parent process returns normally. * * p1 is the process being forked; if p1 == &proc0, we are creating * a kernel thread, and the return path and argument are specified with * `func' and `arg'. * * If an alternate user-level stack is requested (with non-zero values * in both the stack and stacksize args), set up the user stack pointer * accordingly. */ void cpu_fork(p1, p2, stack, stacksize, func, arg) struct proc *p1; struct proc *p2; void *stack; size_t stacksize; void (*func) __P((void *)); void *arg; { struct pcb *pcb = (struct pcb *)&p2->p_addr->u_pcb; struct trapframe *tf; struct switchframe *sf; #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("cpu_fork: %p %p %p %p\n", p1, p2, curproc, &proc0); #endif /* PMAP_DEBUG */ #if 0 /* XXX */ if (p1 == curproc) { /* Sync the PCB before we copy it. */ savectx(curpcb); } #endif /* Copy the pcb */ *pcb = p1->p_addr->u_pcb; /* * Set up the undefined stack for the process. * Note: this stack is not in use if we are forking from p1 */ pcb->pcb_un.un_32.pcb32_und_sp = (u_int)p2->p_addr + USPACE_UNDEF_STACK_TOP; pcb->pcb_un.un_32.pcb32_sp = (u_int)p2->p_addr + USPACE_SVC_STACK_TOP; #ifdef STACKCHECKS /* Fill the undefined stack with a known pattern */ memset(((u_char *)p2->p_addr) + USPACE_UNDEF_STACK_BOTTOM, 0xdd, (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM)); /* Fill the kernel stack with a known pattern */ memset(((u_char *)p2->p_addr) + USPACE_SVC_STACK_BOTTOM, 0xdd, (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM)); #endif /* STACKCHECKS */ #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) { printf("p1->procaddr=%p p1->procaddr->u_pcb=%p pid=%d pmap=%p\n", p1->p_addr, &p1->p_addr->u_pcb, p1->p_pid, p1->p_vmspace->vm_map.pmap); printf("p2->procaddr=%p p2->procaddr->u_pcb=%p pid=%d pmap=%p\n", p2->p_addr, &p2->p_addr->u_pcb, p2->p_pid, p2->p_vmspace->vm_map.pmap); } #endif /* PMAP_DEBUG */ pmap_activate(p2); #ifdef ARMFPE /* Initialise a new FP context for p2 and copy the context from p1 */ arm_fpe_core_initcontext(FP_CONTEXT(p2)); arm_fpe_copycontext(FP_CONTEXT(p1), FP_CONTEXT(p2)); #endif /* ARMFPE */ p2->p_addr->u_pcb.pcb_tf = tf = (struct trapframe *)pcb->pcb_un.un_32.pcb32_sp - 1; *tf = *p1->p_addr->u_pcb.pcb_tf; /* * If specified, give the child a different stack. */ if (stack != NULL) tf->tf_usr_sp = (u_int)stack + stacksize; sf = (struct switchframe *)tf - 1; sf->sf_spl = 0; /* always equivalent to spl0() */ sf->sf_r4 = (u_int)func; sf->sf_r5 = (u_int)arg; sf->sf_pc = (u_int)proc_trampoline; pcb->pcb_un.un_32.pcb32_sp = (u_int)sf; } /* * cpu_exit is called as the last action during exit. * * We clean up a little and then call switch_exit() with the old proc as an * argument. switch_exit() first switches to proc0's context, and finally * jumps into switch() to wait for another process to wake up. */ void cpu_exit(p) register struct proc *p; { #ifdef ARMFPE /* Abort any active FP operation and deactivate the context */ arm_fpe_core_abort(FP_CONTEXT(p), NULL, NULL); arm_fpe_core_changecontext(0); #endif /* ARMFPE */ #ifdef STACKCHECKS /* Report how much stack has been used - debugging */ if (p) { u_char *ptr; int loop; ptr = ((u_char *)p2->p_addr) + USPACE_UNDEF_STACK_BOTTOM; for (loop = 0; loop < (USPACE_UNDEF_STACK_TOP - USPACE_UNDEF_STACK_BOTTOM) && *ptr == 0xdd; ++loop, ++ptr) ; log(LOG_INFO, "%d bytes of undefined stack fill pattern\n", loop); ptr = ((u_char *)p2->p_addr) + USPACE_SVC_STACK_BOTTOM; for (loop = 0; loop < (USPACE_SVC_STACK_TOP - USPACE_SVC_STACK_BOTTOM) && *ptr == 0xdd; ++loop, ++ptr) ; log(LOG_INFO, "%d bytes of svc stack fill pattern\n", loop); } #endif /* STACKCHECKS */ uvmexp.swtch++; switch_exit(p); } void cpu_swapin(p) struct proc *p; { #if 0 /* Don't do this. See the comment in cpu_swapout(). */ #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("cpu_swapin(%p, %d, %s, %p)\n", p, p->p_pid, p->p_comm, p->p_vmspace->vm_map.pmap); #endif /* PMAP_DEBUG */ if (vector_page < KERNEL_BASE) { /* Map the vector page */ pmap_enter(p->p_vmspace->vm_map.pmap, vector_page, systempage.pv_pa, VM_PROT_READ, VM_PROT_READ|PMAP_WIRED); pmap_update(p->p_vmspace->vm_map.pmap); } #endif } void cpu_swapout(p) struct proc *p; { #if 0 /* * Don't do this! If the pmap is shared with another process, * it will loose it's page0 entry. That's bad news indeed. */ #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("cpu_swapout(%p, %d, %s, %p)\n", p, p->p_pid, p->p_comm, &p->p_vmspace->vm_map.pmap); #endif /* PMAP_DEBUG */ if (vector_page < KERNEL_BASE) { /* Free the system page mapping */ pmap_remove(p->p_vmspace->vm_map.pmap, vector_page, vector_page + NBPG); pmap_update(p->p_vmspace->vm_map.pmap); } #endif } /* * Move pages from one kernel virtual address to another. * Both addresses are assumed to reside in the Sysmap, * and size must be a multiple of NBPG. */ void pagemove(from, to, size) caddr_t from, to; size_t size; { register pt_entry_t *fpte, *tpte; if (size % NBPG) panic("pagemove: size=%08lx", (u_long) size); #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("pagemove: V%p to %p size %08lx\n", from, to, (u_long) size); #endif /* PMAP_DEBUG */ fpte = vtopte((vaddr_t)from); tpte = vtopte((vaddr_t)to); /* * Make sure the cache does not have dirty data for the * pages we are moving. Pages in the buffers are only * ever moved with pagemove, so we only need to clean * the 'from' area. */ cpu_dcache_wbinv_range((vaddr_t) from, size); while (size > 0) { *tpte++ = *fpte; *fpte++ = 0; size -= NBPG; } //cpu_tlb_flushD(); } /* * Map a user I/O request into kernel virtual address space. * Note: the pages are already locked by uvm_vslock(), so we * do not need to pass an access_type to pmap_enter(). */ void vmapbuf(bp, len) struct buf *bp; vsize_t len; { vaddr_t faddr, taddr, off; paddr_t fpa; #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("vmapbuf: bp=%08x buf=%08x len=%08x\n", (u_int)bp, (u_int)bp->b_data, (u_int)len); #endif /* PMAP_DEBUG */ if ((bp->b_flags & B_PHYS) == 0) panic("vmapbuf"); faddr = trunc_page((vaddr_t)bp->b_saveaddr = bp->b_data); off = (vaddr_t)bp->b_data - faddr; len = round_page(off + len); taddr = uvm_km_valloc_wait(phys_map, len); bp->b_data = (caddr_t)(taddr + off); /* * The region is locked, so we expect that pmap_pte() will return * non-NULL. */ while (len) { (void) pmap_extract(vm_map_pmap(&bp->b_proc->p_vmspace->vm_map), faddr, &fpa); pmap_enter(pmap_kernel(), taddr, fpa, VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED); faddr += PAGE_SIZE; taddr += PAGE_SIZE; len -= PAGE_SIZE; } pmap_update(pmap_kernel()); } /* * Unmap a previously-mapped user I/O request. */ void vunmapbuf(bp, len) struct buf *bp; vsize_t len; { vaddr_t addr, off; #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("vunmapbuf: bp=%08x buf=%08x len=%08x\n", (u_int)bp, (u_int)bp->b_data, (u_int)len); #endif /* PMAP_DEBUG */ if ((bp->b_flags & B_PHYS) == 0) panic("vunmapbuf"); /* * Make sure the cache does not have dirty data for the * pages we had mapped. */ addr = trunc_page((vaddr_t)bp->b_data); off = (vaddr_t)bp->b_data - addr; len = round_page(off + len); pmap_remove(pmap_kernel(), addr, addr + len); pmap_update(pmap_kernel()); uvm_km_free_wakeup(phys_map, addr, len); bp->b_data = bp->b_saveaddr; bp->b_saveaddr = 0; } /* End of vm_machdep.c */