/* $NetBSD: if_ed.c,v 1.5 1997/10/17 20:28:06 oki Exp $ */ /* * Device driver for National Semiconductor DS8390/WD83C690 based ethernet * adapters. * * Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved. * * Copyright (C) 1993, David Greenman. This software may be used, modified, * copied, distributed, and sold, in both source and binary form provided that * the above copyright and these terms are retained. Under no circumstances is * the author responsible for the proper functioning of this software, nor does * the author assume any responsibility for damages incurred with its use. * * Currently supports the Western Digital/SMC 8003 and 8013 series, the SMC * Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, and a variety of * similar clones. */ /* * - NetBSD/x68k - * Supports only the Neptune-X card based on NE2000. * modefied by Y.YAMASAKI */ #include "bpfilter.h" #include "rnd.h" #include #include #include #include #include #include #include #include #if NRND > 0 #include #endif #include #include #include #include #ifdef INET #include #include #include #include #include #endif #ifdef NS #include #include #endif #if NBPFILTER > 0 #include #include #endif #include #include #include #include /* * ed_softc: per line info and status */ struct ed_softc { struct device sc_dev; struct ethercom sc_ethercom; /* ethernet common */ char *type_str; /* pointer to type string */ u_char type; /* interface type code */ caddr_t asic_base; /* Base ASIC I/O port */ caddr_t nic_base; /* Base NIC (DS8390) I/O port */ u_char cr_proto; /* values always set in CR */ u_char isa16bit; /* width of access to card 0=8 or 1=16 */ caddr_t mem_start; /* NIC memory start address */ caddr_t mem_end; /* NIC memory end address */ u_long mem_size; /* total NIC memory size */ caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */ u_char txb_cnt; /* number of transmit buffers */ u_char txb_inuse; /* number of transmit buffers active */ u_char txb_new; /* pointer to where new buffer will be added */ u_char txb_next_tx; /* pointer to next buffer ready to xmit */ u_short txb_len[8]; /* buffered xmit buffer lengths */ u_char tx_page_start; /* first page of TX buffer area */ u_char rec_page_start; /* first page of RX ring-buffer */ u_char rec_page_stop; /* last page of RX ring-buffer */ u_char next_packet; /* pointer to next unread RX packet */ u_int8_t sc_enaddr[6]; #if NRND > 0 rndsource_element_t rnd_source; #endif }; int edmatch __P((struct device *, void *, void *)); void edattach __P((struct device *, struct device *, void *)); int ed_probe_generic8390 __P((caddr_t)); int ed_find_Novell __P((caddr_t, caddr_t)); int ed_check_type __P((struct ed_softc *)); int edintr __P((int)); int edioctl __P((struct ifnet *, u_long, caddr_t)); void edstart __P((struct ifnet *)); void edwatchdog __P((struct ifnet *)); void edreset __P((struct ed_softc *)); void edinit __P((struct ed_softc *)); void edstop __P((struct ed_softc *)); /* #define inline /* XXX for debugging porpoises */ void ed_getmcaf __P((struct ethercom *, u_long *)); void edread __P((struct ed_softc *, caddr_t, int)); struct mbuf *edget __P((struct ed_softc *, caddr_t, int)); static inline void ed_rint __P((struct ed_softc *)); static inline void ed_xmit __P((struct ed_softc *)); static inline caddr_t ed_ring_copy __P((struct ed_softc *, caddr_t, caddr_t, u_short)); void ed_pio_readmem __P((struct ed_softc *, u_short, caddr_t, u_short)); void ed_pio_writemem __P((struct ed_softc *, caddr_t, u_short, u_short)); u_short ed_pio_write_mbufs __P((struct ed_softc *, struct mbuf *, u_short)); struct cfattach ed_ca = { sizeof(struct ed_softc), edmatch, edattach }; struct cfdriver ed_cd = { NULL, "ed", DV_IFNET }; #define ETHER_MIN_LEN 64 #define ETHER_MAX_LEN 1518 #define ETHER_ADDR_LEN 6 #define outb(addr, val) *(volatile u_char *)(addr) = (val) #define inb(addr) *(volatile u_char *)(addr) #define outw(addr, val) *(volatile u_short *)(addr) = (val) static inline void insb(void *addr, void *dst, int cnt) { cnt--; asm volatile("1: moveb %4@,%1@+; dbra %0,1b" : "=d" (cnt), "=a" (dst) : "0" (cnt), "1" (dst), "a" (addr)); } static inline void insw(void *addr, void *dst, int cnt) { cnt--; asm volatile("1: movew %4@,%1@+; dbra %0,1b" : "=d" (cnt), "=a" (dst) : "0" (cnt), "1" (dst), "a" (addr)); } static inline void outsb(void *addr, void *src, int cnt) { cnt--; asm volatile("1: moveb %1@+,%4@; dbra %0,1b" : "=d" (cnt), "=a" (src) : "0" (cnt), "1" (src), "a" (addr)); } static inline void outsw(void *addr, void *src, int cnt) { cnt--; asm volatile("1: movew %1@+,%4@; dbra %0,1b" : "=d" (cnt), "=a" (src) : "0" (cnt), "1" (src), "a" (addr)); } #define NIC_PUT(base, off, val) outb((base) + (off), (val)) #define NIC_GET(base, off) inb((base) + (off)) /* XXX fixed address */ #define NEPTUNE_NIC ((caddr_t)IODEVbase->neptune + ED_NOVELL_NIC_OFFSET) #define NEPTUNE_ASIC ((caddr_t)IODEVbase->neptune + ED_NOVELL_ASIC_OFFSET) /* * Determine if the device is present. */ int edmatch(parent, match, aux) struct device *parent; void *match, *aux; { struct cfdata *cfp = match; caddr_t nic_addr = NEPTUNE_NIC; caddr_t asic_addr = NEPTUNE_ASIC; if (strcmp(aux, "ed") || cfp->cf_unit > 0) return 0; if (badaddr(nic_addr)) return 0; if (!ed_find_Novell(nic_addr, asic_addr)) return 0; return 1; } /* * Generic probe routine for testing for the existance of a DS8390. Must be * called after the NIC has just been reset. This routine works by looking at * certain register values that are guaranteed to be initialized a certain way * after power-up or reset. Seems not to currently work on the 83C690. * * Specifically: * * Register reset bits set bits * Command Register (CR) TXP, STA RD2, STP * Interrupt Status (ISR) RST * Interrupt Mask (IMR) All bits * Data Control (DCR) LAS * Transmit Config. (TCR) LB1, LB0 * * We only look at the CR and ISR registers, however, because looking at the * others would require changing register pages (which would be intrusive if * this isn't an 8390). * * Return 1 if 8390 was found, 0 if not. */ int ed_probe_generic8390(nicbase) caddr_t nicbase; { if ((NIC_GET(nicbase, ED_P0_CR) & (ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) != (ED_CR_RD2 | ED_CR_STP)) return (0); if ((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST) return (0); return (1); } /* * Probe and vendor-specific initialization routine for NE1000/2000 boards. */ int ed_find_Novell(nicbase, asicbase) caddr_t nicbase, asicbase; { u_char tmp; /* XXX - do Novell-specific probe here */ /* Reset the board. */ #ifdef GWETHER outb(asicbase + ED_NOVELL_RESET, 0); DELAY(2000); /* delay(200); */ #endif /* GWETHER */ tmp = inb(asicbase + ED_NOVELL_RESET); /* * I don't know if this is necessary; probably cruft leftover from * Clarkson packet driver code. Doesn't do a thing on the boards I've * tested. -DG [note that a outb(0x84, 0) seems to work here, and is * non-invasive...but some boards don't seem to reset and I don't have * complete documentation on what the 'right' thing to do is...so we do * the invasive thing for now. Yuck.] */ outb(asicbase + ED_NOVELL_RESET, tmp); DELAY(50000); /* delay(5000); */ /* * This is needed because some NE clones apparently don't reset the NIC * properly (or the NIC chip doesn't reset fully on power-up) * XXX - this makes the probe invasive! ...Done against my better * judgement. -DLG */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP); DELAY(50000); /* delay(5000); */ /* Make sure that we really have an 8390 based board. */ if (!ed_probe_generic8390(nicbase)) return (0); return 1; } int ed_check_type(sc) struct ed_softc *sc; { u_int memsize, n; u_char romdata[16]; static u_char test_pattern[32] = "THIS is A memory TEST pattern"; u_char test_buffer[32]; caddr_t nicbase = sc->nic_base; sc->cr_proto = ED_CR_RD2; /* * Test the ability to read and write to the NIC memory. This has the * side affect of determining if this is an NE1000 or an NE2000. */ /* * This prevents packets from being stored in the NIC memory when the * readmem routine turns on the start bit in the CR. */ NIC_PUT(nicbase, ED_P0_RCR, ED_RCR_MON); /* Temporarily initialize DCR for byte operations. */ NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); NIC_PUT(nicbase, ED_P0_PSTART, 8192 >> ED_PAGE_SHIFT); NIC_PUT(nicbase, ED_P0_PSTOP, 16384 >> ED_PAGE_SHIFT); sc->isa16bit = 0; /* * Write a test pattern in byte mode. If this fails, then there * probably isn't any memory at 8k - which likely means that the board * is an NE2000. */ ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern)); ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) { /* not an NE1000 - try NE2000 */ NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS); NIC_PUT(nicbase, ED_P0_PSTART, 16384 >> ED_PAGE_SHIFT); NIC_PUT(nicbase, ED_P0_PSTOP, 32768 >> ED_PAGE_SHIFT); sc->isa16bit = 1; /* * Write a test pattern in word mode. If this also fails, then * we don't know what this board is. */ ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern)); ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern)); if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) { printf(": unknown type\n"); return (0); /* not an NE2000 either */ } sc->type = ED_TYPE_NE2000; sc->type_str = "NE2000 based Neptune-X"; } else { sc->type = ED_TYPE_NE1000; sc->type_str = "NE1000"; } /* 8k of memory plus an additional 8k if 16-bit. */ memsize = 8192 + sc->isa16bit * 8192; /* NIC memory doesn't start at zero on an NE board. */ /* The start address is tied to the bus width. */ sc->mem_start = (caddr_t)(8192 + sc->isa16bit * 8192); sc->tx_page_start = memsize >> ED_PAGE_SHIFT; #ifdef GWETHER { int x, i, mstart = 0; char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE]; for (i = 0; i < ED_PAGE_SIZE; i++) pbuf0[i] = 0; /* Search for the start of RAM. */ for (x = 1; x < 256; x++) { ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) { mstart = x << ED_PAGE_SHIFT; memsize = ED_PAGE_SIZE; break; } } } if (mstart == 0) { printf("%s: cannot find start of RAM\n", sc->sc_dev.dv_xname); return (0); } /* Search for the end of RAM. */ for (++x; x < 256; x++) { ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) { for (i = 0; i < ED_PAGE_SIZE; i++) pbuf[i] = 255 - x; ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE); ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE); if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) memsize += ED_PAGE_SIZE; else break; } else break; } printf("%s: RAM start %x, size %d\n", sc->sc_dev.dv_xname, mstart, memsize); sc->mem_start = (caddr_t)mstart; sc->tx_page_start = mstart >> ED_PAGE_SHIFT; } #endif /* GWETHER */ sc->mem_size = memsize; sc->mem_end = sc->mem_start + memsize; /* * Use one xmit buffer if < 16k, two buffers otherwise (if not told * otherwise). */ if ((memsize < 16384) /* || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING) */) sc->txb_cnt = 1; else sc->txb_cnt = 2; sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE; sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT); sc->mem_ring = sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); ed_pio_readmem(sc, 0, romdata, 16); for (n = 0; n < ETHER_ADDR_LEN; n++) sc->sc_enaddr[n] = romdata[n*(sc->isa16bit+1)]; #ifdef GWETHER if (sc->sc_enaddr[2] == 0x86) sc->type_str = "Gateway AT"; #endif /* GWETHER */ /* Clear any pending interrupts that might have occurred above. */ NIC_PUT(nicbase, ED_P0_ISR, 0xff); return (1); } /* * Install interface into kernel networking data structures. */ void edattach(parent, self, aux) struct device *parent, *self; void *aux; { struct ed_softc *sc = (void *)self; struct ifnet *ifp = &sc->sc_ethercom.ec_if; sc->nic_base = NEPTUNE_NIC; sc->asic_base = NEPTUNE_ASIC; if (!ed_check_type(sc)) return; /* attach failed */ /* Set interface to stopped condition (reset). */ edstop(sc); /* Initialize ifnet structure. */ bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = edstart; ifp->if_ioctl = edioctl; ifp->if_watchdog = edwatchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, sc->sc_enaddr); /* Print additional info when attached. */ printf("\n%s: address %s, ", sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr)); if (sc->type_str) printf("type %s ", sc->type_str); else printf("type unknown (0x%x) ", sc->type); printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)"); printf("\n"); #if NBPFILTER > 0 bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif #if NRND > 0 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, RND_TYPE_NET); #endif } /* * Reset interface. */ void edreset(sc) struct ed_softc *sc; { int s; s = splnet(); edstop(sc); edinit(sc); splx(s); } /* * Take interface offline. */ void edstop(sc) struct ed_softc *sc; { caddr_t nicbase = sc->nic_base; int n = 5000; /* Stop everything on the interface, and select page 0 registers. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); /* * Wait for interface to enter stopped state, but limit # of checks to * 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but * just in case it's an old one. */ while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RST) == 0) && --n); } /* * Device timeout/watchdog routine. Entered if the device neglects to generate * an interrupt after a transmit has been started on it. */ void edwatchdog(ifp) struct ifnet *ifp; { struct ed_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++sc->sc_ethercom.ec_if.if_oerrors; edreset(sc); } /* * Initialize device. */ void edinit(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; caddr_t nicbase = sc->nic_base; int i; u_long mcaf[2]; /* * Initialize the NIC in the exact order outlined in the NS manual. * This init procedure is "mandatory"...don't change what or when * things happen. */ /* Reset transmitter flags. */ ifp->if_timer = 0; sc->txb_inuse = 0; sc->txb_new = 0; sc->txb_next_tx = 0; /* Set interface for page 0, remote DMA complete, stopped. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); if (sc->isa16bit) { /* * Set FIFO threshold to 8, No auto-init Remote DMA, byte * order=80x86, word-wide DMA xfers, */ NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS); } else { /* Same as above, but byte-wide DMA xfers. */ NIC_PUT(nicbase, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS); } /* Clear remote byte count registers. */ NIC_PUT(nicbase, ED_P0_RBCR0, 0); NIC_PUT(nicbase, ED_P0_RBCR1, 0); /* Tell RCR to do nothing for now. */ NIC_PUT(nicbase, ED_P0_RCR, ED_RCR_MON); /* Place NIC in internal loopback mode. */ NIC_PUT(nicbase, ED_P0_TCR, ED_TCR_LB0); /* Initialize receive buffer ring. */ NIC_PUT(nicbase, ED_P0_BNRY, sc->rec_page_start); NIC_PUT(nicbase, ED_P0_PSTART, sc->rec_page_start); NIC_PUT(nicbase, ED_P0_PSTOP, sc->rec_page_stop); /* * Clear all interrupts. A '1' in each bit position clears the * corresponding flag. */ NIC_PUT(nicbase, ED_P0_ISR, 0xff); /* * Enable the following interrupts: receive/transmit complete, * receive/transmit error, and Receiver OverWrite. * * Counter overflow and Remote DMA complete are *not* enabled. */ NIC_PUT(nicbase, ED_P0_IMR, ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE); /* Program command register for page 1. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP); /* Copy out our station address. */ for (i = 0; i < ETHER_ADDR_LEN; ++i) NIC_PUT(nicbase, ED_P1_PAR0 + i*2, sc->sc_enaddr[i]); /* Set multicast filter on chip. */ ed_getmcaf(&sc->sc_ethercom, mcaf); for (i = 0; i < 8; i++) NIC_PUT(nicbase, ED_P1_MAR0 + i*2, ((u_char *)mcaf)[i]); /* * Set current page pointer to one page after the boundary pointer, as * recommended in the National manual. */ sc->next_packet = sc->rec_page_start + 1; NIC_PUT(nicbase, ED_P1_CURR, sc->next_packet); /* Program command register for page 0. */ NIC_PUT(nicbase, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP); i = ED_RCR_AB | ED_RCR_AM; if (ifp->if_flags & IFF_PROMISC) { /* * Set promiscuous mode. Multicast filter was set earlier so * that we should receive all multicast packets. */ i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP; } NIC_PUT(nicbase, ED_P0_RCR, i); /* Take interface out of loopback. */ NIC_PUT(nicbase, ED_P0_TCR, 0); /* Fire up the interface. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set 'running' flag, and clear output active flag. */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* ...and attempt to start output. */ edstart(ifp); } /* * This routine actually starts the transmission on the interface. */ static inline void ed_xmit(sc) struct ed_softc *sc; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; caddr_t nicbase = sc->nic_base; u_short len; len = sc->txb_len[sc->txb_next_tx]; /* Set NIC for page 0 register access. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* Set TX buffer start page. */ NIC_PUT(nicbase, ED_P0_TPSR, sc->tx_page_start + sc->txb_next_tx * ED_TXBUF_SIZE); /* Set TX length. */ NIC_PUT(nicbase, ED_P0_TBCR0, len); NIC_PUT(nicbase, ED_P0_TBCR1, len >> 8); /* Set page 0, remote DMA complete, transmit packet, and *start*. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA); /* Point to next transmit buffer slot and wrap if necessary. */ sc->txb_next_tx++; if (sc->txb_next_tx == sc->txb_cnt) sc->txb_next_tx = 0; /* Set a timer just in case we never hear from the board again. */ ifp->if_timer = 2; } /* * Start output on interface. * We make two assumptions here: * 1) that the current priority is set to splnet _before_ this code * is called *and* is returned to the appropriate priority after * return * 2) that the IFF_OACTIVE flag is checked before this code is called * (i.e. that the output part of the interface is idle) */ void edstart(ifp) struct ifnet *ifp; { struct ed_softc *sc = ifp->if_softc; struct mbuf *m0; caddr_t buffer; int len; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; outloop: /* See if there is room to put another packet in the buffer. */ if (sc->txb_inuse == sc->txb_cnt) { /* No room. Indicate this to the outside world and exit. */ ifp->if_flags |= IFF_OACTIVE; return; } IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) return; /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("edstart: no header mbuf"); #if NBPFILTER > 0 /* Tap off here if there is a BPF listener. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0); #endif /* txb_new points to next open buffer slot. */ buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT); len = ed_pio_write_mbufs(sc, m0, (long)buffer); m_freem(m0); sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN); /* Start the first packet transmitting. */ if (sc->txb_inuse == 0) ed_xmit(sc); /* Point to next buffer slot and wrap if necessary. */ if (++sc->txb_new == sc->txb_cnt) sc->txb_new = 0; sc->txb_inuse++; /* Loop back to the top to possibly buffer more packets. */ goto outloop; } /* * Ethernet interface receiver interrupt. */ static inline void ed_rint(sc) struct ed_softc *sc; { caddr_t nicbase = sc->nic_base; u_char boundary, current; u_short len; #ifdef DIAGNOSTIC u_short count; #endif u_char nlen; struct ed_ring packet_hdr; caddr_t packet_ptr; loop: /* Set NIC to page 1 registers to get 'current' pointer. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA); /* * 'sc->next_packet' is the logical beginning of the ring-buffer - i.e. * it points to where new data has been buffered. The 'CURR' (current) * register points to the logical end of the ring-buffer - i.e. it * points to where additional new data will be added. We loop here * until the logical beginning equals the logical end (or in other * words, until the ring-buffer is empty). */ current = NIC_GET(nicbase, ED_P1_CURR); if (sc->next_packet == current) return; /* Set NIC to page 0 registers to update boundary register. */ NIC_PUT(nicbase, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); do { /* Get pointer to this buffer's header structure. */ packet_ptr = sc->mem_ring + ((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT); /* * The byte count includes a 4 byte header that was added by * the NIC. */ ed_pio_readmem(sc, (long)packet_ptr, (caddr_t) &packet_hdr, sizeof(packet_hdr)); len = (packet_hdr.count_h << 8) | packet_hdr.count_l; #ifdef DIAGNOSTIC count = len; #endif /* * Try do deal with old, buggy chips that sometimes duplicate * the low byte of the length into the high byte. We do this * by simply ignoring the high byte of the length and always * recalculating it. * * NOTE: sc->next_packet is pointing at the current packet. */ if (packet_hdr.next_packet >= sc->next_packet) nlen = (packet_hdr.next_packet - sc->next_packet); else nlen = ((packet_hdr.next_packet - sc->rec_page_start) + (sc->rec_page_stop - sc->next_packet)); --nlen; if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE) --nlen; len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT); #ifdef DIAGNOSTIC if (len != count) { printf("%s: length does not match next packet pointer\n", sc->sc_dev.dv_xname); printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n", sc->sc_dev.dv_xname, count, len, sc->rec_page_start, sc->next_packet, current, packet_hdr.next_packet, sc->rec_page_stop); } #endif /* * Be fairly liberal about what we allow as a "reasonable" * length so that a [crufty] packet will make it to BPF (and * can thus be analyzed). Note that all that is really * important is that we have a length that will fit into one * mbuf cluster or less; the upper layer protocols can then * figure out the length from their own length field(s). */ if (len <= MCLBYTES && packet_hdr.next_packet >= sc->rec_page_start && packet_hdr.next_packet < sc->rec_page_stop) { /* Go get packet. */ edread(sc, packet_ptr + sizeof(struct ed_ring), len - sizeof(struct ed_ring)); } else { /* Really BAD. The ring pointers are corrupted. */ log(LOG_ERR, "%s: NIC memory corrupt - invalid packet length %d\n", sc->sc_dev.dv_xname, len); ++sc->sc_ethercom.ec_if.if_ierrors; edreset(sc); return; } /* Update next packet pointer. */ sc->next_packet = packet_hdr.next_packet; /* * Update NIC boundary pointer - being careful to keep it one * buffer behind (as recommended by NS databook). */ boundary = sc->next_packet - 1; if (boundary < sc->rec_page_start) boundary = sc->rec_page_stop - 1; NIC_PUT(nicbase, ED_P0_BNRY, boundary); } while (sc->next_packet != current); goto loop; } /* Ethernet interface interrupt processor. */ int edintr(unit) int unit; { struct ed_softc *sc = ed_cd.cd_devs[unit]; struct ifnet *ifp = &sc->sc_ethercom.ec_if; caddr_t nicbase = sc->nic_base; u_char isr; /* Set NIC to page 0 registers. */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); isr = NIC_GET(nicbase, ED_P0_ISR); if (!isr) return (0); /* Loop until there are no more new interrupts. */ for (;;) { /* * Reset all the bits that we are 'acknowledging' by writing a * '1' to each bit position that was set. * (Writing a '1' *clears* the bit.) */ NIC_PUT(nicbase, ED_P0_ISR, isr); /* * Handle transmitter interrupts. Handle these first because * the receiver will reset the board under some conditions. */ if (isr & (ED_ISR_PTX | ED_ISR_TXE)) { u_char collisions = NIC_GET(nicbase, ED_P0_NCR) & 0x0f; /* * Check for transmit error. If a TX completed with an * error, we end up throwing the packet away. Really * the only error that is possible is excessive * collisions, and in this case it is best to allow the * automatic mechanisms of TCP to backoff the flow. Of * course, with UDP we're screwed, but this is expected * when a network is heavily loaded. */ (void) NIC_GET(nicbase, ED_P0_TSR); if (isr & ED_ISR_TXE) { /* * Excessive collisions (16). */ if ((NIC_GET(nicbase, ED_P0_TSR) & ED_TSR_ABT) && (collisions == 0)) { /* * When collisions total 16, the P0_NCR * will indicate 0, and the TSR_ABT is * set. */ collisions = 16; } /* Update output errors counter. */ ++ifp->if_oerrors; } else { /* * Update total number of successfully * transmitted packets. */ ++ifp->if_opackets; } /* Done with the buffer. */ sc->txb_inuse--; /* Clear watchdog timer. */ ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; /* * Add in total number of collisions on last * transmission. */ ifp->if_collisions += collisions; /* * Decrement buffer in-use count if not zero (can only * be zero if a transmitter interrupt occured while not * actually transmitting). * If data is ready to transmit, start it transmitting, * otherwise defer until after handling receiver. */ if (sc->txb_inuse > 0) ed_xmit(sc); } /* Handle receiver interrupts. */ if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) { /* * Overwrite warning. In order to make sure that a * lockup of the local DMA hasn't occurred, we reset * and re-init the NIC. The NSC manual suggests only a * partial reset/re-init is necessary - but some chips * seem to want more. The DMA lockup has been seen * only with early rev chips - Methinks this bug was * fixed in later revs. -DG */ if (isr & ED_ISR_OVW) { ++ifp->if_ierrors; #ifdef DIAGNOSTIC log(LOG_WARNING, "%s: warning - receiver ring buffer overrun\n", sc->sc_dev.dv_xname); #endif /* Stop/reset/re-init NIC. */ edreset(sc); } else { /* * Receiver Error. One or more of: CRC error, * frame alignment error FIFO overrun, or * missed packet. */ if (isr & ED_ISR_RXE) { ++ifp->if_ierrors; #ifdef ED_DEBUG printf("%s: receive error %x\n", sc->sc_dev.dv_xname, NIC_GET(nicbase, ED_P0_RSR)); #endif } /* * Go get the packet(s). * XXX - Doing this on an error is dubious * because there shouldn't be any data to get * (we've configured the interface to not * accept packets with errors). */ ed_rint(sc); } } /* * If it looks like the transmitter can take more data, attempt * to start output on the interface. This is done after * handling the receiver to give the receiver priority. */ edstart(ifp); /* * Return NIC CR to standard state: page 0, remote DMA * complete, start (toggling the TXP bit off, even if was just * set in the transmit routine, is *okay* - it is 'edge' * triggered from low to high). */ NIC_PUT(nicbase, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA); /* * If the Network Talley Counters overflow, read them to reset * them. It appears that old 8390's won't clear the ISR flag * otherwise - resulting in an infinite loop. */ if (isr & ED_ISR_CNT) { (void) NIC_GET(nicbase, ED_P0_CNTR0); (void) NIC_GET(nicbase, ED_P0_CNTR1); (void) NIC_GET(nicbase, ED_P0_CNTR2); } #if NRND > 0 rnd_add_uint32(&sc->rnd_source, isr); #endif isr = NIC_GET(nicbase, ED_P0_ISR); if (!isr) return (1); } } /* * Process an ioctl request. This code needs some work - it looks pretty ugly. */ int edioctl(ifp, cmd, data) register struct ifnet *ifp; u_long cmd; caddr_t data; { struct ed_softc *sc = ifp->if_softc; register struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: edinit(sc); arp_ifinit(ifp, ifa); break; #endif #ifdef NS /* XXX - This code is probably wrong. */ case AF_NS: { register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr; if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl); else bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl), sizeof(sc->sc_enaddr)); /* Set new address. */ edinit(sc); break; } #endif default: edinit(sc); break; } break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) == 0 && (ifp->if_flags & IFF_RUNNING) != 0) { /* * If interface is marked down and it is running, then * stop it. */ edstop(sc); ifp->if_flags &= ~IFF_RUNNING; } else if ((ifp->if_flags & IFF_UP) != 0 && (ifp->if_flags & IFF_RUNNING) == 0) { /* * If interface is marked up and it is stopped, then * start it. */ edinit(sc); } else { /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ edstop(sc); edinit(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: /* Update our multicast list. */ error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ edstop(sc); /* XXX for ds_setmcaf? */ edinit(sc); error = 0; } break; default: error = EINVAL; break; } splx(s); return (error); } /* * Retreive packet from shared memory and send to the next level up via * ether_input(). If there is a BPF listener, give a copy to BPF, too. */ void edread(sc, buf, len) struct ed_softc *sc; caddr_t buf; int len; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m; struct ether_header *eh; /* Pull packet off interface. */ m = edget(sc, buf, len); if (m == 0) { ifp->if_ierrors++; return; } ifp->if_ipackets++; /* We assume that the header fit entirely in one mbuf. */ eh = mtod(m, struct ether_header *); #if NBPFILTER > 0 /* * Check if there's a BPF listener on this interface. * If so, hand off the raw packet to BPF. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m); /* * Note that the interface cannot be in promiscuous mode if * there are no BPF listeners. And if we are in promiscuous * mode, we have to check if this packet is really ours. */ if ((ifp->if_flags & IFF_PROMISC) && (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */ bcmp(eh->ether_dhost, LLADDR(ifp->if_sadl), sizeof(eh->ether_dhost)) != 0) { m_freem(m); return; } } #endif /* We assume that the header fit entirely in one mbuf. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } /* * Supporting routines. */ /* * Given a NIC memory source address and a host memory destination address, * copy 'amount' from NIC to host using Programmed I/O. The 'amount' is * rounded up to a word - okay as long as mbufs are word sized. * This routine is currently Novell-specific. */ void ed_pio_readmem(sc, src, dst, amount) struct ed_softc *sc; u_short src; caddr_t dst; u_short amount; { caddr_t nicbase = sc->nic_base; /* Select page 0 registers. */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Round up to a word. */ if (amount & 1) ++amount; /* Set up DMA byte count. */ NIC_PUT(nicbase, ED_P0_RBCR0, amount); NIC_PUT(nicbase, ED_P0_RBCR1, amount >> 8); /* Set up source address in NIC mem. */ NIC_PUT(nicbase, ED_P0_RSAR0, src); NIC_PUT(nicbase, ED_P0_RSAR1, src >> 8); NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD0 | ED_CR_PAGE_0 | ED_CR_STA); if (sc->isa16bit) insw(sc->asic_base + ED_NOVELL_DATA, dst, amount / 2); else insb(sc->asic_base + ED_NOVELL_DATA, dst, amount); } /* * Stripped down routine for writing a linear buffer to NIC memory. Only used * in the probe routine to test the memory. 'len' must be even. */ void ed_pio_writemem(sc, src, dst, len) struct ed_softc *sc; caddr_t src; u_short dst; u_short len; { caddr_t nicbase = sc->nic_base; int maxwait = 100; /* about 120us */ /* Select page 0 registers. */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Reset remote DMA complete flag. */ NIC_PUT(nicbase, ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ NIC_PUT(nicbase, ED_P0_RBCR0, len); NIC_PUT(nicbase, ED_P0_RBCR1, len >> 8); /* Set up destination address in NIC mem. */ NIC_PUT(nicbase, ED_P0_RSAR0, dst); NIC_PUT(nicbase, ED_P0_RSAR1, dst >> 8); /* Set remote DMA write. */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA); if (sc->isa16bit) outsw(sc->asic_base + ED_NOVELL_DATA, src, len / 2); else outsb(sc->asic_base + ED_NOVELL_DATA, src, len); /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); } /* * Write an mbuf chain to the destination NIC memory address using programmed * I/O. */ u_short ed_pio_write_mbufs(sc, m, dst) struct ed_softc *sc; struct mbuf *m; u_short dst; { caddr_t nicbase = sc->nic_base, asicbase = sc->asic_base; u_short len; int maxwait = 100; /* about 120us */ len = m->m_pkthdr.len; /* Select page 0 registers. */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA); /* Reset remote DMA complete flag. */ NIC_PUT(nicbase, ED_P0_ISR, ED_ISR_RDC); /* Set up DMA byte count. */ NIC_PUT(nicbase, ED_P0_RBCR0, len); NIC_PUT(nicbase, ED_P0_RBCR1, len >> 8); /* Set up destination address in NIC mem. */ NIC_PUT(nicbase, ED_P0_RSAR0, dst); NIC_PUT(nicbase, ED_P0_RSAR1, dst >> 8); /* Set remote DMA write. */ NIC_PUT(nicbase, ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA); /* * Transfer the mbuf chain to the NIC memory. * 16-bit cards require that data be transferred as words, and only * words, so that case requires some extra code to patch over * odd-length mbufs. */ if (!sc->isa16bit) { /* NE1000s are easy. */ for (; m != 0; m = m->m_next) { if (m->m_len) { outsb(asicbase + ED_NOVELL_DATA, mtod(m, u_char *), m->m_len); } } } else { /* NE2000s are a bit trickier. */ u_int8_t *data, savebyte[2]; int len, wantbyte; wantbyte = 0; for (; m != 0; m = m->m_next) { len = m->m_len; if (len == 0) continue; data = mtod(m, u_int8_t *); /* Finish the last word. */ if (wantbyte) { savebyte[1] = *data; outw(asicbase + ED_NOVELL_DATA, *(u_short *)savebyte); data++; len--; wantbyte = 0; } /* Output contiguous words. */ if (len > 1) outsw(asicbase + ED_NOVELL_DATA, data, len >> 1); /* Save last byte, if necessary. */ if (len & 1) { data += len & ~1; savebyte[0] = *data; wantbyte = 1; } } if (wantbyte) { savebyte[1] = 0; outw(asicbase + ED_NOVELL_DATA, *(u_short *)savebyte); } } /* * Wait for remote DMA complete. This is necessary because on the * transmit side, data is handled internally by the NIC in bursts and * we can't start another remote DMA until this one completes. Not * waiting causes really bad things to happen - like the NIC * irrecoverably jamming the ISA bus. */ while (((NIC_GET(nicbase, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait); if (!maxwait) { log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n", sc->sc_dev.dv_xname); edreset(sc); } return (len); } /* * Given a source and destination address, copy 'amount' of a packet from the * ring buffer into a linear destination buffer. Takes into account ring-wrap. */ static inline caddr_t ed_ring_copy(sc, src, dst, amount) struct ed_softc *sc; caddr_t src, dst; u_short amount; { u_short tmp_amount; /* Does copy wrap to lower addr in ring buffer? */ if (src + amount > sc->mem_end) { tmp_amount = sc->mem_end - src; /* Copy amount up to end of NIC memory. */ ed_pio_readmem(sc, (long)src, dst, tmp_amount); amount -= tmp_amount; src = sc->mem_ring; dst += tmp_amount; } ed_pio_readmem(sc, (long)src, dst, amount); return (src + amount); } /* * Copy data from receive buffer to end of mbuf chain allocate additional mbufs * as needed. Return pointer to last mbuf in chain. * sc = ed info (softc) * src = pointer in ed ring buffer * dst = pointer to last mbuf in mbuf chain to copy to * amount = amount of data to copy */ struct mbuf * edget(sc, src, total_len) struct ed_softc *sc; caddr_t src; u_short total_len; { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *top, **mp, *m; int len; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == 0) return 0; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = total_len; len = MHLEN; top = 0; mp = ⊤ while (total_len > 0) { if (top) { MGET(m, M_DONTWAIT, MT_DATA); if (m == 0) { m_freem(top); return 0; } len = MLEN; } if (total_len >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m_freem(top); return 0; } len = MCLBYTES; } m->m_len = len = min(total_len, len); src = ed_ring_copy(sc, src, mtod(m, caddr_t), len); total_len -= len; *mp = m; mp = &m->m_next; } return top; } /* * Compute the multicast address filter from the list of multicast addresses we * need to listen to. */ void ed_getmcaf(ec, af) struct ethercom *ec; u_long *af; { struct ifnet *ifp = &ec->ec_if; struct ether_multi *enm; register u_char *cp, c; register u_long crc; register int i, len; struct ether_multistep step; /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 6 bits as an * index into the 64 bit logical address filter. The high order bit * selects the word, while the rest of the bits select the bit within * the word. */ if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } af[0] = af[1] = 0; ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; af[0] = af[1] = 0xffffffff; return; } cp = enm->enm_addrlo; crc = 0xffffffff; for (len = sizeof(enm->enm_addrlo); --len >= 0;) { c = *cp++; for (i = 8; --i >= 0;) { if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) { crc <<= 1; crc ^= 0x04c11db6 | 1; } else crc <<= 1; c >>= 1; } } /* Just want the 6 most significant bits. */ crc >>= 26; /* Turn on the corresponding bit in the filter. */ af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0); ETHER_NEXT_MULTI(step, enm); } ifp->if_flags &= ~IFF_ALLMULTI; }