/* $NetBSD: if_bce.c,v 1.58 2020/02/07 00:04:28 thorpej Exp $ */ /* * Copyright (c) 2003 Clifford Wright. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Broadcom BCM440x 10/100 ethernet (broadcom.com) * SiliconBackplane is technology from Sonics, Inc.(sonicsinc.com) * * Cliff Wright cliff@snipe444.org */ #include __KERNEL_RCSID(0, "$NetBSD: if_bce.c,v 1.58 2020/02/07 00:04:28 thorpej Exp $"); #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* transmit buffer max frags allowed */ #define BCE_NTXFRAGS 16 /* ring descriptor */ struct bce_dma_slot { uint32_t ctrl; uint32_t addr; }; #define CTRL_BC_MASK 0x1fff /* buffer byte count */ #define CTRL_EOT 0x10000000 /* end of descriptor table */ #define CTRL_IOC 0x20000000 /* interrupt on completion */ #define CTRL_EOF 0x40000000 /* end of frame */ #define CTRL_SOF 0x80000000 /* start of frame */ /* Packet status is returned in a pre-packet header */ struct rx_pph { uint16_t len; uint16_t flags; uint16_t pad[12]; }; /* packet status flags bits */ #define RXF_NO 0x8 /* odd number of nibbles */ #define RXF_RXER 0x4 /* receive symbol error */ #define RXF_CRC 0x2 /* crc error */ #define RXF_OV 0x1 /* fifo overflow */ /* number of descriptors used in a ring */ #define BCE_NRXDESC 128 #define BCE_NTXDESC 128 /* * Mbuf pointers. We need these to keep track of the virtual addresses * of our mbuf chains since we can only convert from physical to virtual, * not the other way around. */ struct bce_chain_data { struct mbuf *bce_tx_chain[BCE_NTXDESC]; struct mbuf *bce_rx_chain[BCE_NRXDESC]; bus_dmamap_t bce_tx_map[BCE_NTXDESC]; bus_dmamap_t bce_rx_map[BCE_NRXDESC]; }; #define BCE_TIMEOUT 100 /* # 10us for mii read/write */ struct bce_softc { device_t bce_dev; bus_space_tag_t bce_btag; bus_space_handle_t bce_bhandle; bus_dma_tag_t bce_dmatag; struct ethercom ethercom; /* interface info */ void *bce_intrhand; struct pci_attach_args bce_pa; struct mii_data bce_mii; uint32_t bce_phy; /* eeprom indicated phy */ struct ifmedia bce_ifmedia; /* media info *//* Check */ uint8_t enaddr[ETHER_ADDR_LEN]; struct bce_dma_slot *bce_rx_ring; /* receive ring */ struct bce_dma_slot *bce_tx_ring; /* transmit ring */ struct bce_chain_data bce_cdata; /* mbufs */ bus_dmamap_t bce_ring_map; uint32_t bce_intmask; /* current intr mask */ uint32_t bce_rxin; /* last rx descriptor seen */ uint32_t bce_txin; /* last tx descriptor seen */ int bce_txsfree; /* no. tx slots available */ int bce_txsnext; /* next available tx slot */ callout_t bce_timeout; krndsource_t rnd_source; }; /* for ring descriptors */ #define BCE_RXBUF_LEN (MCLBYTES - 4) #define BCE_INIT_RXDESC(sc, x) \ do { \ struct bce_dma_slot *__bced = &sc->bce_rx_ring[x]; \ \ *mtod(sc->bce_cdata.bce_rx_chain[x], uint32_t *) = 0; \ __bced->addr = \ htole32(sc->bce_cdata.bce_rx_map[x]->dm_segs[0].ds_addr \ + 0x40000000); \ if (x != (BCE_NRXDESC - 1)) \ __bced->ctrl = htole32(BCE_RXBUF_LEN); \ else \ __bced->ctrl = htole32(BCE_RXBUF_LEN | CTRL_EOT); \ bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, \ sizeof(struct bce_dma_slot) * x, \ sizeof(struct bce_dma_slot), \ BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \ } while (/* CONSTCOND */ 0) static int bce_probe(device_t, cfdata_t, void *); static void bce_attach(device_t, device_t, void *); static int bce_ioctl(struct ifnet *, u_long, void *); static void bce_start(struct ifnet *); static void bce_watchdog(struct ifnet *); static int bce_intr(void *); static void bce_rxintr(struct bce_softc *); static void bce_txintr(struct bce_softc *); static int bce_init(struct ifnet *); static void bce_add_mac(struct bce_softc *, uint8_t *, unsigned long); static int bce_add_rxbuf(struct bce_softc *, int); static void bce_rxdrain(struct bce_softc *); static void bce_stop(struct ifnet *, int); static void bce_reset(struct bce_softc *); static bool bce_resume(device_t, const pmf_qual_t *); static void bce_set_filter(struct ifnet *); static int bce_mii_read(device_t, int, int, uint16_t *); static int bce_mii_write(device_t, int, int, uint16_t); static void bce_statchg(struct ifnet *); static void bce_tick(void *); CFATTACH_DECL_NEW(bce, sizeof(struct bce_softc), bce_probe, bce_attach, NULL, NULL); static const struct bce_product { pci_vendor_id_t bp_vendor; pci_product_id_t bp_product; const char *bp_name; } bce_products[] = { { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401, "Broadcom BCM4401 10/100 Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401_B0, "Broadcom BCM4401-B0 10/100 Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401_B1, "Broadcom BCM4401-B1 10/100 Ethernet" }, { 0, 0, NULL }, }; static const struct bce_product * bce_lookup(const struct pci_attach_args * pa) { const struct bce_product *bp; for (bp = bce_products; bp->bp_name != NULL; bp++) { if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor && PCI_PRODUCT(pa->pa_id) == bp->bp_product) return (bp); } return (NULL); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against drivers product list, and return its name if a match is found. */ static int bce_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (bce_lookup(pa) != NULL) return (1); return (0); } static void bce_attach(device_t parent, device_t self, void *aux) { struct bce_softc *sc = device_private(self); struct pci_attach_args *pa = aux; const struct bce_product *bp; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; uint32_t command; pcireg_t memtype, pmode; bus_addr_t memaddr; bus_size_t memsize; void *kva; bus_dma_segment_t seg; int error, i, pmreg, rseg; uint16_t phyval; struct ifnet *ifp; struct mii_data *mii = &sc->bce_mii; char intrbuf[PCI_INTRSTR_LEN]; sc->bce_dev = self; bp = bce_lookup(pa); KASSERT(bp != NULL); sc->bce_pa = *pa; /* BCM440x can only address 30 bits (1GB) */ if (bus_dmatag_subregion(pa->pa_dmat, 0, (1 << 30), &(sc->bce_dmatag), BUS_DMA_NOWAIT) != 0) { aprint_error_dev(self, "WARNING: failed to restrict dma range," " falling back to parent bus dma range\n"); sc->bce_dmatag = pa->pa_dmat; } aprint_naive(": Ethernet controller\n"); aprint_normal(": %s\n", bp->bp_name); /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(command & PCI_COMMAND_MEM_ENABLE)) { aprint_error_dev(self, "failed to enable memory mapping!\n"); return; } memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BCE_PCI_BAR0); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: if (pci_mapreg_map(pa, BCE_PCI_BAR0, memtype, 0, &sc->bce_btag, &sc->bce_bhandle, &memaddr, &memsize) == 0) break; /* FALLTHROUGH */ default: aprint_error_dev(self, "unable to find mem space\n"); return; } /* Get it out of power save mode if needed. */ if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, NULL)) { pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) & PCI_PMCSR_STATE_MASK; if (pmode == PCI_PMCSR_STATE_D3) { /* * The card has lost all configuration data in * this state, so punt. */ aprint_error_dev(self, "unable to wake up from power state D3\n"); return; } if (pmode != PCI_PMCSR_STATE_D0) { aprint_normal_dev(self, "waking up from power state D%d\n", pmode); pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR, 0); } } if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->bce_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bce_intr, sc, device_xname(self)); if (sc->bce_intrhand == NULL) { aprint_error_dev(self, "couldn't establish interrupt\n"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); /* reset the chip */ bce_reset(sc); /* * Allocate DMA-safe memory for ring descriptors. * The receive, and transmit rings can not share the same * 4k space, however both are allocated at once here. */ /* * XXX PAGE_SIZE is wasteful; we only need 1KB + 1KB, but * due to the limition above. ?? */ if ((error = bus_dmamem_alloc(sc->bce_dmatag, 2 * PAGE_SIZE, PAGE_SIZE, 2 * PAGE_SIZE, &seg, 1, &rseg, BUS_DMA_NOWAIT))) { aprint_error_dev(self, "unable to alloc space for ring descriptors, error = %d\n", error); return; } /* map ring space to kernel */ if ((error = bus_dmamem_map(sc->bce_dmatag, &seg, rseg, 2 * PAGE_SIZE, &kva, BUS_DMA_NOWAIT))) { aprint_error_dev(self, "unable to map DMA buffers, error = %d\n", error); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* create a dma map for the ring */ if ((error = bus_dmamap_create(sc->bce_dmatag, 2 * PAGE_SIZE, 1, 2 * PAGE_SIZE, 0, BUS_DMA_NOWAIT, &sc->bce_ring_map))) { aprint_error_dev(self, "unable to create ring DMA map, error = %d\n", error); bus_dmamem_unmap(sc->bce_dmatag, kva, 2 * PAGE_SIZE); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* connect the ring space to the dma map */ if (bus_dmamap_load(sc->bce_dmatag, sc->bce_ring_map, kva, 2 * PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->bce_dmatag, sc->bce_ring_map); bus_dmamem_unmap(sc->bce_dmatag, kva, 2 * PAGE_SIZE); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* save the ring space in softc */ sc->bce_rx_ring = (struct bce_dma_slot *) kva; sc->bce_tx_ring = (struct bce_dma_slot *) ((char *)kva + PAGE_SIZE); /* Create the transmit buffer DMA maps. */ for (i = 0; i < BCE_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->bce_dmatag, MCLBYTES, BCE_NTXFRAGS, MCLBYTES, 0, 0, &sc->bce_cdata.bce_tx_map[i])) != 0) { aprint_error_dev(self, "unable to create tx DMA map, error = %d\n", error); } sc->bce_cdata.bce_tx_chain[i] = NULL; } /* Create the receive buffer DMA maps. */ for (i = 0; i < BCE_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->bce_dmatag, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->bce_cdata.bce_rx_map[i])) != 0) { aprint_error_dev(self, "unable to create rx DMA map, error = %d\n", error); } sc->bce_cdata.bce_rx_chain[i] = NULL; } /* Set up ifnet structure */ ifp = &sc->ethercom.ec_if; strcpy(ifp->if_xname, device_xname(self)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bce_ioctl; ifp->if_start = bce_start; ifp->if_watchdog = bce_watchdog; ifp->if_init = bce_init; ifp->if_stop = bce_stop; IFQ_SET_READY(&ifp->if_snd); sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; /* Initialize our media structures and probe the MII. */ mii->mii_ifp = ifp; mii->mii_readreg = bce_mii_read; mii->mii_writereg = bce_mii_write; mii->mii_statchg = bce_statchg; sc->ethercom.ec_mii = mii; ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); mii_attach(sc->bce_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG|MIIF_DOPAUSE); if (LIST_FIRST(&mii->mii_phys) == NULL) { ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); /* get the phy */ sc->bce_phy = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_PHY) & 0x1f; /* * Enable activity led. * XXX This should be in a phy driver, but not currently. */ bce_mii_read(sc->bce_dev, 1, 26, &phyval); bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */ phyval & 0x7fff); /* MAGIC */ /* enable traffic meter led mode */ bce_mii_read(sc->bce_dev, 1, 27, &phyval); bce_mii_write(sc->bce_dev, 1, 27, /* MAGIC */ phyval | (1 << 6)); /* MAGIC */ /* Attach the interface */ if_attach(ifp); if_deferred_start_init(ifp, NULL); sc->enaddr[0] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET0); sc->enaddr[1] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET1); sc->enaddr[2] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET2); sc->enaddr[3] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET3); sc->enaddr[4] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET4); sc->enaddr[5] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_MAGIC_ENET5); aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(sc->enaddr)); ether_ifattach(ifp, sc->enaddr); rnd_attach_source(&sc->rnd_source, device_xname(self), RND_TYPE_NET, RND_FLAG_DEFAULT); callout_init(&sc->bce_timeout, 0); callout_setfunc(&sc->bce_timeout, bce_tick, sc); if (pmf_device_register(self, NULL, bce_resume)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); } /* handle media, and ethernet requests */ static int bce_ioctl(struct ifnet *ifp, u_long cmd, void *data) { int s, error; s = splnet(); error = ether_ioctl(ifp, cmd, data); if (error == ENETRESET) { /* change multicast list */ error = 0; } /* Try to get more packets going. */ bce_start(ifp); splx(s); return error; } /* Start packet transmission on the interface. */ static void bce_start(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct mbuf *m0; bus_dmamap_t dmamap; int txstart; int txsfree; int newpkts = 0; int error; /* * do not start another if currently transmitting, and more * descriptors(tx slots) are needed for next packet. */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* determine number of descriptors available */ if (sc->bce_txsnext >= sc->bce_txin) txsfree = BCE_NTXDESC - 1 + sc->bce_txin - sc->bce_txsnext; else txsfree = sc->bce_txin - sc->bce_txsnext - 1; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while (txsfree > 0) { int seg; /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; /* get the transmit slot dma map */ dmamap = sc->bce_cdata.bce_tx_map[sc->bce_txsnext]; /* * Load the DMA map. If this fails, the packet either * didn't fit in the alloted number of segments, or we * were short on resources. If the packet will not fit, * it will be dropped. If short on resources, it will * be tried again later. */ error = bus_dmamap_load_mbuf(sc->bce_dmatag, dmamap, m0, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error == EFBIG) { aprint_error_dev(sc->bce_dev, "Tx packet consumes too many DMA segments, " "dropping...\n"); IFQ_DEQUEUE(&ifp->if_snd, m0); m_freem(m0); if_statinc(ifp, if_oerrors); continue; } else if (error) { /* short on resources, come back later */ aprint_error_dev(sc->bce_dev, "unable to load Tx buffer, error = %d\n", error); break; } /* If not enough descriptors available, try again later */ if (dmamap->dm_nsegs > txsfree) { ifp->if_flags |= IFF_OACTIVE; bus_dmamap_unload(sc->bce_dmatag, dmamap); break; } /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* So take it off the queue */ IFQ_DEQUEUE(&ifp->if_snd, m0); /* save the pointer so it can be freed later */ sc->bce_cdata.bce_tx_chain[sc->bce_txsnext] = m0; /* Sync the data DMA map. */ bus_dmamap_sync(sc->bce_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Initialize the transmit descriptor(s). */ txstart = sc->bce_txsnext; for (seg = 0; seg < dmamap->dm_nsegs; seg++) { uint32_t ctrl; ctrl = dmamap->dm_segs[seg].ds_len & CTRL_BC_MASK; if (seg == 0) ctrl |= CTRL_SOF; if (seg == dmamap->dm_nsegs - 1) ctrl |= CTRL_EOF; if (sc->bce_txsnext == BCE_NTXDESC - 1) ctrl |= CTRL_EOT; ctrl |= CTRL_IOC; sc->bce_tx_ring[sc->bce_txsnext].ctrl = htole32(ctrl); sc->bce_tx_ring[sc->bce_txsnext].addr = htole32(dmamap->dm_segs[seg].ds_addr + 0x40000000); /* MAGIC */ if (sc->bce_txsnext + 1 > BCE_NTXDESC - 1) sc->bce_txsnext = 0; else sc->bce_txsnext++; txsfree--; } /* sync descriptors being used */ if ( sc->bce_txsnext > txstart ) { bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, PAGE_SIZE + sizeof(struct bce_dma_slot) * txstart, sizeof(struct bce_dma_slot) * dmamap->dm_nsegs, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, PAGE_SIZE + sizeof(struct bce_dma_slot) * txstart, sizeof(struct bce_dma_slot) * (BCE_NTXDESC - txstart), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if ( sc->bce_txsnext != 0 ) { bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, PAGE_SIZE, sc->bce_txsnext * sizeof(struct bce_dma_slot), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } /* Give the packet to the chip. */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_DPTR, sc->bce_txsnext * sizeof(struct bce_dma_slot)); newpkts++; /* Pass the packet to any BPF listeners. */ bpf_mtap(ifp, m0, BPF_D_OUT); } if (txsfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (newpkts) { /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* Watchdog timer handler. */ static void bce_watchdog(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; device_printf(sc->bce_dev, "device timeout\n"); if_statinc(ifp, if_oerrors); (void) bce_init(ifp); /* Try to get more packets going. */ bce_start(ifp); } int bce_intr(void *xsc) { struct bce_softc *sc; struct ifnet *ifp; uint32_t intstatus; int wantinit; int handled = 0; sc = xsc; ifp = &sc->ethercom.ec_if; for (wantinit = 0; wantinit == 0;) { intstatus = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_STS); /* ignore if not ours, or unsolicited interrupts */ intstatus &= sc->bce_intmask; if (intstatus == 0) break; handled = 1; /* Ack interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_STS, intstatus); /* Receive interrupts. */ if (intstatus & I_RI) bce_rxintr(sc); /* Transmit interrupts. */ if (intstatus & I_XI) bce_txintr(sc); /* Error interrupts */ if (intstatus & ~(I_RI | I_XI)) { const char *msg = NULL; if (intstatus & I_XU) msg = "transmit fifo underflow"; if (intstatus & I_RO) { msg = "receive fifo overflow"; if_statinc(ifp, if_ierrors); } if (intstatus & I_RU) msg = "receive descriptor underflow"; if (intstatus & I_DE) msg = "descriptor protocol error"; if (intstatus & I_PD) msg = "data error"; if (intstatus & I_PC) msg = "descriptor error"; if (intstatus & I_TO) msg = "general purpose timeout"; if (msg != NULL) aprint_error_dev(sc->bce_dev, "%s\n", msg); wantinit = 1; } } if (handled) { if (wantinit) bce_init(ifp); rnd_add_uint32(&sc->rnd_source, intstatus); /* Try to get more packets going. */ if_schedule_deferred_start(ifp); } return (handled); } /* Receive interrupt handler */ void bce_rxintr(struct bce_softc *sc) { struct ifnet *ifp = &sc->ethercom.ec_if; struct rx_pph *pph; struct mbuf *m; int curr; int len; int i; /* get pointer to active receive slot */ curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS) & RS_CD_MASK; curr = curr / sizeof(struct bce_dma_slot); if (curr >= BCE_NRXDESC) curr = BCE_NRXDESC - 1; /* process packets up to but not current packet being worked on */ for (i = sc->bce_rxin; i != curr; i + 1 > BCE_NRXDESC - 1 ? i = 0 : i++) { /* complete any post dma memory ops on packet */ bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[i], 0, sc->bce_cdata.bce_rx_map[i]->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * If the packet had an error, simply recycle the buffer, * resetting the len, and flags. */ pph = mtod(sc->bce_cdata.bce_rx_chain[i], struct rx_pph *); if (pph->flags & (RXF_NO | RXF_RXER | RXF_CRC | RXF_OV)) { if_statinc(ifp, if_ierrors); pph->len = 0; pph->flags = 0; continue; } /* receive the packet */ len = pph->len; if (len == 0) continue; /* no packet if empty */ pph->len = 0; pph->flags = 0; /* bump past pre header to packet */ sc->bce_cdata.bce_rx_chain[i]->m_data += 30; /* MAGIC */ /* * The chip includes the CRC with every packet. Trim * it off here. */ len -= ETHER_CRC_LEN; /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when receiving lots * of small packets. * * Otherwise, add a new buffer to the receive * chain. If this fails, drop the packet and * recycle the old buffer. */ if (len <= (MHLEN - 2)) { MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) goto dropit; m->m_data += 2; memcpy(mtod(m, void *), mtod(sc->bce_cdata.bce_rx_chain[i], void *), len); sc->bce_cdata.bce_rx_chain[i]->m_data -= 30; /* MAGIC */ } else { m = sc->bce_cdata.bce_rx_chain[i]; if (bce_add_rxbuf(sc, i) != 0) { dropit: if_statinc(ifp, if_ierrors); /* continue to use old buffer */ sc->bce_cdata.bce_rx_chain[i]->m_data -= 30; bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[i], 0, sc->bce_cdata.bce_rx_map[i]->dm_mapsize, BUS_DMASYNC_PREREAD); continue; } } m_set_rcvif(m, ifp); m->m_pkthdr.len = m->m_len = len; /* Pass it on. */ if_percpuq_enqueue(ifp->if_percpuq, m); /* re-check current in case it changed */ curr = (bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS) & RS_CD_MASK) / sizeof(struct bce_dma_slot); if (curr >= BCE_NRXDESC) curr = BCE_NRXDESC - 1; } sc->bce_rxin = curr; } /* Transmit interrupt handler */ void bce_txintr(struct bce_softc *sc) { struct ifnet *ifp = &sc->ethercom.ec_if; int curr; int i; ifp->if_flags &= ~IFF_OACTIVE; /* * Go through the Tx list and free mbufs for those * frames which have been transmitted. */ curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXSTATUS) & RS_CD_MASK; curr = curr / sizeof(struct bce_dma_slot); if (curr >= BCE_NTXDESC) curr = BCE_NTXDESC - 1; for (i = sc->bce_txin; i != curr; i + 1 > BCE_NTXDESC - 1 ? i = 0 : i++) { /* do any post dma memory ops on transmit data */ if (sc->bce_cdata.bce_tx_chain[i] == NULL) continue; bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_tx_map[i], 0, sc->bce_cdata.bce_tx_map[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bce_dmatag, sc->bce_cdata.bce_tx_map[i]); m_freem(sc->bce_cdata.bce_tx_chain[i]); sc->bce_cdata.bce_tx_chain[i] = NULL; if_statinc(ifp, if_opackets); } sc->bce_txin = curr; /* * If there are no more pending transmissions, cancel the watchdog * timer */ if (sc->bce_txsnext == sc->bce_txin) ifp->if_timer = 0; } /* initialize the interface */ static int bce_init(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; uint32_t reg_win; int error; int i; /* Cancel any pending I/O. */ bce_stop(ifp, 0); /* enable pci inerrupts, bursts, and prefetch */ /* remap the pci registers to the Sonics config registers */ /* save the current map, so it can be restored */ reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN); /* set register window to Sonics registers */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, BCE_SONICS_WIN); /* enable SB to PCI interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC) | SBIV_ENET0); /* enable prefetch and bursts for sonics-to-pci translation 2 */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2) | SBTOPCI_PREF | SBTOPCI_BURST); /* restore to ethernet register space */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, reg_win); /* Reset the chip to a known state. */ bce_reset(sc); /* Initialize transmit descriptors */ memset(sc->bce_tx_ring, 0, BCE_NTXDESC * sizeof(struct bce_dma_slot)); sc->bce_txsnext = 0; sc->bce_txin = 0; /* enable crc32 generation and set proper LED modes */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL) | BCE_EMC_CRC32_ENAB | BCE_EMC_LED); /* reset or clear powerdown control bit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL) & ~BCE_EMC_PDOWN); /* setup DMA interrupt control */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL, 1 << 24); /* MAGIC */ /* setup packet filter */ bce_set_filter(ifp); /* set max frame length, account for possible vlan tag */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_MAX, ETHER_MAX_LEN + 32); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_MAX, ETHER_MAX_LEN + 32); /* set tx watermark */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_WATER, 56); /* enable transmit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, XC_XE); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXADDR, sc->bce_ring_map->dm_segs[0].ds_addr + PAGE_SIZE + 0x40000000); /* MAGIC */ /* * Give the receive ring to the chip, and * start the receive DMA engine. */ sc->bce_rxin = 0; /* clear the rx descriptor ring */ memset(sc->bce_rx_ring, 0, BCE_NRXDESC * sizeof(struct bce_dma_slot)); /* enable receive */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL, 30 << 1 | 1); /* MAGIC */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXADDR, sc->bce_ring_map->dm_segs[0].ds_addr + 0x40000000); /* MAGIC */ /* Initialize receive descriptors */ for (i = 0; i < BCE_NRXDESC; i++) { if (sc->bce_cdata.bce_rx_chain[i] == NULL) { if ((error = bce_add_rxbuf(sc, i)) != 0) { aprint_error_dev(sc->bce_dev, "unable to allocate or map rx(%d) " "mbuf, error = %d\n", i, error); bce_rxdrain(sc); return (error); } } else BCE_INIT_RXDESC(sc, i); } /* Enable interrupts */ sc->bce_intmask = I_XI | I_RI | I_XU | I_RO | I_RU | I_DE | I_PD | I_PC | I_TO; bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK, sc->bce_intmask); /* start the receive dma */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXDPTR, BCE_NRXDESC * sizeof(struct bce_dma_slot)); /* set media */ if ((error = ether_mediachange(ifp)) != 0) return error; /* turn on the ethernet mac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL) | EC_EE); /* start timer */ callout_schedule(&sc->bce_timeout, hz); /* mark as running, and no outputs active */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return 0; } /* add a mac address to packet filter */ void bce_add_mac(struct bce_softc *sc, uint8_t *mac, u_long idx) { int i; uint32_t rval; bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_LOW, (uint32_t)mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5]); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_HI, mac[0] << 8 | mac[1] | 0x10000); /* MAGIC */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, idx << 16 | 8); /* MAGIC */ /* wait for write to complete */ for (i = 0; i < 100; i++) { rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL); if (!(rval & 0x80000000)) /* MAGIC */ break; delay(10); } if (i == 100) { aprint_error_dev(sc->bce_dev, "timed out writing pkt filter ctl\n"); } } /* Add a receive buffer to the indiciated descriptor. */ static int bce_add_rxbuf(struct bce_softc *sc, int idx) { struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } if (sc->bce_cdata.bce_rx_chain[idx] != NULL) bus_dmamap_unload(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[idx]); sc->bce_cdata.bce_rx_chain[idx] = m; error = bus_dmamap_load(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[idx], m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error) return (error); bus_dmamap_sync(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[idx], 0, sc->bce_cdata.bce_rx_map[idx]->dm_mapsize, BUS_DMASYNC_PREREAD); BCE_INIT_RXDESC(sc, idx); return (0); } /* Drain the receive queue. */ static void bce_rxdrain(struct bce_softc *sc) { int i; for (i = 0; i < BCE_NRXDESC; i++) { if (sc->bce_cdata.bce_rx_chain[i] != NULL) { bus_dmamap_unload(sc->bce_dmatag, sc->bce_cdata.bce_rx_map[i]); m_freem(sc->bce_cdata.bce_rx_chain[i]); sc->bce_cdata.bce_rx_chain[i] = NULL; } } } /* Stop transmission on the interface */ static void bce_stop(struct ifnet *ifp, int disable) { struct bce_softc *sc = ifp->if_softc; int i; uint32_t val; /* Stop the 1 second timer */ callout_stop(&sc->bce_timeout); /* Down the MII. */ mii_down(&sc->bce_mii); /* Disable interrupts. */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK, 0); sc->bce_intmask = 0; delay(10); /* Disable emac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ED); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ED)) break; delay(10); } /* Stop the DMA */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL, 0); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0); delay(10); /* Release any queued transmit buffers. */ for (i = 0; i < BCE_NTXDESC; i++) { if (sc->bce_cdata.bce_tx_chain[i] != NULL) { bus_dmamap_unload(sc->bce_dmatag, sc->bce_cdata.bce_tx_map[i]); m_freem(sc->bce_cdata.bce_tx_chain[i]); sc->bce_cdata.bce_tx_chain[i] = NULL; } } /* Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; /* drain receive queue */ if (disable) bce_rxdrain(sc); } /* reset the chip */ static void bce_reset(struct bce_softc *sc) { uint32_t val; uint32_t sbval; int i; /* if SB core is up */ sbval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); if ((sbval & (SBTML_RESET | SBTML_REJ | SBTML_CLK)) == SBTML_CLK) { bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL, 0); /* disable emac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ED); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ED)) break; delay(10); } if (i == 200) { aprint_error_dev(sc->bce_dev, "timed out disabling ethernet mac\n"); } /* reset the dma engines */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS); /* if error on receive, wait to go idle */ if (val & RS_ERROR) { for (i = 0; i < 100; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS); if (val & RS_DMA_IDLE) break; delay(10); } if (i == 100) { aprint_error_dev(sc->bce_dev, "receive dma did not go idle after" " error\n"); } } bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS, 0); /* reset ethernet mac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ES); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ES)) break; delay(10); } if (i == 200) { aprint_error_dev(sc->bce_dev, "timed out resetting ethernet mac\n"); } } else { uint32_t reg_win; /* remap the pci registers to the Sonics config registers */ /* save the current map, so it can be restored */ reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN); /* set register window to Sonics registers */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, BCE_SONICS_WIN); /* enable SB to PCI interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC) | SBIV_ENET0); /* enable prefetch and bursts for sonics-to-pci translation 2 */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2) | SBTOPCI_PREF | SBTOPCI_BURST); /* restore to ethernet register space */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, reg_win); } /* disable SB core if not in reset */ if (!(sbval & SBTML_RESET)) { /* set the reject bit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_REJ | SBTML_CLK); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); if (val & SBTML_REJ) break; delay(1); } if (i == 200) { aprint_error_dev(sc->bce_dev, "while resetting core, reject did not set\n"); } /* wait until busy is clear */ for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI); if (!(val & 0x4)) break; delay(1); } if (i == 200) { aprint_error_dev(sc->bce_dev, "while resetting core, busy did not clear\n"); } /* set reset and reject while enabling the clocks */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK | SBTML_REJ | SBTML_RESET); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(10); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_REJ | SBTML_RESET); delay(1); } /* enable clock */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK | SBTML_RESET); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* clear any error bits that may be on */ val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI); if (val & 1) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI, 0); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE); if (val & SBIM_MAGIC_ERRORBITS) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE, val & ~SBIM_MAGIC_ERRORBITS); /* clear reset and allow it to propagate throughout the core */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* leave clock enabled */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_CLK); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* initialize MDC preamble, frequency */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_CTL, 0x8d); /* MAGIC */ /* enable phy, differs for internal, and external */ val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL); if (!(val & BCE_DC_IP)) { /* select external phy */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_EP); } else if (val & BCE_DC_ER) { /* internal, clear reset bit if on */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL, val & ~BCE_DC_ER); delay(100); } } /* Set up the receive filter. */ void bce_set_filter(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) | ERC_PE); } else { ifp->if_flags &= ~IFF_ALLMULTI; /* turn off promiscuous */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) & ~ERC_PE); /* enable/disable broadcast */ if (ifp->if_flags & IFF_BROADCAST) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) & ~ERC_DB); else bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) | ERC_DB); /* disable the filter */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, 0); /* add our own address */ bce_add_mac(sc, sc->enaddr, 0); /* for now accept all multicast */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL) | ERC_AM); ifp->if_flags |= IFF_ALLMULTI; /* enable the filter */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL) | 1); } } static bool bce_resume(device_t self, const pmf_qual_t *qual) { struct bce_softc *sc = device_private(self); bce_reset(sc); return true; } /* Read a PHY register on the MII. */ int bce_mii_read(device_t self, int phy, int reg, uint16_t *val) { struct bce_softc *sc = device_private(self); int i; uint32_t data; /* clear mii_int */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS, BCE_MIINTR); /* Read the PHY register */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM, (MII_COMMAND_READ << 28) | (MII_COMMAND_START << 30) | /* MAGIC */ (MII_COMMAND_ACK << 16) | BCE_MIPHY(phy) | BCE_MIREG(reg)); /* MAGIC */ for (i = 0; i < BCE_TIMEOUT; i++) { data = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS); if (data & BCE_MIINTR) break; delay(10); } data = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM); if (i == BCE_TIMEOUT) { aprint_error_dev(sc->bce_dev, "PHY read timed out reading phy %d, reg %d, val = " "0x%08x\n", phy, reg, data); return ETIMEDOUT; } *val = data & BCE_MICOMM_DATA; return 0; } /* Write a PHY register on the MII */ int bce_mii_write(device_t self, int phy, int reg, uint16_t val) { struct bce_softc *sc = device_private(self); int i; uint32_t data; /* clear mii_int */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS, BCE_MIINTR); /* Write the PHY register */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM, (MII_COMMAND_WRITE << 28) | (MII_COMMAND_START << 30) | /* MAGIC */ (MII_COMMAND_ACK << 16) | (val & BCE_MICOMM_DATA) | /* MAGIC */ BCE_MIPHY(phy) | BCE_MIREG(reg)); /* wait for write to complete */ for (i = 0; i < BCE_TIMEOUT; i++) { data = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS); if (data & BCE_MIINTR) break; delay(10); } if (i == BCE_TIMEOUT) { aprint_error_dev(sc->bce_dev, "PHY timed out writing phy %d, reg %d, val = 0x%04hx\n", phy, reg, val); return ETIMEDOUT; } return 0; } /* sync hardware duplex mode to software state */ void bce_statchg(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; uint32_t reg; uint16_t phyval; /* if needed, change register to match duplex mode */ reg = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL); if (sc->bce_mii.mii_media_active & IFM_FDX && !(reg & EXC_FD)) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL, reg | EXC_FD); else if (!(sc->bce_mii.mii_media_active & IFM_FDX) && reg & EXC_FD) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL, reg & ~EXC_FD); /* * Enable activity led. * XXX This should be in a phy driver, but not currently. */ bce_mii_read(sc->bce_dev, 1, 26, &phyval); bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */ phyval & 0x7fff); /* MAGIC */ /* enable traffic meter led mode */ bce_mii_read(sc->bce_dev, 1, 27, &phyval); bce_mii_write(sc->bce_dev, 1, 26, /* MAGIC */ phyval | (1 << 6)); /* MAGIC */ } /* One second timer, checks link status */ static void bce_tick(void *v) { struct bce_softc *sc = v; int s; s = splnet(); mii_tick(&sc->bce_mii); splx(s); callout_schedule(&sc->bce_timeout, hz); }