/* $NetBSD: vfs_subr.c,v 1.178 2002/09/06 13:18:43 gehenna Exp $ */ /*- * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ /* * External virtual filesystem routines */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.178 2002/09/06 13:18:43 gehenna Exp $"); #include "opt_ddb.h" #include "opt_compat_netbsd.h" #include "opt_compat_43.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; const int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; int doforce = 1; /* 1 => permit forcible unmounting */ int prtactive = 0; /* 1 => print out reclaim of active vnodes */ extern int dovfsusermount; /* 1 => permit any user to mount filesystems */ /* * Insq/Remq for the vnode usage lists. */ #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) #define bufremvn(bp) { \ LIST_REMOVE(bp, b_vnbufs); \ (bp)->b_vnbufs.le_next = NOLIST; \ } /* TAILQ_HEAD(freelst, vnode) vnode_free_list = vnode free list (in vnode.h) */ struct freelst vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list); struct freelst vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list); struct mntlist mountlist = /* mounted filesystem list */ CIRCLEQ_HEAD_INITIALIZER(mountlist); struct vfs_list_head vfs_list = /* vfs list */ LIST_HEAD_INITIALIZER(vfs_list); struct nfs_public nfs_pub; /* publicly exported FS */ struct simplelock mountlist_slock = SIMPLELOCK_INITIALIZER; static struct simplelock mntid_slock = SIMPLELOCK_INITIALIZER; struct simplelock mntvnode_slock = SIMPLELOCK_INITIALIZER; struct simplelock vnode_free_list_slock = SIMPLELOCK_INITIALIZER; struct simplelock spechash_slock = SIMPLELOCK_INITIALIZER; /* * These define the root filesystem and device. */ struct mount *rootfs; struct vnode *rootvnode; struct device *root_device; /* root device */ struct pool vnode_pool; /* memory pool for vnodes */ /* * Local declarations. */ void insmntque __P((struct vnode *, struct mount *)); int getdevvp __P((dev_t, struct vnode **, enum vtype)); void vgoneall __P((struct vnode *)); static int vfs_hang_addrlist __P((struct mount *, struct netexport *, struct export_args *)); static int vfs_free_netcred __P((struct radix_node *, void *)); static void vfs_free_addrlist __P((struct netexport *)); #ifdef DEBUG void printlockedvnodes __P((void)); #endif /* * Initialize the vnode management data structures. */ void vntblinit() { pool_init(&vnode_pool, sizeof(struct vnode), 0, 0, 0, "vnodepl", &pool_allocator_nointr); /* * Initialize the filesystem syncer. */ vn_initialize_syncerd(); } /* * Mark a mount point as busy. Used to synchronize access and to delay * unmounting. Interlock is not released on failure. */ int vfs_busy(mp, flags, interlkp) struct mount *mp; int flags; struct simplelock *interlkp; { int lkflags; while (mp->mnt_flag & MNT_UNMOUNT) { int gone; if (flags & LK_NOWAIT) return (ENOENT); if ((flags & LK_RECURSEFAIL) && mp->mnt_unmounter != NULL && mp->mnt_unmounter == curproc) return (EDEADLK); if (interlkp) simple_unlock(interlkp); /* * Since all busy locks are shared except the exclusive * lock granted when unmounting, the only place that a * wakeup needs to be done is at the release of the * exclusive lock at the end of dounmount. * * XXX MP: add spinlock protecting mnt_wcnt here once you * can atomically unlock-and-sleep. */ mp->mnt_wcnt++; tsleep((caddr_t)mp, PVFS, "vfs_busy", 0); mp->mnt_wcnt--; gone = mp->mnt_flag & MNT_GONE; if (mp->mnt_wcnt == 0) wakeup(&mp->mnt_wcnt); if (interlkp) simple_lock(interlkp); if (gone) return (ENOENT); } lkflags = LK_SHARED; if (interlkp) lkflags |= LK_INTERLOCK; if (lockmgr(&mp->mnt_lock, lkflags, interlkp)) panic("vfs_busy: unexpected lock failure"); return (0); } /* * Free a busy filesystem. */ void vfs_unbusy(mp) struct mount *mp; { lockmgr(&mp->mnt_lock, LK_RELEASE, NULL); } /* * Lookup a filesystem type, and if found allocate and initialize * a mount structure for it. * * Devname is usually updated by mount(8) after booting. */ int vfs_rootmountalloc(fstypename, devname, mpp) char *fstypename; char *devname; struct mount **mpp; { struct vfsops *vfsp = NULL; struct mount *mp; LIST_FOREACH(vfsp, &vfs_list, vfs_list) if (!strncmp(vfsp->vfs_name, fstypename, MFSNAMELEN)) break; if (vfsp == NULL) return (ENODEV); mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK); memset((char *)mp, 0, (u_long)sizeof(struct mount)); lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, 0); (void)vfs_busy(mp, LK_NOWAIT, 0); LIST_INIT(&mp->mnt_vnodelist); mp->mnt_op = vfsp; mp->mnt_flag = MNT_RDONLY; mp->mnt_vnodecovered = NULLVP; vfsp->vfs_refcount++; strncpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name, MFSNAMELEN); mp->mnt_stat.f_mntonname[0] = '/'; (void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0); *mpp = mp; return (0); } /* * Lookup a mount point by filesystem identifier. */ struct mount * vfs_getvfs(fsid) fsid_t *fsid; { struct mount *mp; simple_lock(&mountlist_slock); CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) { if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] && mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) { simple_unlock(&mountlist_slock); return (mp); } } simple_unlock(&mountlist_slock); return ((struct mount *)0); } /* * Get a new unique fsid */ void vfs_getnewfsid(mp) struct mount *mp; { static u_short xxxfs_mntid; fsid_t tfsid; int mtype; simple_lock(&mntid_slock); mtype = makefstype(mp->mnt_op->vfs_name); mp->mnt_stat.f_fsid.val[0] = makedev(mtype, 0); mp->mnt_stat.f_fsid.val[1] = mtype; if (xxxfs_mntid == 0) ++xxxfs_mntid; tfsid.val[0] = makedev(mtype & 0xff, xxxfs_mntid); tfsid.val[1] = mtype; if (!CIRCLEQ_EMPTY(&mountlist)) { while (vfs_getvfs(&tfsid)) { tfsid.val[0]++; xxxfs_mntid++; } } mp->mnt_stat.f_fsid.val[0] = tfsid.val[0]; simple_unlock(&mntid_slock); } /* * Make a 'unique' number from a mount type name. */ long makefstype(type) const char *type; { long rv; for (rv = 0; *type; type++) { rv <<= 2; rv ^= *type; } return rv; } /* * Set vnode attributes to VNOVAL */ void vattr_null(vap) struct vattr *vap; { vap->va_type = VNON; /* * Assign individually so that it is safe even if size and * sign of each member are varied. */ vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_size = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_atime.tv_sec = vap->va_mtime.tv_sec = vap->va_ctime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = vap->va_mtime.tv_nsec = vap->va_ctime.tv_nsec = VNOVAL; vap->va_gen = VNOVAL; vap->va_flags = VNOVAL; vap->va_rdev = VNOVAL; vap->va_bytes = VNOVAL; vap->va_vaflags = 0; } /* * Routines having to do with the management of the vnode table. */ extern int (**dead_vnodeop_p) __P((void *)); long numvnodes; /* * Return the next vnode from the free list. */ int getnewvnode(tag, mp, vops, vpp) enum vtagtype tag; struct mount *mp; int (**vops) __P((void *)); struct vnode **vpp; { extern struct uvm_pagerops uvm_vnodeops; struct uvm_object *uobj; struct proc *p = curproc; /* XXX */ struct freelst *listhd; static int toggle; struct vnode *vp; int error = 0, tryalloc; try_again: if (mp) { /* * Mark filesystem busy while we're creating a vnode. * If unmount is in progress, this will wait; if the * unmount succeeds (only if umount -f), this will * return an error. If the unmount fails, we'll keep * going afterwards. * (This puts the per-mount vnode list logically under * the protection of the vfs_busy lock). */ error = vfs_busy(mp, LK_RECURSEFAIL, 0); if (error && error != EDEADLK) return error; } /* * We must choose whether to allocate a new vnode or recycle an * existing one. The criterion for allocating a new one is that * the total number of vnodes is less than the number desired or * there are no vnodes on either free list. Generally we only * want to recycle vnodes that have no buffers associated with * them, so we look first on the vnode_free_list. If it is empty, * we next consider vnodes with referencing buffers on the * vnode_hold_list. The toggle ensures that half the time we * will use a buffer from the vnode_hold_list, and half the time * we will allocate a new one unless the list has grown to twice * the desired size. We are reticent to recycle vnodes from the * vnode_hold_list because we will lose the identity of all its * referencing buffers. */ vp = NULL; simple_lock(&vnode_free_list_slock); toggle ^= 1; if (numvnodes > 2 * desiredvnodes) toggle = 0; tryalloc = numvnodes < desiredvnodes || (TAILQ_FIRST(&vnode_free_list) == NULL && (TAILQ_FIRST(&vnode_hold_list) == NULL || toggle)); if (tryalloc && (vp = pool_get(&vnode_pool, PR_NOWAIT)) != NULL) { simple_unlock(&vnode_free_list_slock); memset(vp, 0, sizeof(*vp)); simple_lock_init(&vp->v_interlock); uobj = &vp->v_uobj; uobj->pgops = &uvm_vnodeops; uobj->uo_npages = 0; TAILQ_INIT(&uobj->memq); numvnodes++; } else { if ((vp = TAILQ_FIRST(listhd = &vnode_free_list)) == NULL) vp = TAILQ_FIRST(listhd = &vnode_hold_list); for (; vp != NULL; vp = TAILQ_NEXT(vp, v_freelist)) { if (simple_lock_try(&vp->v_interlock)) { if ((vp->v_flag & VLAYER) == 0) { break; } if (VOP_ISLOCKED(vp) == 0) break; else simple_unlock(&vp->v_interlock); } } /* * Unless this is a bad time of the month, at most * the first NCPUS items on the free list are * locked, so this is close enough to being empty. */ if (vp == NULLVP) { simple_unlock(&vnode_free_list_slock); if (mp && error != EDEADLK) vfs_unbusy(mp); if (tryalloc) { printf("WARNING: unable to allocate new " "vnode, retrying...\n"); (void) tsleep(&lbolt, PRIBIO, "newvn", hz); goto try_again; } tablefull("vnode", "increase kern.maxvnodes or NVNODE"); *vpp = 0; return (ENFILE); } if (vp->v_usecount) panic("free vnode isn't, vp %p", vp); TAILQ_REMOVE(listhd, vp, v_freelist); /* see comment on why 0xdeadb is set at end of vgone (below) */ vp->v_freelist.tqe_prev = (struct vnode **)0xdeadb; simple_unlock(&vnode_free_list_slock); vp->v_lease = NULL; if (vp->v_type != VBAD) vgonel(vp, p); else simple_unlock(&vp->v_interlock); #ifdef DIAGNOSTIC if (vp->v_data || vp->v_uobj.uo_npages || TAILQ_FIRST(&vp->v_uobj.memq)) panic("cleaned vnode isn't, vp %p", vp); if (vp->v_numoutput) panic("clean vnode has pending I/O's, vp %p", vp); #endif KASSERT((vp->v_flag & VONWORKLST) == 0); vp->v_flag = 0; vp->v_socket = NULL; } vp->v_type = VNON; vp->v_vnlock = &vp->v_lock; lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0); cache_purge(vp); vp->v_tag = tag; vp->v_op = vops; insmntque(vp, mp); *vpp = vp; vp->v_usecount = 1; vp->v_data = 0; simple_lock_init(&vp->v_uobj.vmobjlock); /* * initialize uvm_object within vnode. */ uobj = &vp->v_uobj; KASSERT(uobj->pgops == &uvm_vnodeops); KASSERT(uobj->uo_npages == 0); KASSERT(TAILQ_FIRST(&uobj->memq) == NULL); vp->v_size = VSIZENOTSET; if (mp && error != EDEADLK) vfs_unbusy(mp); return (0); } /* * This is really just the reverse of getnewvnode(). Needed for * VFS_VGET functions who may need to push back a vnode in case * of a locking race. */ void ungetnewvnode(vp) struct vnode *vp; { #ifdef DIAGNOSTIC if (vp->v_usecount != 1) panic("ungetnewvnode: busy vnode"); #endif vp->v_usecount--; insmntque(vp, NULL); vp->v_type = VBAD; simple_lock(&vp->v_interlock); /* * Insert at head of LRU list */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_HEAD(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); simple_unlock(&vp->v_interlock); } /* * Move a vnode from one mount queue to another. */ void insmntque(vp, mp) struct vnode *vp; struct mount *mp; { #ifdef DIAGNOSTIC if ((mp != NULL) && (mp->mnt_flag & MNT_UNMOUNT) && !(mp->mnt_flag & MNT_SOFTDEP) && vp->v_tag != VT_VFS) { panic("insmntque into dying filesystem"); } #endif simple_lock(&mntvnode_slock); /* * Delete from old mount point vnode list, if on one. */ if (vp->v_mount != NULL) LIST_REMOVE(vp, v_mntvnodes); /* * Insert into list of vnodes for the new mount point, if available. */ if ((vp->v_mount = mp) != NULL) LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes); simple_unlock(&mntvnode_slock); } /* * Update outstanding I/O count and do wakeup if requested. */ void vwakeup(bp) struct buf *bp; { struct vnode *vp; if ((vp = bp->b_vp) != NULL) { if (--vp->v_numoutput < 0) panic("vwakeup: neg numoutput, vp %p", vp); if ((vp->v_flag & VBWAIT) && vp->v_numoutput <= 0) { vp->v_flag &= ~VBWAIT; wakeup((caddr_t)&vp->v_numoutput); } } } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vinvalbuf(vp, flags, cred, p, slpflag, slptimeo) struct vnode *vp; int flags; struct ucred *cred; struct proc *p; int slpflag, slptimeo; { struct buf *bp, *nbp; int s, error; int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | (flags & V_SAVE ? PGO_CLEANIT : 0); /* XXXUBC this doesn't look at flags or slp* */ simple_lock(&vp->v_interlock); error = VOP_PUTPAGES(vp, 0, 0, flushflags); if (error) { return error; } if (flags & V_SAVE) { error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0, p); if (error) return (error); #ifdef DIAGNOSTIC s = splbio(); if (vp->v_numoutput > 0 || !LIST_EMPTY(&vp->v_dirtyblkhd)) panic("vinvalbuf: dirty bufs, vp %p", vp); splx(s); #endif } s = splbio(); restart: for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_flags & B_BUSY) { bp->b_flags |= B_WANTED; error = tsleep((caddr_t)bp, slpflag | (PRIBIO + 1), "vinvalbuf", slptimeo); if (error) { splx(s); return (error); } goto restart; } bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH; brelse(bp); } for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_flags & B_BUSY) { bp->b_flags |= B_WANTED; error = tsleep((caddr_t)bp, slpflag | (PRIBIO + 1), "vinvalbuf", slptimeo); if (error) { splx(s); return (error); } goto restart; } /* * XXX Since there are no node locks for NFS, I believe * there is a slight chance that a delayed write will * occur while sleeping just above, so check for it. */ if ((bp->b_flags & B_DELWRI) && (flags & V_SAVE)) { #ifdef DEBUG printf("buffer still DELWRI\n"); #endif bp->b_flags |= B_BUSY | B_VFLUSH; VOP_BWRITE(bp); goto restart; } bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH; brelse(bp); } #ifdef DIAGNOSTIC if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) panic("vinvalbuf: flush failed, vp %p", vp); #endif splx(s); return (0); } /* * Destroy any in core blocks past the truncation length. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vtruncbuf(vp, lbn, slpflag, slptimeo) struct vnode *vp; daddr_t lbn; int slpflag, slptimeo; { struct buf *bp, *nbp; int s, error; voff_t off; off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); simple_lock(&vp->v_interlock); error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); if (error) { return error; } s = splbio(); restart: for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; if (bp->b_flags & B_BUSY) { bp->b_flags |= B_WANTED; error = tsleep(bp, slpflag | (PRIBIO + 1), "vtruncbuf", slptimeo); if (error) { splx(s); return (error); } goto restart; } bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH; brelse(bp); } for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; if (bp->b_flags & B_BUSY) { bp->b_flags |= B_WANTED; error = tsleep(bp, slpflag | (PRIBIO + 1), "vtruncbuf", slptimeo); if (error) { splx(s); return (error); } goto restart; } bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH; brelse(bp); } splx(s); return (0); } void vflushbuf(vp, sync) struct vnode *vp; int sync; { struct buf *bp, *nbp; int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0); int s; simple_lock(&vp->v_interlock); (void) VOP_PUTPAGES(vp, 0, 0, flags); loop: s = splbio(); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { nbp = LIST_NEXT(bp, b_vnbufs); if ((bp->b_flags & B_BUSY)) continue; if ((bp->b_flags & B_DELWRI) == 0) panic("vflushbuf: not dirty, bp %p", bp); bp->b_flags |= B_BUSY | B_VFLUSH; splx(s); /* * Wait for I/O associated with indirect blocks to complete, * since there is no way to quickly wait for them below. */ if (bp->b_vp == vp || sync == 0) (void) bawrite(bp); else (void) bwrite(bp); goto loop; } if (sync == 0) { splx(s); return; } while (vp->v_numoutput) { vp->v_flag |= VBWAIT; tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "vflushbuf", 0); } splx(s); if (!LIST_EMPTY(&vp->v_dirtyblkhd)) { vprint("vflushbuf: dirty", vp); goto loop; } } /* * Associate a buffer with a vnode. */ void bgetvp(vp, bp) struct vnode *vp; struct buf *bp; { int s; if (bp->b_vp) panic("bgetvp: not free, bp %p", bp); VHOLD(vp); s = splbio(); bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; /* * Insert onto list for new vnode. */ bufinsvn(bp, &vp->v_cleanblkhd); splx(s); } /* * Disassociate a buffer from a vnode. */ void brelvp(bp) struct buf *bp; { struct vnode *vp; int s; if (bp->b_vp == NULL) panic("brelvp: vp NULL, bp %p", bp); s = splbio(); vp = bp->b_vp; /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_flag & VONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_flag &= ~VONWORKLST; LIST_REMOVE(vp, v_synclist); } bp->b_vp = NULL; HOLDRELE(vp); splx(s); } /* * Reassign a buffer from one vnode to another. * Used to assign file specific control information * (indirect blocks) to the vnode to which they belong. * * This function must be called at splbio(). */ void reassignbuf(bp, newvp) struct buf *bp; struct vnode *newvp; { struct buflists *listheadp; int delay; /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); /* * If dirty, put on list of dirty buffers; * otherwise insert onto list of clean buffers. */ if ((bp->b_flags & B_DELWRI) == 0) { listheadp = &newvp->v_cleanblkhd; if (TAILQ_EMPTY(&newvp->v_uobj.memq) && (newvp->v_flag & VONWORKLST) && LIST_FIRST(&newvp->v_dirtyblkhd) == NULL) { newvp->v_flag &= ~VONWORKLST; LIST_REMOVE(newvp, v_synclist); } } else { listheadp = &newvp->v_dirtyblkhd; if ((newvp->v_flag & VONWORKLST) == 0) { switch (newvp->v_type) { case VDIR: delay = dirdelay; break; case VBLK: if (newvp->v_specmountpoint != NULL) { delay = metadelay; break; } /* fall through */ default: delay = filedelay; break; } if (!newvp->v_mount || (newvp->v_mount->mnt_flag & MNT_ASYNC) == 0) vn_syncer_add_to_worklist(newvp, delay); } } bufinsvn(bp, listheadp); } /* * Create a vnode for a block device. * Used for root filesystem and swap areas. * Also used for memory file system special devices. */ int bdevvp(dev, vpp) dev_t dev; struct vnode **vpp; { return (getdevvp(dev, vpp, VBLK)); } /* * Create a vnode for a character device. * Used for kernfs and some console handling. */ int cdevvp(dev, vpp) dev_t dev; struct vnode **vpp; { return (getdevvp(dev, vpp, VCHR)); } /* * Create a vnode for a device. * Used by bdevvp (block device) for root file system etc., * and by cdevvp (character device) for console and kernfs. */ int getdevvp(dev, vpp, type) dev_t dev; struct vnode **vpp; enum vtype type; { struct vnode *vp; struct vnode *nvp; int error; if (dev == NODEV) { *vpp = NULLVP; return (0); } error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp); if (error) { *vpp = NULLVP; return (error); } vp = nvp; vp->v_type = type; if ((nvp = checkalias(vp, dev, NULL)) != 0) { vput(vp); vp = nvp; } *vpp = vp; return (0); } /* * Check to see if the new vnode represents a special device * for which we already have a vnode (either because of * bdevvp() or because of a different vnode representing * the same block device). If such an alias exists, deallocate * the existing contents and return the aliased vnode. The * caller is responsible for filling it with its new contents. */ struct vnode * checkalias(nvp, nvp_rdev, mp) struct vnode *nvp; dev_t nvp_rdev; struct mount *mp; { struct proc *p = curproc; /* XXX */ struct vnode *vp; struct vnode **vpp; if (nvp->v_type != VBLK && nvp->v_type != VCHR) return (NULLVP); vpp = &speclisth[SPECHASH(nvp_rdev)]; loop: simple_lock(&spechash_slock); for (vp = *vpp; vp; vp = vp->v_specnext) { if (nvp_rdev != vp->v_rdev || nvp->v_type != vp->v_type) continue; /* * Alias, but not in use, so flush it out. */ simple_lock(&vp->v_interlock); if (vp->v_usecount == 0) { simple_unlock(&spechash_slock); vgonel(vp, p); goto loop; } if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { simple_unlock(&spechash_slock); goto loop; } break; } if (vp == NULL || vp->v_tag != VT_NON || vp->v_type != VBLK) { MALLOC(nvp->v_specinfo, struct specinfo *, sizeof(struct specinfo), M_VNODE, M_NOWAIT); /* XXX Erg. */ if (nvp->v_specinfo == NULL) { simple_unlock(&spechash_slock); uvm_wait("checkalias"); goto loop; } nvp->v_rdev = nvp_rdev; nvp->v_hashchain = vpp; nvp->v_specnext = *vpp; nvp->v_specmountpoint = NULL; simple_unlock(&spechash_slock); nvp->v_speclockf = NULL; *vpp = nvp; if (vp != NULLVP) { nvp->v_flag |= VALIASED; vp->v_flag |= VALIASED; vput(vp); } return (NULLVP); } simple_unlock(&spechash_slock); VOP_UNLOCK(vp, 0); simple_lock(&vp->v_interlock); vclean(vp, 0, p); vp->v_op = nvp->v_op; vp->v_tag = nvp->v_tag; vp->v_vnlock = &vp->v_lock; lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0); nvp->v_type = VNON; insmntque(vp, mp); return (vp); } /* * Grab a particular vnode from the free list, increment its * reference count and lock it. If the vnode lock bit is set the * vnode is being eliminated in vgone. In that case, we can not * grab the vnode, so the process is awakened when the transition is * completed, and an error returned to indicate that the vnode is no * longer usable (possibly having been changed to a new file system type). */ int vget(vp, flags) struct vnode *vp; int flags; { int error; /* * If the vnode is in the process of being cleaned out for * another use, we wait for the cleaning to finish and then * return failure. Cleaning is determined by checking that * the VXLOCK flag is set. */ if ((flags & LK_INTERLOCK) == 0) simple_lock(&vp->v_interlock); if (vp->v_flag & VXLOCK) { if (flags & LK_NOWAIT) { simple_unlock(&vp->v_interlock); return EBUSY; } vp->v_flag |= VXWANT; ltsleep(vp, PINOD|PNORELOCK, "vget", 0, &vp->v_interlock); return (ENOENT); } if (vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_REMOVE(&vnode_hold_list, vp, v_freelist); else TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); } vp->v_usecount++; #ifdef DIAGNOSTIC if (vp->v_usecount == 0) { vprint("vget", vp); panic("vget: usecount overflow, vp %p", vp); } #endif if (flags & LK_TYPE_MASK) { if ((error = vn_lock(vp, flags | LK_INTERLOCK))) { /* * must expand vrele here because we do not want * to call VOP_INACTIVE if the reference count * drops back to zero since it was never really * active. We must remove it from the free list * before sleeping so that multiple processes do * not try to recycle it. */ simple_lock(&vp->v_interlock); vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); return (error); } /* * insert at tail of LRU list */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); simple_unlock(&vp->v_interlock); } return (error); } simple_unlock(&vp->v_interlock); return (0); } /* * vput(), just unlock and vrele() */ void vput(vp) struct vnode *vp; { struct proc *p = curproc; /* XXX */ #ifdef DIAGNOSTIC if (vp == NULL) panic("vput: null vp"); #endif simple_lock(&vp->v_interlock); vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); VOP_UNLOCK(vp, 0); return; } #ifdef DIAGNOSTIC if (vp->v_usecount < 0 || vp->v_writecount != 0) { vprint("vput: bad ref count", vp); panic("vput: ref cnt"); } #endif /* * Insert at tail of LRU list. */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); if (vp->v_flag & VEXECMAP) { uvmexp.execpages -= vp->v_uobj.uo_npages; uvmexp.filepages += vp->v_uobj.uo_npages; } vp->v_flag &= ~(VTEXT|VEXECMAP); simple_unlock(&vp->v_interlock); VOP_INACTIVE(vp, p); } /* * Vnode release. * If count drops to zero, call inactive routine and return to freelist. */ void vrele(vp) struct vnode *vp; { struct proc *p = curproc; /* XXX */ #ifdef DIAGNOSTIC if (vp == NULL) panic("vrele: null vp"); #endif simple_lock(&vp->v_interlock); vp->v_usecount--; if (vp->v_usecount > 0) { simple_unlock(&vp->v_interlock); return; } #ifdef DIAGNOSTIC if (vp->v_usecount < 0 || vp->v_writecount != 0) { vprint("vrele: bad ref count", vp); panic("vrele: ref cnt vp %p", vp); } #endif /* * Insert at tail of LRU list. */ simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); else TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); if (vp->v_flag & VEXECMAP) { uvmexp.execpages -= vp->v_uobj.uo_npages; uvmexp.filepages += vp->v_uobj.uo_npages; } vp->v_flag &= ~(VTEXT|VEXECMAP); if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0) VOP_INACTIVE(vp, p); } #ifdef DIAGNOSTIC /* * Page or buffer structure gets a reference. */ void vhold(vp) struct vnode *vp; { /* * If it is on the freelist and the hold count is currently * zero, move it to the hold list. The test of the back * pointer and the use reference count of zero is because * it will be removed from a free list by getnewvnode, * but will not have its reference count incremented until * after calling vgone. If the reference count were * incremented first, vgone would (incorrectly) try to * close the previous instance of the underlying object. * So, the back pointer is explicitly set to `0xdeadb' in * getnewvnode after removing it from a freelist to ensure * that we do not try to move it here. */ simple_lock(&vp->v_interlock); if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb) && vp->v_holdcnt == 0 && vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); } vp->v_holdcnt++; simple_unlock(&vp->v_interlock); } /* * Page or buffer structure frees a reference. */ void holdrele(vp) struct vnode *vp; { simple_lock(&vp->v_interlock); if (vp->v_holdcnt <= 0) panic("holdrele: holdcnt vp %p", vp); vp->v_holdcnt--; /* * If it is on the holdlist and the hold count drops to * zero, move it to the free list. The test of the back * pointer and the use reference count of zero is because * it will be removed from a free list by getnewvnode, * but will not have its reference count incremented until * after calling vgone. If the reference count were * incremented first, vgone would (incorrectly) try to * close the previous instance of the underlying object. * So, the back pointer is explicitly set to `0xdeadb' in * getnewvnode after removing it from a freelist to ensure * that we do not try to move it here. */ if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb) && vp->v_holdcnt == 0 && vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); TAILQ_REMOVE(&vnode_hold_list, vp, v_freelist); TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); } simple_unlock(&vp->v_interlock); } /* * Vnode reference. */ void vref(vp) struct vnode *vp; { simple_lock(&vp->v_interlock); if (vp->v_usecount <= 0) panic("vref used where vget required, vp %p", vp); vp->v_usecount++; #ifdef DIAGNOSTIC if (vp->v_usecount == 0) { vprint("vref", vp); panic("vref: usecount overflow, vp %p", vp); } #endif simple_unlock(&vp->v_interlock); } #endif /* DIAGNOSTIC */ /* * Remove any vnodes in the vnode table belonging to mount point mp. * * If MNT_NOFORCE is specified, there should not be any active ones, * return error if any are found (nb: this is a user error, not a * system error). If MNT_FORCE is specified, detach any active vnodes * that are found. */ #ifdef DEBUG int busyprt = 0; /* print out busy vnodes */ struct ctldebug debug1 = { "busyprt", &busyprt }; #endif int vflush(mp, skipvp, flags) struct mount *mp; struct vnode *skipvp; int flags; { struct proc *p = curproc; /* XXX */ struct vnode *vp, *nvp; int busy = 0; simple_lock(&mntvnode_slock); loop: for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { if (vp->v_mount != mp) goto loop; nvp = LIST_NEXT(vp, v_mntvnodes); /* * Skip over a selected vnode. */ if (vp == skipvp) continue; simple_lock(&vp->v_interlock); /* * Skip over a vnodes marked VSYSTEM. */ if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) { simple_unlock(&vp->v_interlock); continue; } /* * If WRITECLOSE is set, only flush out regular file * vnodes open for writing. */ if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG)) { simple_unlock(&vp->v_interlock); continue; } /* * With v_usecount == 0, all we need to do is clear * out the vnode data structures and we are done. */ if (vp->v_usecount == 0) { simple_unlock(&mntvnode_slock); vgonel(vp, p); simple_lock(&mntvnode_slock); continue; } /* * If FORCECLOSE is set, forcibly close the vnode. * For block or character devices, revert to an * anonymous device. For all other files, just kill them. */ if (flags & FORCECLOSE) { simple_unlock(&mntvnode_slock); if (vp->v_type != VBLK && vp->v_type != VCHR) { vgonel(vp, p); } else { vclean(vp, 0, p); vp->v_op = spec_vnodeop_p; insmntque(vp, (struct mount *)0); } simple_lock(&mntvnode_slock); continue; } #ifdef DEBUG if (busyprt) vprint("vflush: busy vnode", vp); #endif simple_unlock(&vp->v_interlock); busy++; } simple_unlock(&mntvnode_slock); if (busy) return (EBUSY); return (0); } /* * Disassociate the underlying file system from a vnode. */ void vclean(vp, flags, p) struct vnode *vp; int flags; struct proc *p; { int active; LOCK_ASSERT(simple_lock_held(&vp->v_interlock)); /* * Check to see if the vnode is in use. * If so we have to reference it before we clean it out * so that its count cannot fall to zero and generate a * race against ourselves to recycle it. */ if ((active = vp->v_usecount) != 0) { vp->v_usecount++; #ifdef DIAGNOSTIC if (vp->v_usecount == 0) { vprint("vclean", vp); panic("vclean: usecount overflow"); } #endif } /* * Prevent the vnode from being recycled or * brought into use while we clean it out. */ if (vp->v_flag & VXLOCK) panic("vclean: deadlock, vp %p", vp); vp->v_flag |= VXLOCK; if (vp->v_flag & VEXECMAP) { uvmexp.execpages -= vp->v_uobj.uo_npages; uvmexp.filepages += vp->v_uobj.uo_npages; } vp->v_flag &= ~(VTEXT|VEXECMAP); /* * Even if the count is zero, the VOP_INACTIVE routine may still * have the object locked while it cleans it out. The VOP_LOCK * ensures that the VOP_INACTIVE routine is done with its work. * For active vnodes, it ensures that no other activity can * occur while the underlying object is being cleaned out. */ VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK); /* * Clean out any cached data associated with the vnode. */ if (flags & DOCLOSE) { vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0); KASSERT((vp->v_flag & VONWORKLST) == 0); } LOCK_ASSERT(!simple_lock_held(&vp->v_interlock)); /* * If purging an active vnode, it must be closed and * deactivated before being reclaimed. Note that the * VOP_INACTIVE will unlock the vnode. */ if (active) { if (flags & DOCLOSE) VOP_CLOSE(vp, FNONBLOCK, NOCRED, NULL); VOP_INACTIVE(vp, p); } else { /* * Any other processes trying to obtain this lock must first * wait for VXLOCK to clear, then call the new lock operation. */ VOP_UNLOCK(vp, 0); } /* * Reclaim the vnode. */ if (VOP_RECLAIM(vp, p)) panic("vclean: cannot reclaim, vp %p", vp); if (active) { /* * Inline copy of vrele() since VOP_INACTIVE * has already been called. */ simple_lock(&vp->v_interlock); if (--vp->v_usecount <= 0) { #ifdef DIAGNOSTIC if (vp->v_usecount < 0 || vp->v_writecount != 0) { vprint("vclean: bad ref count", vp); panic("vclean: ref cnt"); } #endif /* * Insert at tail of LRU list. */ simple_unlock(&vp->v_interlock); simple_lock(&vnode_free_list_slock); #ifdef DIAGNOSTIC if (vp->v_holdcnt > 0) panic("vclean: not clean, vp %p", vp); #endif TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist); simple_unlock(&vnode_free_list_slock); } else simple_unlock(&vp->v_interlock); } KASSERT(vp->v_uobj.uo_npages == 0); cache_purge(vp); /* * Done with purge, notify sleepers of the grim news. */ vp->v_op = dead_vnodeop_p; vp->v_tag = VT_NON; simple_lock(&vp->v_interlock); vp->v_flag &= ~VXLOCK; if (vp->v_flag & VXWANT) { vp->v_flag &= ~VXWANT; simple_unlock(&vp->v_interlock); wakeup((caddr_t)vp); } else simple_unlock(&vp->v_interlock); } /* * Recycle an unused vnode to the front of the free list. * Release the passed interlock if the vnode will be recycled. */ int vrecycle(vp, inter_lkp, p) struct vnode *vp; struct simplelock *inter_lkp; struct proc *p; { simple_lock(&vp->v_interlock); if (vp->v_usecount == 0) { if (inter_lkp) simple_unlock(inter_lkp); vgonel(vp, p); return (1); } simple_unlock(&vp->v_interlock); return (0); } /* * Eliminate all activity associated with a vnode * in preparation for reuse. */ void vgone(vp) struct vnode *vp; { struct proc *p = curproc; /* XXX */ simple_lock(&vp->v_interlock); vgonel(vp, p); } /* * vgone, with the vp interlock held. */ void vgonel(vp, p) struct vnode *vp; struct proc *p; { struct vnode *vq; struct vnode *vx; LOCK_ASSERT(simple_lock_held(&vp->v_interlock)); /* * If a vgone (or vclean) is already in progress, * wait until it is done and return. */ if (vp->v_flag & VXLOCK) { vp->v_flag |= VXWANT; ltsleep(vp, PINOD | PNORELOCK, "vgone", 0, &vp->v_interlock); return; } /* * Clean out the filesystem specific data. */ vclean(vp, DOCLOSE, p); KASSERT((vp->v_flag & VONWORKLST) == 0); /* * Delete from old mount point vnode list, if on one. */ if (vp->v_mount != NULL) insmntque(vp, (struct mount *)0); /* * If special device, remove it from special device alias list. * if it is on one. */ if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) { simple_lock(&spechash_slock); if (vp->v_hashchain != NULL) { if (*vp->v_hashchain == vp) { *vp->v_hashchain = vp->v_specnext; } else { for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_specnext != vp) continue; vq->v_specnext = vp->v_specnext; break; } if (vq == NULL) panic("missing bdev"); } if (vp->v_flag & VALIASED) { vx = NULL; for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; if (vx) break; vx = vq; } if (vx == NULL) panic("missing alias"); if (vq == NULL) vx->v_flag &= ~VALIASED; vp->v_flag &= ~VALIASED; } } simple_unlock(&spechash_slock); FREE(vp->v_specinfo, M_VNODE); vp->v_specinfo = NULL; } /* * If it is on the freelist and not already at the head, * move it to the head of the list. The test of the back * pointer and the reference count of zero is because * it will be removed from the free list by getnewvnode, * but will not have its reference count incremented until * after calling vgone. If the reference count were * incremented first, vgone would (incorrectly) try to * close the previous instance of the underlying object. * So, the back pointer is explicitly set to `0xdeadb' in * getnewvnode after removing it from the freelist to ensure * that we do not try to move it here. */ if (vp->v_usecount == 0) { simple_lock(&vnode_free_list_slock); if (vp->v_holdcnt > 0) panic("vgonel: not clean, vp %p", vp); if (vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb && TAILQ_FIRST(&vnode_free_list) != vp) { TAILQ_REMOVE(&vnode_free_list, vp, v_freelist); TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist); } simple_unlock(&vnode_free_list_slock); } vp->v_type = VBAD; } /* * Lookup a vnode by device number. */ int vfinddev(dev, type, vpp) dev_t dev; enum vtype type; struct vnode **vpp; { struct vnode *vp; int rc = 0; simple_lock(&spechash_slock); for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) { if (dev != vp->v_rdev || type != vp->v_type) continue; *vpp = vp; rc = 1; break; } simple_unlock(&spechash_slock); return (rc); } /* * Revoke all the vnodes corresponding to the specified minor number * range (endpoints inclusive) of the specified major. */ void vdevgone(maj, minl, minh, type) int maj, minl, minh; enum vtype type; { struct vnode *vp; int mn; for (mn = minl; mn <= minh; mn++) if (vfinddev(makedev(maj, mn), type, &vp)) VOP_REVOKE(vp, REVOKEALL); } /* * Calculate the total number of references to a special device. */ int vcount(vp) struct vnode *vp; { struct vnode *vq, *vnext; int count; loop: if ((vp->v_flag & VALIASED) == 0) return (vp->v_usecount); simple_lock(&spechash_slock); for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) { vnext = vq->v_specnext; if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; /* * Alias, but not in use, so flush it out. */ if (vq->v_usecount == 0 && vq != vp && (vq->v_flag & VXLOCK) == 0) { simple_unlock(&spechash_slock); vgone(vq); goto loop; } count += vq->v_usecount; } simple_unlock(&spechash_slock); return (count); } /* * Print out a description of a vnode. */ static const char * const typename[] = { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD" }; void vprint(label, vp) char *label; struct vnode *vp; { char buf[96]; if (label != NULL) printf("%s: ", label); printf("tag %d type %s, usecount %d, writecount %ld, refcount %ld,", vp->v_tag, typename[vp->v_type], vp->v_usecount, vp->v_writecount, vp->v_holdcnt); buf[0] = '\0'; if (vp->v_flag & VROOT) strcat(buf, "|VROOT"); if (vp->v_flag & VTEXT) strcat(buf, "|VTEXT"); if (vp->v_flag & VEXECMAP) strcat(buf, "|VEXECMAP"); if (vp->v_flag & VSYSTEM) strcat(buf, "|VSYSTEM"); if (vp->v_flag & VXLOCK) strcat(buf, "|VXLOCK"); if (vp->v_flag & VXWANT) strcat(buf, "|VXWANT"); if (vp->v_flag & VBWAIT) strcat(buf, "|VBWAIT"); if (vp->v_flag & VALIASED) strcat(buf, "|VALIASED"); if (buf[0] != '\0') printf(" flags (%s)", &buf[1]); if (vp->v_data == NULL) { printf("\n"); } else { printf("\n\t"); VOP_PRINT(vp); } } #ifdef DEBUG /* * List all of the locked vnodes in the system. * Called when debugging the kernel. */ void printlockedvnodes() { struct mount *mp, *nmp; struct vnode *vp; printf("Locked vnodes\n"); simple_lock(&mountlist_slock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) { nmp = CIRCLEQ_NEXT(mp, mnt_list); continue; } LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (VOP_ISLOCKED(vp)) vprint(NULL, vp); } simple_lock(&mountlist_slock); nmp = CIRCLEQ_NEXT(mp, mnt_list); vfs_unbusy(mp); } simple_unlock(&mountlist_slock); } #endif /* * Top level filesystem related information gathering. */ int vfs_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p) int *name; u_int namelen; void *oldp; size_t *oldlenp; void *newp; size_t newlen; struct proc *p; { #if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44) struct vfsconf vfc; extern const char * const mountcompatnames[]; extern int nmountcompatnames; #endif struct vfsops *vfsp; /* all sysctl names at this level are at least name and field */ if (namelen < 2) return (ENOTDIR); /* overloaded */ /* Not generic: goes to file system. */ if (name[0] != VFS_GENERIC) { static const struct ctlname vfsnames[VFS_MAXID+1]=CTL_VFS_NAMES; const char *vfsname; if (name[0] < 0 || name[0] > VFS_MAXID || (vfsname = vfsnames[name[0]].ctl_name) == NULL) return (EOPNOTSUPP); vfsp = vfs_getopsbyname(vfsname); if (vfsp == NULL || vfsp->vfs_sysctl == NULL) return (EOPNOTSUPP); return ((*vfsp->vfs_sysctl)(&name[1], namelen - 1, oldp, oldlenp, newp, newlen, p)); } /* The rest are generic vfs sysctls. */ switch (name[1]) { case VFS_USERMOUNT: return sysctl_int(oldp, oldlenp, newp, newlen, &dovfsusermount); #if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44) case VFS_MAXTYPENUM: /* * Provided for 4.4BSD-Lite2 compatibility. */ return (sysctl_rdint(oldp, oldlenp, newp, nmountcompatnames)); case VFS_CONF: /* * Special: a node, next is a file system name. * Provided for 4.4BSD-Lite2 compatibility. */ if (namelen < 3) return (ENOTDIR); /* overloaded */ if (name[2] >= nmountcompatnames || name[2] < 0 || mountcompatnames[name[2]] == NULL) return (EOPNOTSUPP); vfsp = vfs_getopsbyname(mountcompatnames[name[2]]); if (vfsp == NULL) return (EOPNOTSUPP); vfc.vfc_vfsops = vfsp; strncpy(vfc.vfc_name, vfsp->vfs_name, MFSNAMELEN); vfc.vfc_typenum = name[2]; vfc.vfc_refcount = vfsp->vfs_refcount; vfc.vfc_flags = 0; vfc.vfc_mountroot = vfsp->vfs_mountroot; vfc.vfc_next = NULL; return (sysctl_rdstruct(oldp, oldlenp, newp, &vfc, sizeof(struct vfsconf))); #endif default: break; } return (EOPNOTSUPP); } int kinfo_vdebug = 1; int kinfo_vgetfailed; #define KINFO_VNODESLOP 10 /* * Dump vnode list (via sysctl). * Copyout address of vnode followed by vnode. */ /* ARGSUSED */ int sysctl_vnode(where, sizep, p) char *where; size_t *sizep; struct proc *p; { struct mount *mp, *nmp; struct vnode *nvp, *vp; char *bp = where, *savebp; char *ewhere; int error; #define VPTRSZ sizeof(struct vnode *) #define VNODESZ sizeof(struct vnode) if (where == NULL) { *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); return (0); } ewhere = where + *sizep; simple_lock(&mountlist_slock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) { nmp = CIRCLEQ_NEXT(mp, mnt_list); continue; } savebp = bp; again: simple_lock(&mntvnode_slock); for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) { /* * Check that the vp is still associated with * this filesystem. RACE: could have been * recycled onto the same filesystem. */ if (vp->v_mount != mp) { simple_unlock(&mntvnode_slock); if (kinfo_vdebug) printf("kinfo: vp changed\n"); bp = savebp; goto again; } nvp = LIST_NEXT(vp, v_mntvnodes); if (bp + VPTRSZ + VNODESZ > ewhere) { simple_unlock(&mntvnode_slock); *sizep = bp - where; return (ENOMEM); } simple_unlock(&mntvnode_slock); if ((error = copyout((caddr_t)&vp, bp, VPTRSZ)) || (error = copyout((caddr_t)vp, bp + VPTRSZ, VNODESZ))) return (error); bp += VPTRSZ + VNODESZ; simple_lock(&mntvnode_slock); } simple_unlock(&mntvnode_slock); simple_lock(&mountlist_slock); nmp = CIRCLEQ_NEXT(mp, mnt_list); vfs_unbusy(mp); } simple_unlock(&mountlist_slock); *sizep = bp - where; return (0); } /* * Check to see if a filesystem is mounted on a block device. */ int vfs_mountedon(vp) struct vnode *vp; { struct vnode *vq; int error = 0; if (vp->v_specmountpoint != NULL) return (EBUSY); if (vp->v_flag & VALIASED) { simple_lock(&spechash_slock); for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) { if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type) continue; if (vq->v_specmountpoint != NULL) { error = EBUSY; break; } } simple_unlock(&spechash_slock); } return (error); } /* * Build hash lists of net addresses and hang them off the mount point. * Called by ufs_mount() to set up the lists of export addresses. */ static int vfs_hang_addrlist(mp, nep, argp) struct mount *mp; struct netexport *nep; struct export_args *argp; { struct netcred *np, *enp; struct radix_node_head *rnh; int i; struct radix_node *rn; struct sockaddr *saddr, *smask = 0; struct domain *dom; int error; if (argp->ex_addrlen == 0) { if (mp->mnt_flag & MNT_DEFEXPORTED) return (EPERM); np = &nep->ne_defexported; np->netc_exflags = argp->ex_flags; crcvt(&np->netc_anon, &argp->ex_anon); np->netc_anon.cr_ref = 1; mp->mnt_flag |= MNT_DEFEXPORTED; return (0); } if (argp->ex_addrlen > MLEN) return (EINVAL); i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen; np = (struct netcred *)malloc(i, M_NETADDR, M_WAITOK); memset((caddr_t)np, 0, i); saddr = (struct sockaddr *)(np + 1); error = copyin(argp->ex_addr, (caddr_t)saddr, argp->ex_addrlen); if (error) goto out; if (saddr->sa_len > argp->ex_addrlen) saddr->sa_len = argp->ex_addrlen; if (argp->ex_masklen) { smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen); error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen); if (error) goto out; if (smask->sa_len > argp->ex_masklen) smask->sa_len = argp->ex_masklen; } i = saddr->sa_family; if ((rnh = nep->ne_rtable[i]) == 0) { /* * Seems silly to initialize every AF when most are not * used, do so on demand here */ for (dom = domains; dom; dom = dom->dom_next) if (dom->dom_family == i && dom->dom_rtattach) { dom->dom_rtattach((void **)&nep->ne_rtable[i], dom->dom_rtoffset); break; } if ((rnh = nep->ne_rtable[i]) == 0) { error = ENOBUFS; goto out; } } rn = (*rnh->rnh_addaddr)((caddr_t)saddr, (caddr_t)smask, rnh, np->netc_rnodes); if (rn == 0 || np != (struct netcred *)rn) { /* already exists */ if (rn == 0) { enp = (struct netcred *)(*rnh->rnh_lookup)(saddr, smask, rnh); if (enp == 0) { error = EPERM; goto out; } } else enp = (struct netcred *)rn; if (enp->netc_exflags != argp->ex_flags || enp->netc_anon.cr_uid != argp->ex_anon.cr_uid || enp->netc_anon.cr_gid != argp->ex_anon.cr_gid || enp->netc_anon.cr_ngroups != (uint32_t) argp->ex_anon.cr_ngroups || memcmp(&enp->netc_anon.cr_groups, &argp->ex_anon.cr_groups, enp->netc_anon.cr_ngroups)) error = EPERM; else error = 0; goto out; } np->netc_exflags = argp->ex_flags; crcvt(&np->netc_anon, &argp->ex_anon); np->netc_anon.cr_ref = 1; return (0); out: free(np, M_NETADDR); return (error); } /* ARGSUSED */ static int vfs_free_netcred(rn, w) struct radix_node *rn; void *w; { struct radix_node_head *rnh = (struct radix_node_head *)w; (*rnh->rnh_deladdr)(rn->rn_key, rn->rn_mask, rnh); free((caddr_t)rn, M_NETADDR); return (0); } /* * Free the net address hash lists that are hanging off the mount points. */ static void vfs_free_addrlist(nep) struct netexport *nep; { int i; struct radix_node_head *rnh; for (i = 0; i <= AF_MAX; i++) if ((rnh = nep->ne_rtable[i]) != NULL) { (*rnh->rnh_walktree)(rnh, vfs_free_netcred, rnh); free((caddr_t)rnh, M_RTABLE); nep->ne_rtable[i] = 0; } } int vfs_export(mp, nep, argp) struct mount *mp; struct netexport *nep; struct export_args *argp; { int error; if (argp->ex_flags & MNT_DELEXPORT) { if (mp->mnt_flag & MNT_EXPUBLIC) { vfs_setpublicfs(NULL, NULL, NULL); mp->mnt_flag &= ~MNT_EXPUBLIC; } vfs_free_addrlist(nep); mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED); } if (argp->ex_flags & MNT_EXPORTED) { if (argp->ex_flags & MNT_EXPUBLIC) { if ((error = vfs_setpublicfs(mp, nep, argp)) != 0) return (error); mp->mnt_flag |= MNT_EXPUBLIC; } if ((error = vfs_hang_addrlist(mp, nep, argp)) != 0) return (error); mp->mnt_flag |= MNT_EXPORTED; } return (0); } /* * Set the publicly exported filesystem (WebNFS). Currently, only * one public filesystem is possible in the spec (RFC 2054 and 2055) */ int vfs_setpublicfs(mp, nep, argp) struct mount *mp; struct netexport *nep; struct export_args *argp; { int error; struct vnode *rvp; char *cp; /* * mp == NULL -> invalidate the current info, the FS is * no longer exported. May be called from either vfs_export * or unmount, so check if it hasn't already been done. */ if (mp == NULL) { if (nfs_pub.np_valid) { nfs_pub.np_valid = 0; if (nfs_pub.np_index != NULL) { FREE(nfs_pub.np_index, M_TEMP); nfs_pub.np_index = NULL; } } return (0); } /* * Only one allowed at a time. */ if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount) return (EBUSY); /* * Get real filehandle for root of exported FS. */ memset((caddr_t)&nfs_pub.np_handle, 0, sizeof(nfs_pub.np_handle)); nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid; if ((error = VFS_ROOT(mp, &rvp))) return (error); if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid))) return (error); vput(rvp); /* * If an indexfile was specified, pull it in. */ if (argp->ex_indexfile != NULL) { MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP, M_WAITOK); error = copyinstr(argp->ex_indexfile, nfs_pub.np_index, MAXNAMLEN, (size_t *)0); if (!error) { /* * Check for illegal filenames. */ for (cp = nfs_pub.np_index; *cp; cp++) { if (*cp == '/') { error = EINVAL; break; } } } if (error) { FREE(nfs_pub.np_index, M_TEMP); return (error); } } nfs_pub.np_mount = mp; nfs_pub.np_valid = 1; return (0); } struct netcred * vfs_export_lookup(mp, nep, nam) struct mount *mp; struct netexport *nep; struct mbuf *nam; { struct netcred *np; struct radix_node_head *rnh; struct sockaddr *saddr; np = NULL; if (mp->mnt_flag & MNT_EXPORTED) { /* * Lookup in the export list first. */ if (nam != NULL) { saddr = mtod(nam, struct sockaddr *); rnh = nep->ne_rtable[saddr->sa_family]; if (rnh != NULL) { np = (struct netcred *) (*rnh->rnh_matchaddr)((caddr_t)saddr, rnh); if (np && np->netc_rnodes->rn_flags & RNF_ROOT) np = NULL; } } /* * If no address match, use the default if it exists. */ if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED) np = &nep->ne_defexported; } return (np); } /* * Do the usual access checking. * file_mode, uid and gid are from the vnode in question, * while acc_mode and cred are from the VOP_ACCESS parameter list */ int vaccess(type, file_mode, uid, gid, acc_mode, cred) enum vtype type; mode_t file_mode; uid_t uid; gid_t gid; mode_t acc_mode; struct ucred *cred; { mode_t mask; /* * Super-user always gets read/write access, but execute access depends * on at least one execute bit being set. */ if (cred->cr_uid == 0) { if ((acc_mode & VEXEC) && type != VDIR && (file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0) return (EACCES); return (0); } mask = 0; /* Otherwise, check the owner. */ if (cred->cr_uid == uid) { if (acc_mode & VEXEC) mask |= S_IXUSR; if (acc_mode & VREAD) mask |= S_IRUSR; if (acc_mode & VWRITE) mask |= S_IWUSR; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check the groups. */ if (cred->cr_gid == gid || groupmember(gid, cred)) { if (acc_mode & VEXEC) mask |= S_IXGRP; if (acc_mode & VREAD) mask |= S_IRGRP; if (acc_mode & VWRITE) mask |= S_IWGRP; return ((file_mode & mask) == mask ? 0 : EACCES); } /* Otherwise, check everyone else. */ if (acc_mode & VEXEC) mask |= S_IXOTH; if (acc_mode & VREAD) mask |= S_IROTH; if (acc_mode & VWRITE) mask |= S_IWOTH; return ((file_mode & mask) == mask ? 0 : EACCES); } /* * Unmount all file systems. * We traverse the list in reverse order under the assumption that doing so * will avoid needing to worry about dependencies. */ void vfs_unmountall(p) struct proc *p; { struct mount *mp, *nmp; int allerror, error; for (allerror = 0, mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) { nmp = mp->mnt_list.cqe_prev; #ifdef DEBUG printf("unmounting %s (%s)...\n", mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname); #endif /* * XXX Freeze syncer. Must do this before locking the * mount point. See dounmount() for details. */ lockmgr(&syncer_lock, LK_EXCLUSIVE, NULL); if (vfs_busy(mp, 0, 0)) { lockmgr(&syncer_lock, LK_RELEASE, NULL); continue; } if ((error = dounmount(mp, MNT_FORCE, p)) != 0) { printf("unmount of %s failed with error %d\n", mp->mnt_stat.f_mntonname, error); allerror = 1; } } if (allerror) printf("WARNING: some file systems would not unmount\n"); } /* * Sync and unmount file systems before shutting down. */ void vfs_shutdown() { struct buf *bp; int iter, nbusy, nbusy_prev = 0, dcount, s; struct proc *p = curproc; /* XXX we're certainly not running in proc0's context! */ if (p == NULL) p = &proc0; printf("syncing disks... "); /* remove user process from run queue */ suspendsched(); (void) spl0(); /* avoid coming back this way again if we panic. */ doing_shutdown = 1; sys_sync(p, NULL, NULL); /* Wait for sync to finish. */ dcount = 10000; for (iter = 0; iter < 20;) { nbusy = 0; for (bp = &buf[nbuf]; --bp >= buf; ) { if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) nbusy++; /* * With soft updates, some buffers that are * written will be remarked as dirty until other * buffers are written. */ if (bp->b_vp && bp->b_vp->v_mount && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) && (bp->b_flags & B_DELWRI)) { s = splbio(); bremfree(bp); bp->b_flags |= B_BUSY; splx(s); nbusy++; bawrite(bp); if (dcount-- <= 0) { printf("softdep "); goto fail; } } } if (nbusy == 0) break; if (nbusy_prev == 0) nbusy_prev = nbusy; printf("%d ", nbusy); tsleep(&nbusy, PRIBIO, "bflush", (iter == 0) ? 1 : hz / 25 * iter); if (nbusy >= nbusy_prev) /* we didn't flush anything */ iter++; else nbusy_prev = nbusy; } if (nbusy) { fail: #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) printf("giving up\nPrinting vnodes for busy buffers\n"); for (bp = &buf[nbuf]; --bp >= buf; ) if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) vprint(NULL, bp->b_vp); #if defined(DDB) && defined(DEBUG_HALT_BUSY) Debugger(); #endif #else /* defined(DEBUG) || defined(DEBUG_HALT_BUSY) */ printf("giving up\n"); #endif /* defined(DEBUG) || defined(DEBUG_HALT_BUSY) */ return; } else printf("done\n"); /* * If we've panic'd, don't make the situation potentially * worse by unmounting the file systems. */ if (panicstr != NULL) return; /* Release inodes held by texts before update. */ #ifdef notdef vnshutdown(); #endif /* Unmount file systems. */ vfs_unmountall(p); } /* * Mount the root file system. If the operator didn't specify a * file system to use, try all possible file systems until one * succeeds. */ int vfs_mountroot() { struct vfsops *v; if (root_device == NULL) panic("vfs_mountroot: root device unknown"); switch (root_device->dv_class) { case DV_IFNET: if (rootdev != NODEV) panic("vfs_mountroot: rootdev set for DV_IFNET " "(0x%08x -> %d,%d)", rootdev, major(rootdev), minor(rootdev)); break; case DV_DISK: if (rootdev == NODEV) panic("vfs_mountroot: rootdev not set for DV_DISK"); break; default: printf("%s: inappropriate for root file system\n", root_device->dv_xname); return (ENODEV); } /* * If user specified a file system, use it. */ if (mountroot != NULL) return ((*mountroot)()); /* * Try each file system currently configured into the kernel. */ for (v = LIST_FIRST(&vfs_list); v != NULL; v = LIST_NEXT(v, vfs_list)) { if (v->vfs_mountroot == NULL) continue; #ifdef DEBUG printf("mountroot: trying %s...\n", v->vfs_name); #endif if ((*v->vfs_mountroot)() == 0) { printf("root file system type: %s\n", v->vfs_name); break; } } if (v == NULL) { printf("no file system for %s", root_device->dv_xname); if (root_device->dv_class == DV_DISK) printf(" (dev 0x%x)", rootdev); printf("\n"); return (EFTYPE); } return (0); } /* * Given a file system name, look up the vfsops for that * file system, or return NULL if file system isn't present * in the kernel. */ struct vfsops * vfs_getopsbyname(name) const char *name; { struct vfsops *v; for (v = LIST_FIRST(&vfs_list); v != NULL; v = LIST_NEXT(v, vfs_list)) { if (strcmp(v->vfs_name, name) == 0) break; } return (v); } /* * Establish a file system and initialize it. */ int vfs_attach(vfs) struct vfsops *vfs; { struct vfsops *v; int error = 0; /* * Make sure this file system doesn't already exist. */ LIST_FOREACH(v, &vfs_list, vfs_list) { if (strcmp(vfs->vfs_name, v->vfs_name) == 0) { error = EEXIST; goto out; } } /* * Initialize the vnode operations for this file system. */ vfs_opv_init(vfs->vfs_opv_descs); /* * Now initialize the file system itself. */ (*vfs->vfs_init)(); /* * ...and link it into the kernel's list. */ LIST_INSERT_HEAD(&vfs_list, vfs, vfs_list); /* * Sanity: make sure the reference count is 0. */ vfs->vfs_refcount = 0; out: return (error); } /* * Remove a file system from the kernel. */ int vfs_detach(vfs) struct vfsops *vfs; { struct vfsops *v; /* * Make sure no one is using the filesystem. */ if (vfs->vfs_refcount != 0) return (EBUSY); /* * ...and remove it from the kernel's list. */ LIST_FOREACH(v, &vfs_list, vfs_list) { if (v == vfs) { LIST_REMOVE(v, vfs_list); break; } } if (v == NULL) return (ESRCH); /* * Now run the file system-specific cleanups. */ (*vfs->vfs_done)(); /* * Free the vnode operations vector. */ vfs_opv_free(vfs->vfs_opv_descs); return (0); } void vfs_reinit(void) { struct vfsops *vfs; LIST_FOREACH(vfs, &vfs_list, vfs_list) { if (vfs->vfs_reinit) { (*vfs->vfs_reinit)(); } } } #ifdef DDB const char buf_flagbits[] = "\20\1AGE\2NEEDCOMMIT\3ASYNC\4BAD\5BUSY\6SCANNED\7CALL\10DELWRI" "\11DIRTY\12DONE\13EINTR\14ERROR\15GATHERED\16INVAL\17LOCKED\20NOCACHE" "\21ORDERED\22CACHE\23PHYS\24RAW\25READ\26TAPE\30WANTED" "\32XXX\33VFLUSH"; void vfs_buf_print(bp, full, pr) struct buf *bp; int full; void (*pr) __P((const char *, ...)); { char buf[1024]; (*pr)(" vp %p lblkno 0x%x blkno 0x%x dev 0x%x\n", bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_dev); bitmask_snprintf(bp->b_flags, buf_flagbits, buf, sizeof(buf)); (*pr)(" error %d flags 0x%s\n", bp->b_error, buf); (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", bp->b_bufsize, bp->b_bcount, bp->b_resid); (*pr)(" data %p saveaddr %p dep %p\n", bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep)); (*pr)(" iodone %p\n", bp->b_iodone); } const char vnode_flagbits[] = "\20\1ROOT\2TEXT\3SYSTEM\4ISTTY\5EXECMAP" "\11XLOCK\12XWANT\13BWAIT\14ALIASED" "\15DIROP\16LAYER\17ONWORKLIST\20DIRTY"; const char *vnode_types[] = { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD", }; const char *vnode_tags[] = { "VT_NON", "VT_UFS", "VT_NFS", "VT_MFS", "VT_MSDOSFS", "VT_LFS", "VT_LOFS", "VT_FDESC", "VT_PORTAL", "VT_NULL", "VT_UMAP", "VT_KERNFS", "VT_PROCFS", "VT_AFS", "VT_ISOFS", "VT_UNION", "VT_ADOSFS", "VT_EXT2FS", "VT_CODA", "VT_FILECORE", "VT_NTFS", "VT_VFS", "VT_OVERLAY" }; void vfs_vnode_print(vp, full, pr) struct vnode *vp; int full; void (*pr) __P((const char *, ...)); { char buf[256]; const char *vtype, *vtag; int tmp; uvm_object_printit(&vp->v_uobj, full, pr); bitmask_snprintf(vp->v_flag, vnode_flagbits, buf, sizeof(buf)); (*pr)("\nVNODE flags %s\n", buf); (*pr)("mp %p numoutput %d size 0x%llx\n", vp->v_mount, vp->v_numoutput, vp->v_size); (*pr)("data %p usecount %d writecount %ld holdcnt %ld numoutput %d\n", vp->v_data, vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_numoutput); vtype = ((tmp = vp->v_type) >= 0 && vp->v_type < sizeof(vnode_types) / sizeof(vnode_types[0])) ? vnode_types[vp->v_type] : "UNKNOWN"; vtag = ((tmp = vp->v_tag) >= 0 && vp->v_tag < sizeof(vnode_tags) / sizeof(vnode_tags[0])) ? vnode_tags[vp->v_tag] : "UNKNOWN"; (*pr)("type %s(%d) tag %s(%d) id 0x%lx mount %p typedata %p\n", vtype, vp->v_type, vtag, vp->v_tag, vp->v_id, vp->v_mount, vp->v_mountedhere); if (full) { struct buf *bp; (*pr)("clean bufs:\n"); LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } (*pr)("dirty bufs:\n"); LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } } } #endif