/* $NetBSD: vfs_subr.c,v 1.435 2012/05/12 18:42:08 chs Exp $ */ /*- * Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94 */ #include __KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.435 2012/05/12 18:42:08 chs Exp $"); #include "opt_ddb.h" #include "opt_compat_netbsd.h" #include "opt_compat_43.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const enum vtype iftovt_tab[16] = { VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD, }; const int vttoif_tab[9] = { 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFSOCK, S_IFIFO, S_IFMT, }; /* * Insq/Remq for the vnode usage lists. */ #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs) #define bufremvn(bp) { \ LIST_REMOVE(bp, b_vnbufs); \ (bp)->b_vnbufs.le_next = NOLIST; \ } int doforce = 1; /* 1 => permit forcible unmounting */ int prtactive = 0; /* 1 => print out reclaim of active vnodes */ /* * Local declarations. */ static int getdevvp(dev_t, vnode_t **, enum vtype); /* * Initialize the vnode management data structures. */ void vntblinit(void) { vn_initialize_syncerd(); vfs_vnode_sysinit(); vfs_mount_sysinit(); } /* * Flush out and invalidate all buffers associated with a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l, bool catch, int slptimeo) { struct buf *bp, *nbp; int error; int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO | (flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0); /* XXXUBC this doesn't look at flags or slp* */ mutex_enter(vp->v_interlock); error = VOP_PUTPAGES(vp, 0, 0, flushflags); if (error) { return error; } if (flags & V_SAVE) { error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0); if (error) return (error); KASSERT(LIST_EMPTY(&vp->v_dirtyblkhd)); } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } /* * XXX Since there are no node locks for NFS, I believe * there is a slight chance that a delayed write will * occur while sleeping just above, so check for it. */ if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) { #ifdef DEBUG printf("buffer still DELWRI\n"); #endif bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); VOP_BWRITE(bp->b_vp, bp); mutex_enter(&bufcache_lock); goto restart; } brelsel(bp, BC_INVAL | BC_VFLUSH); } #ifdef DIAGNOSTIC if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd)) panic("vinvalbuf: flush failed, vp %p", vp); #endif mutex_exit(&bufcache_lock); return (0); } /* * Destroy any in core blocks past the truncation length. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo) { struct buf *bp, *nbp; int error; voff_t off; off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift); mutex_enter(vp->v_interlock); error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO); if (error) { return error; } mutex_enter(&bufcache_lock); restart: for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if (bp->b_lblkno < lbn) continue; error = bbusy(bp, catch, slptimeo, NULL); if (error != 0) { if (error == EPASSTHROUGH) goto restart; mutex_exit(&bufcache_lock); return (error); } brelsel(bp, BC_INVAL | BC_VFLUSH); } mutex_exit(&bufcache_lock); return (0); } /* * Flush all dirty buffers from a vnode. * Called with the underlying vnode locked, which should prevent new dirty * buffers from being queued. */ int vflushbuf(struct vnode *vp, int flags) { struct buf *bp, *nbp; int error, pflags; bool dirty, sync; sync = (flags & FSYNC_WAIT) != 0; pflags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0) | ((flags & FSYNC_LAZY) ? PGO_LAZY : 0); mutex_enter(vp->v_interlock); (void) VOP_PUTPAGES(vp, 0, 0, pflags); loop: mutex_enter(&bufcache_lock); for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) { KASSERT(bp->b_vp == vp); nbp = LIST_NEXT(bp, b_vnbufs); if ((bp->b_cflags & BC_BUSY)) continue; if ((bp->b_oflags & BO_DELWRI) == 0) panic("vflushbuf: not dirty, bp %p", bp); bp->b_cflags |= BC_BUSY | BC_VFLUSH; mutex_exit(&bufcache_lock); /* * Wait for I/O associated with indirect blocks to complete, * since there is no way to quickly wait for them below. */ if (bp->b_vp == vp || !sync) (void) bawrite(bp); else { error = bwrite(bp); if (error) return error; } goto loop; } mutex_exit(&bufcache_lock); if (!sync) return 0; mutex_enter(vp->v_interlock); while (vp->v_numoutput != 0) cv_wait(&vp->v_cv, vp->v_interlock); dirty = !LIST_EMPTY(&vp->v_dirtyblkhd); mutex_exit(vp->v_interlock); if (dirty) { vprint("vflushbuf: dirty", vp); goto loop; } return 0; } /* * Create a vnode for a block device. * Used for root filesystem and swap areas. * Also used for memory file system special devices. */ int bdevvp(dev_t dev, vnode_t **vpp) { return (getdevvp(dev, vpp, VBLK)); } /* * Create a vnode for a character device. * Used for kernfs and some console handling. */ int cdevvp(dev_t dev, vnode_t **vpp) { return (getdevvp(dev, vpp, VCHR)); } /* * Associate a buffer with a vnode. There must already be a hold on * the vnode. */ void bgetvp(struct vnode *vp, struct buf *bp) { KASSERT(bp->b_vp == NULL); KASSERT(bp->b_objlock == &buffer_lock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); vholdl(vp); bp->b_vp = vp; if (vp->v_type == VBLK || vp->v_type == VCHR) bp->b_dev = vp->v_rdev; else bp->b_dev = NODEV; /* * Insert onto list for new vnode. */ bufinsvn(bp, &vp->v_cleanblkhd); bp->b_objlock = vp->v_interlock; } /* * Disassociate a buffer from a vnode. */ void brelvp(struct buf *bp) { struct vnode *vp = bp->b_vp; KASSERT(vp != NULL); KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT(mutex_owned(&bufcache_lock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); KASSERT(!cv_has_waiters(&bp->b_done)); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } bp->b_objlock = &buffer_lock; bp->b_vp = NULL; holdrelel(vp); } /* * Reassign a buffer from one vnode list to another. * The list reassignment must be within the same vnode. * Used to assign file specific control information * (indirect blocks) to the list to which they belong. */ void reassignbuf(struct buf *bp, struct vnode *vp) { struct buflists *listheadp; int delayx; KASSERT(mutex_owned(&bufcache_lock)); KASSERT(bp->b_objlock == vp->v_interlock); KASSERT(mutex_owned(vp->v_interlock)); KASSERT((bp->b_cflags & BC_BUSY) != 0); /* * Delete from old vnode list, if on one. */ if (LIST_NEXT(bp, b_vnbufs) != NOLIST) bufremvn(bp); /* * If dirty, put on list of dirty buffers; * otherwise insert onto list of clean buffers. */ if ((bp->b_oflags & BO_DELWRI) == 0) { listheadp = &vp->v_cleanblkhd; if (vp->v_uobj.uo_npages == 0 && (vp->v_iflag & VI_ONWORKLST) && LIST_FIRST(&vp->v_dirtyblkhd) == NULL) { vp->v_iflag &= ~VI_WRMAPDIRTY; vn_syncer_remove_from_worklist(vp); } } else { listheadp = &vp->v_dirtyblkhd; if ((vp->v_iflag & VI_ONWORKLST) == 0) { switch (vp->v_type) { case VDIR: delayx = dirdelay; break; case VBLK: if (vp->v_specmountpoint != NULL) { delayx = metadelay; break; } /* fall through */ default: delayx = filedelay; break; } if (!vp->v_mount || (vp->v_mount->mnt_flag & MNT_ASYNC) == 0) vn_syncer_add_to_worklist(vp, delayx); } } bufinsvn(bp, listheadp); } /* * Create a vnode for a device. * Used by bdevvp (block device) for root file system etc., * and by cdevvp (character device) for console and kernfs. */ static int getdevvp(dev_t dev, vnode_t **vpp, enum vtype type) { vnode_t *vp; vnode_t *nvp; int error; if (dev == NODEV) { *vpp = NULL; return (0); } error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, NULL, &nvp); if (error) { *vpp = NULL; return (error); } vp = nvp; vp->v_type = type; vp->v_vflag |= VV_MPSAFE; uvm_vnp_setsize(vp, 0); spec_node_init(vp, dev); *vpp = vp; return (0); } /* * Lookup a vnode by device number and return it referenced. */ int vfinddev(dev_t dev, enum vtype type, vnode_t **vpp) { vnode_t *vp; mutex_enter(&device_lock); for (vp = specfs_hash[SPECHASH(dev)]; vp; vp = vp->v_specnext) { if (type == vp->v_type && dev == vp->v_rdev) break; } if (vp == NULL) { mutex_exit(&device_lock); return 0; } mutex_enter(vp->v_interlock); mutex_exit(&device_lock); if (vget(vp, 0) != 0) return 0; *vpp = vp; return 1; } /* * Revoke all the vnodes corresponding to the specified minor number * range (endpoints inclusive) of the specified major. */ void vdevgone(int maj, int minl, int minh, enum vtype type) { vnode_t *vp, **vpp; dev_t dev; int mn; vp = NULL; /* XXX gcc */ mutex_enter(&device_lock); for (mn = minl; mn <= minh; mn++) { dev = makedev(maj, mn); vpp = &specfs_hash[SPECHASH(dev)]; for (vp = *vpp; vp != NULL;) { mutex_enter(vp->v_interlock); if ((vp->v_iflag & VI_CLEAN) != 0 || type != vp->v_type || dev != vp->v_rdev) { mutex_exit(vp->v_interlock); vp = vp->v_specnext; continue; } mutex_exit(&device_lock); if (vget(vp, 0) == 0) { VOP_REVOKE(vp, REVOKEALL); vrele(vp); } mutex_enter(&device_lock); vp = *vpp; } } mutex_exit(&device_lock); } /* * sysctl helper routine to return list of supported fstypes */ int sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS) { char bf[sizeof(((struct statvfs *)NULL)->f_fstypename)]; char *where = oldp; struct vfsops *v; size_t needed, left, slen; int error, first; if (newp != NULL) return (EPERM); if (namelen != 0) return (EINVAL); first = 1; error = 0; needed = 0; left = *oldlenp; sysctl_unlock(); mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (where == NULL) needed += strlen(v->vfs_name) + 1; else { memset(bf, 0, sizeof(bf)); if (first) { strncpy(bf, v->vfs_name, sizeof(bf)); first = 0; } else { bf[0] = ' '; strncpy(bf + 1, v->vfs_name, sizeof(bf) - 1); } bf[sizeof(bf)-1] = '\0'; slen = strlen(bf); if (left < slen + 1) break; v->vfs_refcount++; mutex_exit(&vfs_list_lock); /* +1 to copy out the trailing NUL byte */ error = copyout(bf, where, slen + 1); mutex_enter(&vfs_list_lock); v->vfs_refcount--; if (error) break; where += slen; needed += slen; left -= slen; } } mutex_exit(&vfs_list_lock); sysctl_relock(); *oldlenp = needed; return (error); } int kinfo_vdebug = 1; int kinfo_vgetfailed; #define KINFO_VNODESLOP 10 /* * Dump vnode list (via sysctl). * Copyout address of vnode followed by vnode. */ int sysctl_kern_vnode(SYSCTLFN_ARGS) { char *where = oldp; size_t *sizep = oldlenp; struct mount *mp, *nmp; vnode_t *vp, *mvp, vbuf; char *bp = where; char *ewhere; int error; if (namelen != 0) return (EOPNOTSUPP); if (newp != NULL) return (EPERM); #define VPTRSZ sizeof(vnode_t *) #define VNODESZ sizeof(vnode_t) if (where == NULL) { *sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ); return (0); } ewhere = where + *sizep; sysctl_unlock(); mutex_enter(&mountlist_lock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, &nmp)) { continue; } /* Allocate a marker vnode. */ mvp = vnalloc(mp); /* Should never fail for mp != NULL */ KASSERT(mvp != NULL); mutex_enter(&mntvnode_lock); for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) { vmark(mvp, vp); /* * Check that the vp is still associated with * this filesystem. RACE: could have been * recycled onto the same filesystem. */ if (vp->v_mount != mp || vismarker(vp)) continue; if (bp + VPTRSZ + VNODESZ > ewhere) { (void)vunmark(mvp); mutex_exit(&mntvnode_lock); vnfree(mvp); vfs_unbusy(mp, false, NULL); sysctl_relock(); *sizep = bp - where; return (ENOMEM); } memcpy(&vbuf, vp, VNODESZ); mutex_exit(&mntvnode_lock); if ((error = copyout(&vp, bp, VPTRSZ)) || (error = copyout(&vbuf, bp + VPTRSZ, VNODESZ))) { mutex_enter(&mntvnode_lock); (void)vunmark(mvp); mutex_exit(&mntvnode_lock); vnfree(mvp); vfs_unbusy(mp, false, NULL); sysctl_relock(); return (error); } bp += VPTRSZ + VNODESZ; mutex_enter(&mntvnode_lock); } mutex_exit(&mntvnode_lock); vnfree(mvp); vfs_unbusy(mp, false, &nmp); } mutex_exit(&mountlist_lock); sysctl_relock(); *sizep = bp - where; return (0); } /* * Set vnode attributes to VNOVAL */ void vattr_null(struct vattr *vap) { memset(vap, 0, sizeof(*vap)); vap->va_type = VNON; /* * Assign individually so that it is safe even if size and * sign of each member are varied. */ vap->va_mode = VNOVAL; vap->va_nlink = VNOVAL; vap->va_uid = VNOVAL; vap->va_gid = VNOVAL; vap->va_fsid = VNOVAL; vap->va_fileid = VNOVAL; vap->va_size = VNOVAL; vap->va_blocksize = VNOVAL; vap->va_atime.tv_sec = vap->va_mtime.tv_sec = vap->va_ctime.tv_sec = vap->va_birthtime.tv_sec = VNOVAL; vap->va_atime.tv_nsec = vap->va_mtime.tv_nsec = vap->va_ctime.tv_nsec = vap->va_birthtime.tv_nsec = VNOVAL; vap->va_gen = VNOVAL; vap->va_flags = VNOVAL; vap->va_rdev = VNOVAL; vap->va_bytes = VNOVAL; } #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0])) #define ARRAY_PRINT(idx, arr) \ ((unsigned int)(idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN") const char * const vnode_tags[] = { VNODE_TAGS }; const char * const vnode_types[] = { VNODE_TYPES }; const char vnode_flagbits[] = VNODE_FLAGBITS; /* * Print out a description of a vnode. */ void vprint(const char *label, struct vnode *vp) { char bf[96]; int flag; flag = vp->v_iflag | vp->v_vflag | vp->v_uflag; snprintb(bf, sizeof(bf), vnode_flagbits, flag); if (label != NULL) printf("%s: ", label); printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), " "usecount %d, writecount %d, holdcount %d\n" "\tfreelisthd %p, mount %p, data %p lock %p\n", vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_freelisthd, vp->v_mount, vp->v_data, &vp->v_lock); if (vp->v_data != NULL) { printf("\t"); VOP_PRINT(vp); } } /* Deprecated. Kept for KPI compatibility. */ int vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid, mode_t acc_mode, kauth_cred_t cred) { #ifdef DIAGNOSTIC printf("vaccess: deprecated interface used.\n"); #endif /* DIAGNOSTIC */ return kauth_authorize_vnode(cred, kauth_access_action(acc_mode, type, file_mode), NULL /* This may panic. */, NULL, genfs_can_access(type, file_mode, uid, gid, acc_mode, cred)); } /* * Given a file system name, look up the vfsops for that * file system, or return NULL if file system isn't present * in the kernel. */ struct vfsops * vfs_getopsbyname(const char *name) { struct vfsops *v; mutex_enter(&vfs_list_lock); LIST_FOREACH(v, &vfs_list, vfs_list) { if (strcmp(v->vfs_name, name) == 0) break; } if (v != NULL) v->vfs_refcount++; mutex_exit(&vfs_list_lock); return (v); } void copy_statvfs_info(struct statvfs *sbp, const struct mount *mp) { const struct statvfs *mbp; if (sbp == (mbp = &mp->mnt_stat)) return; (void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx)); sbp->f_fsid = mbp->f_fsid; sbp->f_owner = mbp->f_owner; sbp->f_flag = mbp->f_flag; sbp->f_syncwrites = mbp->f_syncwrites; sbp->f_asyncwrites = mbp->f_asyncwrites; sbp->f_syncreads = mbp->f_syncreads; sbp->f_asyncreads = mbp->f_asyncreads; (void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare)); (void)memcpy(sbp->f_fstypename, mbp->f_fstypename, sizeof(sbp->f_fstypename)); (void)memcpy(sbp->f_mntonname, mbp->f_mntonname, sizeof(sbp->f_mntonname)); (void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname, sizeof(sbp->f_mntfromname)); sbp->f_namemax = mbp->f_namemax; } int set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom, const char *vfsname, struct mount *mp, struct lwp *l) { int error; size_t size; struct statvfs *sfs = &mp->mnt_stat; int (*fun)(const void *, void *, size_t, size_t *); (void)strlcpy(mp->mnt_stat.f_fstypename, vfsname, sizeof(mp->mnt_stat.f_fstypename)); if (onp) { struct cwdinfo *cwdi = l->l_proc->p_cwdi; fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr; if (cwdi->cwdi_rdir != NULL) { size_t len; char *bp; char *path = PNBUF_GET(); bp = path + MAXPATHLEN; *--bp = '\0'; rw_enter(&cwdi->cwdi_lock, RW_READER); error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp, path, MAXPATHLEN / 2, 0, l); rw_exit(&cwdi->cwdi_lock); if (error) { PNBUF_PUT(path); return error; } len = strlen(bp); if (len > sizeof(sfs->f_mntonname) - 1) len = sizeof(sfs->f_mntonname) - 1; (void)strncpy(sfs->f_mntonname, bp, len); PNBUF_PUT(path); if (len < sizeof(sfs->f_mntonname) - 1) { error = (*fun)(onp, &sfs->f_mntonname[len], sizeof(sfs->f_mntonname) - len - 1, &size); if (error) return error; size += len; } else { size = len; } } else { error = (*fun)(onp, &sfs->f_mntonname, sizeof(sfs->f_mntonname) - 1, &size); if (error) return error; } (void)memset(sfs->f_mntonname + size, 0, sizeof(sfs->f_mntonname) - size); } if (fromp) { fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr; error = (*fun)(fromp, sfs->f_mntfromname, sizeof(sfs->f_mntfromname) - 1, &size); if (error) return error; (void)memset(sfs->f_mntfromname + size, 0, sizeof(sfs->f_mntfromname) - size); } return 0; } void vfs_timestamp(struct timespec *ts) { nanotime(ts); } time_t rootfstime; /* recorded root fs time, if known */ void setrootfstime(time_t t) { rootfstime = t; } static const uint8_t vttodt_tab[9] = { DT_UNKNOWN, /* VNON */ DT_REG, /* VREG */ DT_DIR, /* VDIR */ DT_BLK, /* VBLK */ DT_CHR, /* VCHR */ DT_LNK, /* VLNK */ DT_SOCK, /* VSUCK */ DT_FIFO, /* VFIFO */ DT_UNKNOWN /* VBAD */ }; uint8_t vtype2dt(enum vtype vt) { CTASSERT(VBAD == __arraycount(vttodt_tab) - 1); return vttodt_tab[vt]; } int VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_START(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_start))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_UNMOUNT(struct mount *mp, int a) { int error; KERNEL_LOCK(1, NULL); error = (*(mp->mnt_op->vfs_unmount))(mp, a); KERNEL_UNLOCK_ONE(NULL); return error; } int VFS_ROOT(struct mount *mp, struct vnode **a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_root))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_QUOTACTL(struct mount *mp, struct quotactl_args *args) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_quotactl))(mp, args); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_STATVFS(struct mount *mp, struct statvfs *a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_statvfs))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_sync))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b) { int error; if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b); if ((vp->v_vflag & VV_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } int VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d) { int error; KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */ error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d); KERNEL_UNLOCK_ONE(NULL); /* XXX */ return error; } int VFS_SUSPENDCTL(struct mount *mp, int a) { int error; if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_LOCK(1, NULL); } error = (*(mp->mnt_op->vfs_suspendctl))(mp, a); if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) { KERNEL_UNLOCK_ONE(NULL); } return error; } #if defined(DDB) || defined(DEBUGPRINT) static const char buf_flagbits[] = BUF_FLAGBITS; void vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...)) { char bf[1024]; (*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%" PRIx64 " dev 0x%x\n", bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev); snprintb(bf, sizeof(bf), buf_flagbits, bp->b_flags | bp->b_oflags | bp->b_cflags); (*pr)(" error %d flags 0x%s\n", bp->b_error, bf); (*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n", bp->b_bufsize, bp->b_bcount, bp->b_resid); (*pr)(" data %p saveaddr %p\n", bp->b_data, bp->b_saveaddr); (*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock); } void vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...)) { char bf[256]; uvm_object_printit(&vp->v_uobj, full, pr); snprintb(bf, sizeof(bf), vnode_flagbits, vp->v_iflag | vp->v_vflag | vp->v_uflag); (*pr)("\nVNODE flags %s\n", bf); (*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n", vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize); (*pr)("data %p writecount %ld holdcnt %ld\n", vp->v_data, vp->v_writecount, vp->v_holdcnt); (*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n", ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag, ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type, vp->v_mount, vp->v_mountedhere); (*pr)("v_lock %p\n", &vp->v_lock); if (full) { struct buf *bp; (*pr)("clean bufs:\n"); LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } (*pr)("dirty bufs:\n"); LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) { (*pr)(" bp %p\n", bp); vfs_buf_print(bp, full, pr); } } } void vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...)) { char sbuf[256]; (*pr)("vnodecovered = %p syncer = %p data = %p\n", mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data); (*pr)("fs_bshift %d dev_bshift = %d\n", mp->mnt_fs_bshift,mp->mnt_dev_bshift); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_flag); (*pr)("flag = %s\n", sbuf); snprintb(sbuf, sizeof(sbuf), __IMNT_FLAG_BITS, mp->mnt_iflag); (*pr)("iflag = %s\n", sbuf); (*pr)("refcnt = %d unmounting @ %p updating @ %p\n", mp->mnt_refcnt, &mp->mnt_unmounting, &mp->mnt_updating); (*pr)("statvfs cache:\n"); (*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize); (*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize); (*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize); (*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks); (*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree); (*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail); (*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd); (*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files); (*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree); (*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail); (*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd); (*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n", mp->mnt_stat.f_fsidx.__fsid_val[0], mp->mnt_stat.f_fsidx.__fsid_val[1]); (*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner); (*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax); snprintb(sbuf, sizeof(sbuf), __MNT_FLAG_BITS, mp->mnt_stat.f_flag); (*pr)("\tflag = %s\n",sbuf); (*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites); (*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites); (*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads); (*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads); (*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename); (*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname); (*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname); { int cnt = 0; struct vnode *vp; (*pr)("locked vnodes ="); TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (VOP_ISLOCKED(vp)) { if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } } (*pr)("\n"); } if (full) { int cnt = 0; struct vnode *vp; (*pr)("all vnodes ="); TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (!TAILQ_NEXT(vp, v_mntvnodes)) { (*pr)(" %p", vp); } else if ((++cnt % 6) == 0) { (*pr)(" %p,\n\t", vp); } else { (*pr)(" %p,", vp); } } (*pr)("\n", vp); } } /* * List all of the locked vnodes in the system. */ void printlockedvnodes(void); void printlockedvnodes(void) { struct mount *mp, *nmp; struct vnode *vp; printf("Locked vnodes\n"); mutex_enter(&mountlist_lock); for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; mp = nmp) { if (vfs_busy(mp, &nmp)) { continue; } TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) { if (VOP_ISLOCKED(vp)) vprint(NULL, vp); } mutex_enter(&mountlist_lock); vfs_unbusy(mp, false, &nmp); } mutex_exit(&mountlist_lock); } #endif /* DDB || DEBUGPRINT */