/* $NetBSD: kern_time.c,v 1.59 2001/11/13 00:34:21 christos Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Christopher G. Demetriou. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.59 2001/11/13 00:34:21 christos Exp $"); #include "fs_nfs.h" #include "opt_nfs.h" #include "opt_nfsserver.h" #include #include #include #include #include #include #include #include #include #include #include #if defined(NFS) || defined(NFSSERVER) #include #include #include #endif #include /* * Time of day and interval timer support. * * These routines provide the kernel entry points to get and set * the time-of-day and per-process interval timers. Subroutines * here provide support for adding and subtracting timeval structures * and decrementing interval timers, optionally reloading the interval * timers when they expire. */ /* This function is used by clock_settime and settimeofday */ int settime(tv) struct timeval *tv; { struct timeval delta; struct cpu_info *ci; int s; /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ s = splclock(); timersub(tv, &time, &delta); if ((delta.tv_sec < 0 || delta.tv_usec < 0) && securelevel > 1) { splx(s); return (EPERM); } #ifdef notyet if ((delta.tv_sec < 86400) && securelevel > 0) { splx(s); return (EPERM); } #endif time = *tv; (void) spllowersoftclock(); timeradd(&boottime, &delta, &boottime); /* * XXXSMP * This is wrong. We should traverse a list of all * CPUs and add the delta to the runtime of those * CPUs which have a process on them. */ ci = curcpu(); timeradd(&ci->ci_schedstate.spc_runtime, &delta, &ci->ci_schedstate.spc_runtime); # if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER) nqnfs_lease_updatetime(delta.tv_sec); # endif splx(s); resettodr(); return (0); } /* ARGSUSED */ int sys_clock_gettime(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_clock_gettime_args /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ *uap = v; clockid_t clock_id; struct timeval atv; struct timespec ats; clock_id = SCARG(uap, clock_id); if (clock_id != CLOCK_REALTIME) return (EINVAL); microtime(&atv); TIMEVAL_TO_TIMESPEC(&atv,&ats); return copyout(&ats, SCARG(uap, tp), sizeof(ats)); } /* ARGSUSED */ int sys_clock_settime(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_clock_settime_args /* { syscallarg(clockid_t) clock_id; syscallarg(const struct timespec *) tp; } */ *uap = v; clockid_t clock_id; struct timespec ats; int error; if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); clock_id = SCARG(uap, clock_id); if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) return (error); return (clock_settime1(clock_id, &ats)); } int clock_settime1(clock_id, ats) clockid_t clock_id; struct timespec *ats; { struct timeval atv; int error; if (clock_id != CLOCK_REALTIME) return (EINVAL); TIMESPEC_TO_TIMEVAL(&atv, ats); if ((error = settime(&atv)) != 0) return (error); return 0; } int sys_clock_getres(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_clock_getres_args /* { syscallarg(clockid_t) clock_id; syscallarg(struct timespec *) tp; } */ *uap = v; clockid_t clock_id; struct timespec ts; int error = 0; clock_id = SCARG(uap, clock_id); if (clock_id != CLOCK_REALTIME) return (EINVAL); if (SCARG(uap, tp)) { ts.tv_sec = 0; ts.tv_nsec = 1000000000 / hz; error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); } return error; } /* ARGSUSED */ int sys_nanosleep(p, v, retval) struct proc *p; void *v; register_t *retval; { static int nanowait; struct sys_nanosleep_args/* { syscallarg(struct timespec *) rqtp; syscallarg(struct timespec *) rmtp; } */ *uap = v; struct timespec rqt; struct timespec rmt; struct timeval atv, utv; int error, s, timo; error = copyin((caddr_t)SCARG(uap, rqtp), (caddr_t)&rqt, sizeof(struct timespec)); if (error) return (error); TIMESPEC_TO_TIMEVAL(&atv,&rqt) if (itimerfix(&atv) || atv.tv_sec > 1000000000) return (EINVAL); s = splclock(); timeradd(&atv,&time,&atv); timo = hzto(&atv); /* * Avoid inadvertantly sleeping forever */ if (timo == 0) timo = 1; splx(s); error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo); if (error == ERESTART) error = EINTR; if (error == EWOULDBLOCK) error = 0; if (SCARG(uap, rmtp)) { int error; s = splclock(); utv = time; splx(s); timersub(&atv, &utv, &utv); if (utv.tv_sec < 0) timerclear(&utv); TIMEVAL_TO_TIMESPEC(&utv,&rmt); error = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp), sizeof(rmt)); if (error) return (error); } return error; } /* ARGSUSED */ int sys_gettimeofday(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_gettimeofday_args /* { syscallarg(struct timeval *) tp; syscallarg(struct timezone *) tzp; } */ *uap = v; struct timeval atv; int error = 0; struct timezone tzfake; if (SCARG(uap, tp)) { microtime(&atv); error = copyout(&atv, SCARG(uap, tp), sizeof(atv)); if (error) return (error); } if (SCARG(uap, tzp)) { /* * NetBSD has no kernel notion of time zone, so we just * fake up a timezone struct and return it if demanded. */ tzfake.tz_minuteswest = 0; tzfake.tz_dsttime = 0; error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake)); } return (error); } /* ARGSUSED */ int sys_settimeofday(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_settimeofday_args /* { syscallarg(const struct timeval *) tv; syscallarg(const struct timezone *) tzp; } */ *uap = v; struct timeval atv; struct timezone atz; struct timeval *tv = NULL; struct timezone *tzp = NULL; int error; if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); /* Verify all parameters before changing time. */ if (SCARG(uap, tv)) { if ((error = copyin(SCARG(uap, tv), &atv, sizeof(atv))) != 0) return (error); tv = &atv; } /* XXX since we don't use tz, probably no point in doing copyin. */ if (SCARG(uap, tzp)) { if ((error = copyin(SCARG(uap, tzp), &atz, sizeof(atz))) != 0) return (error); tzp = &atz; } return settimeofday1(tv, tzp, p); } int settimeofday1(tv, tzp, p) struct timeval *tv; struct timezone *tzp; struct proc *p; { int error; if (tv) if ((error = settime(tv)) != 0) return (error); /* * NetBSD has no kernel notion of time zone, and only an * obsolete program would try to set it, so we log a warning. */ if (tzp) log(LOG_WARNING, "pid %d attempted to set the " "(obsolete) kernel time zone\n", p->p_pid); return (0); } int tickdelta; /* current clock skew, us. per tick */ long timedelta; /* unapplied time correction, us. */ long bigadj = 1000000; /* use 10x skew above bigadj us. */ /* ARGSUSED */ int sys_adjtime(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_adjtime_args /* { syscallarg(const struct timeval *) delta; syscallarg(struct timeval *) olddelta; } */ *uap = v; struct timeval atv; struct timeval *oatv = NULL; int error; if ((error = suser(p->p_ucred, &p->p_acflag)) != 0) return (error); error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval)); if (error) return (error); if (SCARG(uap, olddelta) != NULL) { if (uvm_useracc((caddr_t)SCARG(uap, olddelta), sizeof(struct timeval), B_WRITE) == FALSE) return (EFAULT); oatv = SCARG(uap, olddelta); } return adjtime1(&atv, oatv, p); } int adjtime1(delta, olddelta, p) struct timeval *delta; struct timeval *olddelta; struct proc *p; { long ndelta, ntickdelta, odelta; int s; /* * Compute the total correction and the rate at which to apply it. * Round the adjustment down to a whole multiple of the per-tick * delta, so that after some number of incremental changes in * hardclock(), tickdelta will become zero, lest the correction * overshoot and start taking us away from the desired final time. */ ndelta = delta->tv_sec * 1000000 + delta->tv_usec; if (ndelta > bigadj || ndelta < -bigadj) ntickdelta = 10 * tickadj; else ntickdelta = tickadj; if (ndelta % ntickdelta) ndelta = ndelta / ntickdelta * ntickdelta; /* * To make hardclock()'s job easier, make the per-tick delta negative * if we want time to run slower; then hardclock can simply compute * tick + tickdelta, and subtract tickdelta from timedelta. */ if (ndelta < 0) ntickdelta = -ntickdelta; s = splclock(); odelta = timedelta; timedelta = ndelta; tickdelta = ntickdelta; splx(s); if (olddelta) { delta->tv_sec = odelta / 1000000; delta->tv_usec = odelta % 1000000; (void) copyout(delta, olddelta, sizeof(struct timeval)); } return (0); } /* * Get value of an interval timer. The process virtual and * profiling virtual time timers are kept in the p_stats area, since * they can be swapped out. These are kept internally in the * way they are specified externally: in time until they expire. * * The real time interval timer is kept in the process table slot * for the process, and its value (it_value) is kept as an * absolute time rather than as a delta, so that it is easy to keep * periodic real-time signals from drifting. * * Virtual time timers are processed in the hardclock() routine of * kern_clock.c. The real time timer is processed by a timeout * routine, called from the softclock() routine. Since a callout * may be delayed in real time due to interrupt processing in the system, * it is possible for the real time timeout routine (realitexpire, given below), * to be delayed in real time past when it is supposed to occur. It * does not suffice, therefore, to reload the real timer .it_value from the * real time timers .it_interval. Rather, we compute the next time in * absolute time the timer should go off. */ /* ARGSUSED */ int sys_getitimer(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_getitimer_args /* { syscallarg(int) which; syscallarg(struct itimerval *) itv; } */ *uap = v; int which = SCARG(uap, which); struct itimerval aitv; int s; if ((u_int)which > ITIMER_PROF) return (EINVAL); s = splclock(); if (which == ITIMER_REAL) { /* * Convert from absolute to relative time in .it_value * part of real time timer. If time for real time timer * has passed return 0, else return difference between * current time and time for the timer to go off. */ aitv = p->p_realtimer; if (timerisset(&aitv.it_value)) { if (timercmp(&aitv.it_value, &time, <)) timerclear(&aitv.it_value); else timersub(&aitv.it_value, &time, &aitv.it_value); } } else aitv = p->p_stats->p_timer[which]; splx(s); return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval))); } /* ARGSUSED */ int sys_setitimer(p, v, retval) struct proc *p; void *v; register_t *retval; { struct sys_setitimer_args /* { syscallarg(int) which; syscallarg(const struct itimerval *) itv; syscallarg(struct itimerval *) oitv; } */ *uap = v; int which = SCARG(uap, which); struct sys_getitimer_args getargs; struct itimerval aitv; const struct itimerval *itvp; int s, error; if ((u_int)which > ITIMER_PROF) return (EINVAL); itvp = SCARG(uap, itv); if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0)) return (error); if (SCARG(uap, oitv) != NULL) { SCARG(&getargs, which) = which; SCARG(&getargs, itv) = SCARG(uap, oitv); if ((error = sys_getitimer(p, &getargs, retval)) != 0) return (error); } if (itvp == 0) return (0); if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) return (EINVAL); s = splclock(); if (which == ITIMER_REAL) { callout_stop(&p->p_realit_ch); if (timerisset(&aitv.it_value)) { /* * Don't need to check hzto() return value, here. * callout_reset() does it for us. */ timeradd(&aitv.it_value, &time, &aitv.it_value); callout_reset(&p->p_realit_ch, hzto(&aitv.it_value), realitexpire, p); } p->p_realtimer = aitv; } else p->p_stats->p_timer[which] = aitv; splx(s); return (0); } /* * Real interval timer expired: * send process whose timer expired an alarm signal. * If time is not set up to reload, then just return. * Else compute next time timer should go off which is > current time. * This is where delay in processing this timeout causes multiple * SIGALRM calls to be compressed into one. */ void realitexpire(arg) void *arg; { struct proc *p; int s; p = (struct proc *)arg; psignal(p, SIGALRM); if (!timerisset(&p->p_realtimer.it_interval)) { timerclear(&p->p_realtimer.it_value); return; } for (;;) { s = splclock(); timeradd(&p->p_realtimer.it_value, &p->p_realtimer.it_interval, &p->p_realtimer.it_value); if (timercmp(&p->p_realtimer.it_value, &time, >)) { /* * Don't need to check hzto() return value, here. * callout_reset() does it for us. */ callout_reset(&p->p_realit_ch, hzto(&p->p_realtimer.it_value), realitexpire, p); splx(s); return; } splx(s); } } /* * Check that a proposed value to load into the .it_value or * .it_interval part of an interval timer is acceptable, and * fix it to have at least minimal value (i.e. if it is less * than the resolution of the clock, round it up.) */ int itimerfix(tv) struct timeval *tv; { if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) return (EINVAL); if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) tv->tv_usec = tick; return (0); } /* * Decrement an interval timer by a specified number * of microseconds, which must be less than a second, * i.e. < 1000000. If the timer expires, then reload * it. In this case, carry over (usec - old value) to * reduce the value reloaded into the timer so that * the timer does not drift. This routine assumes * that it is called in a context where the timers * on which it is operating cannot change in value. */ int itimerdecr(itp, usec) struct itimerval *itp; int usec; { if (itp->it_value.tv_usec < usec) { if (itp->it_value.tv_sec == 0) { /* expired, and already in next interval */ usec -= itp->it_value.tv_usec; goto expire; } itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } itp->it_value.tv_usec -= usec; usec = 0; if (timerisset(&itp->it_value)) return (1); /* expired, exactly at end of interval */ expire: if (timerisset(&itp->it_interval)) { itp->it_value = itp->it_interval; itp->it_value.tv_usec -= usec; if (itp->it_value.tv_usec < 0) { itp->it_value.tv_usec += 1000000; itp->it_value.tv_sec--; } } else itp->it_value.tv_usec = 0; /* sec is already 0 */ return (0); } /* * ratecheck(): simple time-based rate-limit checking. see ratecheck(9) * for usage and rationale. */ int ratecheck(lasttime, mininterval) struct timeval *lasttime; const struct timeval *mininterval; { struct timeval tv, delta; int s, rv = 0; s = splclock(); tv = mono_time; splx(s); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once, * even if interval is huge. */ if (timercmp(&delta, mininterval, >=) || (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { *lasttime = tv; rv = 1; } return (rv); } /* * ppsratecheck(): packets (or events) per second limitation. */ int ppsratecheck(lasttime, curpps, maxpps) struct timeval *lasttime; int *curpps; int maxpps; /* maximum pps allowed */ { struct timeval tv, delta; int s, rv; s = splclock(); tv = mono_time; splx(s); timersub(&tv, lasttime, &delta); /* * check for 0,0 is so that the message will be seen at least once. * if more than one second have passed since the last update of * lasttime, reset the counter. * * we do increment *curpps even in *curpps < maxpps case, as some may * try to use *curpps for stat purposes as well. */ if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || delta.tv_sec >= 1) { *lasttime = tv; *curpps = 0; rv = 1; } else if (maxpps < 0) rv = 1; else if (*curpps < maxpps) rv = 1; else rv = 0; #if 1 /*DIAGNOSTIC?*/ /* be careful about wrap-around */ if (*curpps + 1 > *curpps) *curpps = *curpps + 1; #else /* * assume that there's not too many calls to this function. * not sure if the assumption holds, as it depends on *caller's* * behavior, not the behavior of this function. * IMHO it is wrong to make assumption on the caller's behavior, * so the above #if is #if 1, not #ifdef DIAGNOSTIC. */ *curpps = *curpps + 1; #endif return (rv); }