/* $NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $ */ /*- * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * reference: * - Magazines and Vmem: Extending the Slab Allocator * to Many CPUs and Arbitrary Resources * http://www.usenix.org/event/usenix01/bonwick.html * * locking & the boundary tag pool: * - A pool(9) is used for vmem boundary tags * - During a pool get call the global vmem_btag_refill_lock is taken, * to serialize access to the allocation reserve, but no other * vmem arena locks. * - During pool_put calls no vmem mutexes are locked. * - pool_drain doesn't hold the pool's mutex while releasing memory to * its backing therefore no interferance with any vmem mutexes. * - The boundary tag pool is forced to put page headers into pool pages * (PR_PHINPAGE) and not off page to avoid pool recursion. * (due to sizeof(bt_t) it should be the case anyway) */ #include __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.95 2016/07/07 06:55:43 msaitoh Exp $"); #if defined(_KERNEL) && defined(_KERNEL_OPT) #include "opt_ddb.h" #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */ #include #include #include #include #if defined(_KERNEL) #include #include /* hz */ #include #include #include #include #include #include #include #include #include #include #include #include #else /* defined(_KERNEL) */ #include #include #include #include #include #include "../sys/vmem.h" #include "../sys/vmem_impl.h" #endif /* defined(_KERNEL) */ #if defined(_KERNEL) #include #define VMEM_EVCNT_DEFINE(name) \ struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \ "vmem", #name); \ EVCNT_ATTACH_STATIC(vmem_evcnt_##name); #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++ #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count-- VMEM_EVCNT_DEFINE(static_bt_count) VMEM_EVCNT_DEFINE(static_bt_inuse) #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) #else /* defined(_KERNEL) */ #define VMEM_EVCNT_INCR(ev) /* nothing */ #define VMEM_EVCNT_DECR(ev) /* nothing */ #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */ #define VMEM_CONDVAR_DESTROY(vm) /* nothing */ #define VMEM_CONDVAR_WAIT(vm) /* nothing */ #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */ #define UNITTEST #define KASSERT(a) assert(a) #define mutex_init(a, b, c) /* nothing */ #define mutex_destroy(a) /* nothing */ #define mutex_enter(a) /* nothing */ #define mutex_tryenter(a) true #define mutex_exit(a) /* nothing */ #define mutex_owned(a) /* nothing */ #define ASSERT_SLEEPABLE() /* nothing */ #define panic(...) printf(__VA_ARGS__); abort() #endif /* defined(_KERNEL) */ #if defined(VMEM_SANITY) static void vmem_check(vmem_t *); #else /* defined(VMEM_SANITY) */ #define vmem_check(vm) /* nothing */ #endif /* defined(VMEM_SANITY) */ #define VMEM_HASHSIZE_MIN 1 /* XXX */ #define VMEM_HASHSIZE_MAX 65536 /* XXX */ #define VMEM_HASHSIZE_INIT 1 #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT) #if defined(_KERNEL) static bool vmem_bootstrapped = false; static kmutex_t vmem_list_lock; static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); #endif /* defined(_KERNEL) */ /* ---- misc */ #define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock) #define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock) #define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock) #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl) #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock) #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock)) #define VMEM_ALIGNUP(addr, align) \ (-(-(addr) & -(align))) #define VMEM_CROSS_P(addr1, addr2, boundary) \ ((((addr1) ^ (addr2)) & -(boundary)) != 0) #define ORDER2SIZE(order) ((vmem_size_t)1 << (order)) #define SIZE2ORDER(size) ((int)ilog2(size)) #if !defined(_KERNEL) #define xmalloc(sz, flags) malloc(sz) #define xfree(p, sz) free(p) #define bt_alloc(vm, flags) malloc(sizeof(bt_t)) #define bt_free(vm, bt) free(bt) #else /* defined(_KERNEL) */ #define xmalloc(sz, flags) \ kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP); #define xfree(p, sz) kmem_free(p, sz); /* * BT_RESERVE calculation: * we allocate memory for boundry tags with vmem, therefor we have * to keep a reserve of bts used to allocated memory for bts. * This reserve is 4 for each arena involved in allocating vmems memory. * BT_MAXFREE: don't cache excessive counts of bts in arenas */ #define STATIC_BT_COUNT 200 #define BT_MINRESERVE 4 #define BT_MAXFREE 64 static struct vmem_btag static_bts[STATIC_BT_COUNT]; static int static_bt_count = STATIC_BT_COUNT; static struct vmem kmem_va_meta_arena_store; vmem_t *kmem_va_meta_arena; static struct vmem kmem_meta_arena_store; vmem_t *kmem_meta_arena = NULL; static kmutex_t vmem_btag_refill_lock; static kmutex_t vmem_btag_lock; static LIST_HEAD(, vmem_btag) vmem_btag_freelist; static size_t vmem_btag_freelist_count = 0; static struct pool vmem_btag_pool; static void vmem_kick_pdaemon(void) { #if defined(_KERNEL) mutex_spin_enter(&uvm_fpageqlock); uvm_kick_pdaemon(); mutex_spin_exit(&uvm_fpageqlock); #endif } /* ---- boundary tag */ static int bt_refill(vmem_t *vm); static void * pool_page_alloc_vmem_meta(struct pool *pp, int flags) { const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; vmem_addr_t va; int ret; ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va); return ret ? NULL : (void *)va; } static void pool_page_free_vmem_meta(struct pool *pp, void *v) { vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); } /* allocator for vmem-pool metadata */ struct pool_allocator pool_allocator_vmem_meta = { .pa_alloc = pool_page_alloc_vmem_meta, .pa_free = pool_page_free_vmem_meta, .pa_pagesz = 0 }; static int bt_refill(vmem_t *vm) { bt_t *bt; VMEM_LOCK(vm); if (vm->vm_nfreetags > BT_MINRESERVE) { VMEM_UNLOCK(vm); return 0; } mutex_enter(&vmem_btag_lock); while (!LIST_EMPTY(&vmem_btag_freelist) && vm->vm_nfreetags <= BT_MINRESERVE) { bt = LIST_FIRST(&vmem_btag_freelist); LIST_REMOVE(bt, bt_freelist); LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); vm->vm_nfreetags++; vmem_btag_freelist_count--; VMEM_EVCNT_INCR(static_bt_inuse); } mutex_exit(&vmem_btag_lock); while (vm->vm_nfreetags <= BT_MINRESERVE) { VMEM_UNLOCK(vm); mutex_enter(&vmem_btag_refill_lock); bt = pool_get(&vmem_btag_pool, PR_NOWAIT); mutex_exit(&vmem_btag_refill_lock); VMEM_LOCK(vm); if (bt == NULL) break; LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); vm->vm_nfreetags++; } if (vm->vm_nfreetags <= BT_MINRESERVE) { VMEM_UNLOCK(vm); return ENOMEM; } VMEM_UNLOCK(vm); if (kmem_meta_arena != NULL) { (void)bt_refill(kmem_arena); (void)bt_refill(kmem_va_meta_arena); (void)bt_refill(kmem_meta_arena); } return 0; } static bt_t * bt_alloc(vmem_t *vm, vm_flag_t flags) { bt_t *bt; VMEM_LOCK(vm); while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) { VMEM_UNLOCK(vm); if (bt_refill(vm)) { if ((flags & VM_NOSLEEP) != 0) { return NULL; } /* * It would be nice to wait for something specific here * but there are multiple ways that a retry could * succeed and we can't wait for multiple things * simultaneously. So we'll just sleep for an arbitrary * short period of time and retry regardless. * This should be a very rare case. */ vmem_kick_pdaemon(); kpause("btalloc", false, 1, NULL); } VMEM_LOCK(vm); } bt = LIST_FIRST(&vm->vm_freetags); LIST_REMOVE(bt, bt_freelist); vm->vm_nfreetags--; VMEM_UNLOCK(vm); return bt; } static void bt_free(vmem_t *vm, bt_t *bt) { VMEM_LOCK(vm); LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); vm->vm_nfreetags++; VMEM_UNLOCK(vm); } static void bt_freetrim(vmem_t *vm, int freelimit) { bt_t *t; LIST_HEAD(, vmem_btag) tofree; LIST_INIT(&tofree); VMEM_LOCK(vm); while (vm->vm_nfreetags > freelimit) { bt_t *bt = LIST_FIRST(&vm->vm_freetags); LIST_REMOVE(bt, bt_freelist); vm->vm_nfreetags--; if (bt >= static_bts && bt < &static_bts[STATIC_BT_COUNT]) { mutex_enter(&vmem_btag_lock); LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); vmem_btag_freelist_count++; mutex_exit(&vmem_btag_lock); VMEM_EVCNT_DECR(static_bt_inuse); } else { LIST_INSERT_HEAD(&tofree, bt, bt_freelist); } } VMEM_UNLOCK(vm); while (!LIST_EMPTY(&tofree)) { t = LIST_FIRST(&tofree); LIST_REMOVE(t, bt_freelist); pool_put(&vmem_btag_pool, t); } } #endif /* defined(_KERNEL) */ /* * freelist[0] ... [1, 1] * freelist[1] ... [2, 3] * freelist[2] ... [4, 7] * freelist[3] ... [8, 15] * : * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1] * : */ static struct vmem_freelist * bt_freehead_tofree(vmem_t *vm, vmem_size_t size) { const vmem_size_t qsize = size >> vm->vm_quantum_shift; const int idx = SIZE2ORDER(qsize); KASSERT(size != 0 && qsize != 0); KASSERT((size & vm->vm_quantum_mask) == 0); KASSERT(idx >= 0); KASSERT(idx < VMEM_MAXORDER); return &vm->vm_freelist[idx]; } /* * bt_freehead_toalloc: return the freelist for the given size and allocation * strategy. * * for VM_INSTANTFIT, return the list in which any blocks are large enough * for the requested size. otherwise, return the list which can have blocks * large enough for the requested size. */ static struct vmem_freelist * bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat) { const vmem_size_t qsize = size >> vm->vm_quantum_shift; int idx = SIZE2ORDER(qsize); KASSERT(size != 0 && qsize != 0); KASSERT((size & vm->vm_quantum_mask) == 0); if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) { idx++; /* check too large request? */ } KASSERT(idx >= 0); KASSERT(idx < VMEM_MAXORDER); return &vm->vm_freelist[idx]; } /* ---- boundary tag hash */ static struct vmem_hashlist * bt_hashhead(vmem_t *vm, vmem_addr_t addr) { struct vmem_hashlist *list; unsigned int hash; hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT); list = &vm->vm_hashlist[hash % vm->vm_hashsize]; return list; } static bt_t * bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) { struct vmem_hashlist *list; bt_t *bt; list = bt_hashhead(vm, addr); LIST_FOREACH(bt, list, bt_hashlist) { if (bt->bt_start == addr) { break; } } return bt; } static void bt_rembusy(vmem_t *vm, bt_t *bt) { KASSERT(vm->vm_nbusytag > 0); vm->vm_inuse -= bt->bt_size; vm->vm_nbusytag--; LIST_REMOVE(bt, bt_hashlist); } static void bt_insbusy(vmem_t *vm, bt_t *bt) { struct vmem_hashlist *list; KASSERT(bt->bt_type == BT_TYPE_BUSY); list = bt_hashhead(vm, bt->bt_start); LIST_INSERT_HEAD(list, bt, bt_hashlist); vm->vm_nbusytag++; vm->vm_inuse += bt->bt_size; } /* ---- boundary tag list */ static void bt_remseg(vmem_t *vm, bt_t *bt) { TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); } static void bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) { TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); } static void bt_insseg_tail(vmem_t *vm, bt_t *bt) { TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); } static void bt_remfree(vmem_t *vm, bt_t *bt) { KASSERT(bt->bt_type == BT_TYPE_FREE); LIST_REMOVE(bt, bt_freelist); } static void bt_insfree(vmem_t *vm, bt_t *bt) { struct vmem_freelist *list; list = bt_freehead_tofree(vm, bt->bt_size); LIST_INSERT_HEAD(list, bt, bt_freelist); } /* ---- vmem internal functions */ #if defined(QCACHE) static inline vm_flag_t prf_to_vmf(int prflags) { vm_flag_t vmflags; KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0); if ((prflags & PR_WAITOK) != 0) { vmflags = VM_SLEEP; } else { vmflags = VM_NOSLEEP; } return vmflags; } static inline int vmf_to_prf(vm_flag_t vmflags) { int prflags; if ((vmflags & VM_SLEEP) != 0) { prflags = PR_WAITOK; } else { prflags = PR_NOWAIT; } return prflags; } static size_t qc_poolpage_size(size_t qcache_max) { int i; for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) { /* nothing */ } return ORDER2SIZE(i); } static void * qc_poolpage_alloc(struct pool *pool, int prflags) { qcache_t *qc = QC_POOL_TO_QCACHE(pool); vmem_t *vm = qc->qc_vmem; vmem_addr_t addr; if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz, prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0) return NULL; return (void *)addr; } static void qc_poolpage_free(struct pool *pool, void *addr) { qcache_t *qc = QC_POOL_TO_QCACHE(pool); vmem_t *vm = qc->qc_vmem; vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz); } static void qc_init(vmem_t *vm, size_t qcache_max, int ipl) { qcache_t *prevqc; struct pool_allocator *pa; int qcache_idx_max; int i; KASSERT((qcache_max & vm->vm_quantum_mask) == 0); if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) { qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift; } vm->vm_qcache_max = qcache_max; pa = &vm->vm_qcache_allocator; memset(pa, 0, sizeof(*pa)); pa->pa_alloc = qc_poolpage_alloc; pa->pa_free = qc_poolpage_free; pa->pa_pagesz = qc_poolpage_size(qcache_max); qcache_idx_max = qcache_max >> vm->vm_quantum_shift; prevqc = NULL; for (i = qcache_idx_max; i > 0; i--) { qcache_t *qc = &vm->vm_qcache_store[i - 1]; size_t size = i << vm->vm_quantum_shift; pool_cache_t pc; qc->qc_vmem = vm; snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu", vm->vm_name, size); pc = pool_cache_init(size, ORDER2SIZE(vm->vm_quantum_shift), 0, PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */, qc->qc_name, pa, ipl, NULL, NULL, NULL); KASSERT(pc); qc->qc_cache = pc; KASSERT(qc->qc_cache != NULL); /* XXX */ if (prevqc != NULL && qc->qc_cache->pc_pool.pr_itemsperpage == prevqc->qc_cache->pc_pool.pr_itemsperpage) { pool_cache_destroy(qc->qc_cache); vm->vm_qcache[i - 1] = prevqc; continue; } qc->qc_cache->pc_pool.pr_qcache = qc; vm->vm_qcache[i - 1] = qc; prevqc = qc; } } static void qc_destroy(vmem_t *vm) { const qcache_t *prevqc; int i; int qcache_idx_max; qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; prevqc = NULL; for (i = 0; i < qcache_idx_max; i++) { qcache_t *qc = vm->vm_qcache[i]; if (prevqc == qc) { continue; } pool_cache_destroy(qc->qc_cache); prevqc = qc; } } #endif #if defined(_KERNEL) static void vmem_bootstrap(void) { mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_VM); mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM); mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM); while (static_bt_count-- > 0) { bt_t *bt = &static_bts[static_bt_count]; LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist); VMEM_EVCNT_INCR(static_bt_count); vmem_btag_freelist_count++; } vmem_bootstrapped = TRUE; } void vmem_subsystem_init(vmem_t *vm) { kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va", 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm, 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT, IPL_VM); kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta", 0, 0, PAGE_SIZE, uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena, 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM); pool_init(&vmem_btag_pool, sizeof(bt_t), 0, 0, PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM); } #endif /* defined(_KERNEL) */ static int vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags, int spanbttype) { bt_t *btspan; bt_t *btfree; KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT(spanbttype == BT_TYPE_SPAN || spanbttype == BT_TYPE_SPAN_STATIC); btspan = bt_alloc(vm, flags); if (btspan == NULL) { return ENOMEM; } btfree = bt_alloc(vm, flags); if (btfree == NULL) { bt_free(vm, btspan); return ENOMEM; } btspan->bt_type = spanbttype; btspan->bt_start = addr; btspan->bt_size = size; btfree->bt_type = BT_TYPE_FREE; btfree->bt_start = addr; btfree->bt_size = size; VMEM_LOCK(vm); bt_insseg_tail(vm, btspan); bt_insseg(vm, btfree, btspan); bt_insfree(vm, btfree); vm->vm_size += size; VMEM_UNLOCK(vm); return 0; } static void vmem_destroy1(vmem_t *vm) { #if defined(QCACHE) qc_destroy(vm); #endif /* defined(QCACHE) */ if (vm->vm_hashlist != NULL) { int i; for (i = 0; i < vm->vm_hashsize; i++) { bt_t *bt; while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) { KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC); bt_free(vm, bt); } } if (vm->vm_hashlist != &vm->vm_hash0) { xfree(vm->vm_hashlist, sizeof(struct vmem_hashlist *) * vm->vm_hashsize); } } bt_freetrim(vm, 0); VMEM_CONDVAR_DESTROY(vm); VMEM_LOCK_DESTROY(vm); xfree(vm, sizeof(*vm)); } static int vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags) { vmem_addr_t addr; int rc; if (vm->vm_importfn == NULL) { return EINVAL; } if (vm->vm_flags & VM_LARGEIMPORT) { size *= 16; } if (vm->vm_flags & VM_XIMPORT) { rc = ((vmem_ximport_t *)vm->vm_importfn)(vm->vm_arg, size, &size, flags, &addr); } else { rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); } if (rc) { return ENOMEM; } if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) { (*vm->vm_releasefn)(vm->vm_arg, addr, size); return ENOMEM; } return 0; } static int vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags) { bt_t *bt; int i; struct vmem_hashlist *newhashlist; struct vmem_hashlist *oldhashlist; size_t oldhashsize; KASSERT(newhashsize > 0); newhashlist = xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags); if (newhashlist == NULL) { return ENOMEM; } for (i = 0; i < newhashsize; i++) { LIST_INIT(&newhashlist[i]); } if (!VMEM_TRYLOCK(vm)) { xfree(newhashlist, sizeof(struct vmem_hashlist *) * newhashsize); return EBUSY; } oldhashlist = vm->vm_hashlist; oldhashsize = vm->vm_hashsize; vm->vm_hashlist = newhashlist; vm->vm_hashsize = newhashsize; if (oldhashlist == NULL) { VMEM_UNLOCK(vm); return 0; } for (i = 0; i < oldhashsize; i++) { while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { bt_rembusy(vm, bt); /* XXX */ bt_insbusy(vm, bt); } } VMEM_UNLOCK(vm); if (oldhashlist != &vm->vm_hash0) { xfree(oldhashlist, sizeof(struct vmem_hashlist *) * oldhashsize); } return 0; } /* * vmem_fit: check if a bt can satisfy the given restrictions. * * it's a caller's responsibility to ensure the region is big enough * before calling us. */ static int vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp) { vmem_addr_t start; vmem_addr_t end; KASSERT(size > 0); KASSERT(bt->bt_size >= size); /* caller's responsibility */ /* * XXX assumption: vmem_addr_t and vmem_size_t are * unsigned integer of the same size. */ start = bt->bt_start; if (start < minaddr) { start = minaddr; } end = BT_END(bt); if (end > maxaddr) { end = maxaddr; } if (start > end) { return ENOMEM; } start = VMEM_ALIGNUP(start - phase, align) + phase; if (start < bt->bt_start) { start += align; } if (VMEM_CROSS_P(start, start + size - 1, nocross)) { KASSERT(align < nocross); start = VMEM_ALIGNUP(start - phase, nocross) + phase; } if (start <= end && end - start >= size - 1) { KASSERT((start & (align - 1)) == phase); KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross)); KASSERT(minaddr <= start); KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr); KASSERT(bt->bt_start <= start); KASSERT(BT_END(bt) - start >= size - 1); *addrp = start; return 0; } return ENOMEM; } /* ---- vmem API */ /* * vmem_create_internal: creates a vmem arena. */ vmem_t * vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn, vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl) { int i; KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT(quantum > 0); #if defined(_KERNEL) /* XXX: SMP, we get called early... */ if (!vmem_bootstrapped) { vmem_bootstrap(); } #endif /* defined(_KERNEL) */ if (vm == NULL) { vm = xmalloc(sizeof(*vm), flags); } if (vm == NULL) { return NULL; } VMEM_CONDVAR_INIT(vm, "vmem"); VMEM_LOCK_INIT(vm, ipl); vm->vm_flags = flags; vm->vm_nfreetags = 0; LIST_INIT(&vm->vm_freetags); strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); vm->vm_quantum_mask = quantum - 1; vm->vm_quantum_shift = SIZE2ORDER(quantum); KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum); vm->vm_importfn = importfn; vm->vm_releasefn = releasefn; vm->vm_arg = arg; vm->vm_nbusytag = 0; vm->vm_size = 0; vm->vm_inuse = 0; #if defined(QCACHE) qc_init(vm, qcache_max, ipl); #endif /* defined(QCACHE) */ TAILQ_INIT(&vm->vm_seglist); for (i = 0; i < VMEM_MAXORDER; i++) { LIST_INIT(&vm->vm_freelist[i]); } memset(&vm->vm_hash0, 0, sizeof(struct vmem_hashlist)); vm->vm_hashsize = 1; vm->vm_hashlist = &vm->vm_hash0; if (size != 0) { if (vmem_add(vm, base, size, flags) != 0) { vmem_destroy1(vm); return NULL; } } #if defined(_KERNEL) if (flags & VM_BOOTSTRAP) { bt_refill(vm); } mutex_enter(&vmem_list_lock); LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); mutex_exit(&vmem_list_lock); #endif /* defined(_KERNEL) */ return vm; } /* * vmem_create: create an arena. * * => must not be called from interrupt context. */ vmem_t * vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn, vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) { KASSERT((flags & (VM_XIMPORT)) == 0); return vmem_init(NULL, name, base, size, quantum, importfn, releasefn, source, qcache_max, flags, ipl); } /* * vmem_xcreate: create an arena takes alternative import func. * * => must not be called from interrupt context. */ vmem_t * vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size, vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn, vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl) { KASSERT((flags & (VM_XIMPORT)) == 0); return vmem_init(NULL, name, base, size, quantum, (vmem_import_t *)importfn, releasefn, source, qcache_max, flags | VM_XIMPORT, ipl); } void vmem_destroy(vmem_t *vm) { #if defined(_KERNEL) mutex_enter(&vmem_list_lock); LIST_REMOVE(vm, vm_alllist); mutex_exit(&vmem_list_lock); #endif /* defined(_KERNEL) */ vmem_destroy1(vm); } vmem_size_t vmem_roundup_size(vmem_t *vm, vmem_size_t size) { return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; } /* * vmem_alloc: allocate resource from the arena. */ int vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp) { const vm_flag_t strat __diagused = flags & VM_FITMASK; KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0); KASSERT(size > 0); KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); if ((flags & VM_SLEEP) != 0) { ASSERT_SLEEPABLE(); } #if defined(QCACHE) if (size <= vm->vm_qcache_max) { void *p; int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; qcache_t *qc = vm->vm_qcache[qidx - 1]; p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags)); if (addrp != NULL) *addrp = (vmem_addr_t)p; return (p == NULL) ? ENOMEM : 0; } #endif /* defined(QCACHE) */ return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, addrp); } int vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, const vmem_size_t phase, const vmem_size_t nocross, const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags, vmem_addr_t *addrp) { struct vmem_freelist *list; struct vmem_freelist *first; struct vmem_freelist *end; bt_t *bt; bt_t *btnew; bt_t *btnew2; const vmem_size_t size = vmem_roundup_size(vm, size0); vm_flag_t strat = flags & VM_FITMASK; vmem_addr_t start; int rc; KASSERT(size0 > 0); KASSERT(size > 0); KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT); if ((flags & VM_SLEEP) != 0) { ASSERT_SLEEPABLE(); } KASSERT((align & vm->vm_quantum_mask) == 0); KASSERT((align & (align - 1)) == 0); KASSERT((phase & vm->vm_quantum_mask) == 0); KASSERT((nocross & vm->vm_quantum_mask) == 0); KASSERT((nocross & (nocross - 1)) == 0); KASSERT((align == 0 && phase == 0) || phase < align); KASSERT(nocross == 0 || nocross >= size); KASSERT(minaddr <= maxaddr); KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); if (align == 0) { align = vm->vm_quantum_mask + 1; } /* * allocate boundary tags before acquiring the vmem lock. */ btnew = bt_alloc(vm, flags); if (btnew == NULL) { return ENOMEM; } btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */ if (btnew2 == NULL) { bt_free(vm, btnew); return ENOMEM; } /* * choose a free block from which we allocate. */ retry_strat: first = bt_freehead_toalloc(vm, size, strat); end = &vm->vm_freelist[VMEM_MAXORDER]; retry: bt = NULL; VMEM_LOCK(vm); vmem_check(vm); if (strat == VM_INSTANTFIT) { /* * just choose the first block which satisfies our restrictions. * * note that we don't need to check the size of the blocks * because any blocks found on these list should be larger than * the given size. */ for (list = first; list < end; list++) { bt = LIST_FIRST(list); if (bt != NULL) { rc = vmem_fit(bt, size, align, phase, nocross, minaddr, maxaddr, &start); if (rc == 0) { goto gotit; } /* * don't bother to follow the bt_freelist link * here. the list can be very long and we are * told to run fast. blocks from the later free * lists are larger and have better chances to * satisfy our restrictions. */ } } } else { /* VM_BESTFIT */ /* * we assume that, for space efficiency, it's better to * allocate from a smaller block. thus we will start searching * from the lower-order list than VM_INSTANTFIT. * however, don't bother to find the smallest block in a free * list because the list can be very long. we can revisit it * if/when it turns out to be a problem. * * note that the 'first' list can contain blocks smaller than * the requested size. thus we need to check bt_size. */ for (list = first; list < end; list++) { LIST_FOREACH(bt, list, bt_freelist) { if (bt->bt_size >= size) { rc = vmem_fit(bt, size, align, phase, nocross, minaddr, maxaddr, &start); if (rc == 0) { goto gotit; } } } } } VMEM_UNLOCK(vm); #if 1 if (strat == VM_INSTANTFIT) { strat = VM_BESTFIT; goto retry_strat; } #endif if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) { /* * XXX should try to import a region large enough to * satisfy restrictions? */ goto fail; } /* XXX eeek, minaddr & maxaddr not respected */ if (vmem_import(vm, size, flags) == 0) { goto retry; } /* XXX */ if ((flags & VM_SLEEP) != 0) { vmem_kick_pdaemon(); VMEM_LOCK(vm); VMEM_CONDVAR_WAIT(vm); VMEM_UNLOCK(vm); goto retry; } fail: bt_free(vm, btnew); bt_free(vm, btnew2); return ENOMEM; gotit: KASSERT(bt->bt_type == BT_TYPE_FREE); KASSERT(bt->bt_size >= size); bt_remfree(vm, bt); vmem_check(vm); if (bt->bt_start != start) { btnew2->bt_type = BT_TYPE_FREE; btnew2->bt_start = bt->bt_start; btnew2->bt_size = start - bt->bt_start; bt->bt_start = start; bt->bt_size -= btnew2->bt_size; bt_insfree(vm, btnew2); bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); btnew2 = NULL; vmem_check(vm); } KASSERT(bt->bt_start == start); if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { /* split */ btnew->bt_type = BT_TYPE_BUSY; btnew->bt_start = bt->bt_start; btnew->bt_size = size; bt->bt_start = bt->bt_start + size; bt->bt_size -= size; bt_insfree(vm, bt); bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist)); bt_insbusy(vm, btnew); vmem_check(vm); VMEM_UNLOCK(vm); } else { bt->bt_type = BT_TYPE_BUSY; bt_insbusy(vm, bt); vmem_check(vm); VMEM_UNLOCK(vm); bt_free(vm, btnew); btnew = bt; } if (btnew2 != NULL) { bt_free(vm, btnew2); } KASSERT(btnew->bt_size >= size); btnew->bt_type = BT_TYPE_BUSY; if (addrp != NULL) *addrp = btnew->bt_start; return 0; } /* * vmem_free: free the resource to the arena. */ void vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) { KASSERT(size > 0); #if defined(QCACHE) if (size <= vm->vm_qcache_max) { int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift; qcache_t *qc = vm->vm_qcache[qidx - 1]; pool_cache_put(qc->qc_cache, (void *)addr); return; } #endif /* defined(QCACHE) */ vmem_xfree(vm, addr, size); } void vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) { bt_t *bt; bt_t *t; LIST_HEAD(, vmem_btag) tofree; LIST_INIT(&tofree); KASSERT(size > 0); VMEM_LOCK(vm); bt = bt_lookupbusy(vm, addr); KASSERT(bt != NULL); KASSERT(bt->bt_start == addr); KASSERT(bt->bt_size == vmem_roundup_size(vm, size) || bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); KASSERT(bt->bt_type == BT_TYPE_BUSY); bt_rembusy(vm, bt); bt->bt_type = BT_TYPE_FREE; /* coalesce */ t = TAILQ_NEXT(bt, bt_seglist); if (t != NULL && t->bt_type == BT_TYPE_FREE) { KASSERT(BT_END(bt) < t->bt_start); /* YYY */ bt_remfree(vm, t); bt_remseg(vm, t); bt->bt_size += t->bt_size; LIST_INSERT_HEAD(&tofree, t, bt_freelist); } t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); if (t != NULL && t->bt_type == BT_TYPE_FREE) { KASSERT(BT_END(t) < bt->bt_start); /* YYY */ bt_remfree(vm, t); bt_remseg(vm, t); bt->bt_size += t->bt_size; bt->bt_start = t->bt_start; LIST_INSERT_HEAD(&tofree, t, bt_freelist); } t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); KASSERT(t != NULL); KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && t->bt_size == bt->bt_size) { vmem_addr_t spanaddr; vmem_size_t spansize; KASSERT(t->bt_start == bt->bt_start); spanaddr = bt->bt_start; spansize = bt->bt_size; bt_remseg(vm, bt); LIST_INSERT_HEAD(&tofree, bt, bt_freelist); bt_remseg(vm, t); LIST_INSERT_HEAD(&tofree, t, bt_freelist); vm->vm_size -= spansize; VMEM_CONDVAR_BROADCAST(vm); VMEM_UNLOCK(vm); (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); } else { bt_insfree(vm, bt); VMEM_CONDVAR_BROADCAST(vm); VMEM_UNLOCK(vm); } while (!LIST_EMPTY(&tofree)) { t = LIST_FIRST(&tofree); LIST_REMOVE(t, bt_freelist); bt_free(vm, t); } bt_freetrim(vm, BT_MAXFREE); } /* * vmem_add: * * => caller must ensure appropriate spl, * if the arena can be accessed from interrupt context. */ int vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags) { return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC); } /* * vmem_size: information about arenas size * * => return free/allocated size in arena */ vmem_size_t vmem_size(vmem_t *vm, int typemask) { switch (typemask) { case VMEM_ALLOC: return vm->vm_inuse; case VMEM_FREE: return vm->vm_size - vm->vm_inuse; case VMEM_FREE|VMEM_ALLOC: return vm->vm_size; default: panic("vmem_size"); } } /* ---- rehash */ #if defined(_KERNEL) static struct callout vmem_rehash_ch; static int vmem_rehash_interval; static struct workqueue *vmem_rehash_wq; static struct work vmem_rehash_wk; static void vmem_rehash_all(struct work *wk, void *dummy) { vmem_t *vm; KASSERT(wk == &vmem_rehash_wk); mutex_enter(&vmem_list_lock); LIST_FOREACH(vm, &vmem_list, vm_alllist) { size_t desired; size_t current; if (!VMEM_TRYLOCK(vm)) { continue; } desired = vm->vm_nbusytag; current = vm->vm_hashsize; VMEM_UNLOCK(vm); if (desired > VMEM_HASHSIZE_MAX) { desired = VMEM_HASHSIZE_MAX; } else if (desired < VMEM_HASHSIZE_MIN) { desired = VMEM_HASHSIZE_MIN; } if (desired > current * 2 || desired * 2 < current) { vmem_rehash(vm, desired, VM_NOSLEEP); } } mutex_exit(&vmem_list_lock); callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); } static void vmem_rehash_all_kick(void *dummy) { workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL); } void vmem_rehash_start(void) { int error; error = workqueue_create(&vmem_rehash_wq, "vmem_rehash", vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE); if (error) { panic("%s: workqueue_create %d\n", __func__, error); } callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE); callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL); vmem_rehash_interval = hz * 10; callout_schedule(&vmem_rehash_ch, vmem_rehash_interval); } #endif /* defined(_KERNEL) */ /* ---- debug */ #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) static void bt_dump(const bt_t *, void (*)(const char *, ...) __printflike(1, 2)); static const char * bt_type_string(int type) { static const char * const table[] = { [BT_TYPE_BUSY] = "busy", [BT_TYPE_FREE] = "free", [BT_TYPE_SPAN] = "span", [BT_TYPE_SPAN_STATIC] = "static span", }; if (type >= __arraycount(table)) { return "BOGUS"; } return table[type]; } static void bt_dump(const bt_t *bt, void (*pr)(const char *, ...)) { (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n", bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size, bt->bt_type, bt_type_string(bt->bt_type)); } static void vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2)) { const bt_t *bt; int i; (*pr)("vmem %p '%s'\n", vm, vm->vm_name); TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { bt_dump(bt, pr); } for (i = 0; i < VMEM_MAXORDER; i++) { const struct vmem_freelist *fl = &vm->vm_freelist[i]; if (LIST_EMPTY(fl)) { continue; } (*pr)("freelist[%d]\n", i); LIST_FOREACH(bt, fl, bt_freelist) { bt_dump(bt, pr); } } } #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */ #if defined(DDB) static bt_t * vmem_whatis_lookup(vmem_t *vm, uintptr_t addr) { bt_t *bt; TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { if (BT_ISSPAN_P(bt)) { continue; } if (bt->bt_start <= addr && addr <= BT_END(bt)) { return bt; } } return NULL; } void vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...)) { vmem_t *vm; LIST_FOREACH(vm, &vmem_list, vm_alllist) { bt_t *bt; bt = vmem_whatis_lookup(vm, addr); if (bt == NULL) { continue; } (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n", (void *)addr, (void *)bt->bt_start, (size_t)(addr - bt->bt_start), vm->vm_name, (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free"); } } void vmem_printall(const char *modif, void (*pr)(const char *, ...)) { const vmem_t *vm; LIST_FOREACH(vm, &vmem_list, vm_alllist) { vmem_dump(vm, pr); } } void vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...)) { const vmem_t *vm = (const void *)addr; vmem_dump(vm, pr); } #endif /* defined(DDB) */ #if defined(_KERNEL) #define vmem_printf printf #else #include #include static void vmem_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } #endif #if defined(VMEM_SANITY) static bool vmem_check_sanity(vmem_t *vm) { const bt_t *bt, *bt2; KASSERT(vm != NULL); TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { if (bt->bt_start > BT_END(bt)) { printf("corrupted tag\n"); bt_dump(bt, vmem_printf); return false; } } TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { if (bt == bt2) { continue; } if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { continue; } if (bt->bt_start <= BT_END(bt2) && bt2->bt_start <= BT_END(bt)) { printf("overwrapped tags\n"); bt_dump(bt, vmem_printf); bt_dump(bt2, vmem_printf); return false; } } } return true; } static void vmem_check(vmem_t *vm) { if (!vmem_check_sanity(vm)) { panic("insanity vmem %p", vm); } } #endif /* defined(VMEM_SANITY) */ #if defined(UNITTEST) int main(void) { int rc; vmem_t *vm; vmem_addr_t p; struct reg { vmem_addr_t p; vmem_size_t sz; bool x; } *reg = NULL; int nreg = 0; int nalloc = 0; int nfree = 0; vmem_size_t total = 0; #if 1 vm_flag_t strat = VM_INSTANTFIT; #else vm_flag_t strat = VM_BESTFIT; #endif vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP, #ifdef _KERNEL IPL_NONE #else 0 #endif ); if (vm == NULL) { printf("vmem_create\n"); exit(EXIT_FAILURE); } vmem_dump(vm, vmem_printf); rc = vmem_add(vm, 0, 50, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 100, 200, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 2000, 1, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 40000, 65536, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 10000, 10000, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 500, 1000, VM_SLEEP); assert(rc == 0); rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP); assert(rc == 0); rc = vmem_xalloc(vm, 0x101, 0, 0, 0, 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); assert(rc != 0); rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p); assert(rc == 0 && p == 0); vmem_xfree(vm, p, 50); rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p); assert(rc == 0 && p == 0); rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p); assert(rc != 0); rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p); assert(rc != 0); rc = vmem_xalloc(vm, 0x100, 0, 0, 0, 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p); assert(rc == 0); vmem_dump(vm, vmem_printf); for (;;) { struct reg *r; int t = rand() % 100; if (t > 45) { /* alloc */ vmem_size_t sz = rand() % 500 + 1; bool x; vmem_size_t align, phase, nocross; vmem_addr_t minaddr, maxaddr; if (t > 70) { x = true; /* XXX */ align = 1 << (rand() % 15); phase = rand() % 65536; nocross = 1 << (rand() % 15); if (align <= phase) { phase = 0; } if (VMEM_CROSS_P(phase, phase + sz - 1, nocross)) { nocross = 0; } do { minaddr = rand() % 50000; maxaddr = rand() % 70000; } while (minaddr > maxaddr); printf("=== xalloc %" PRIu64 " align=%" PRIu64 ", phase=%" PRIu64 ", nocross=%" PRIu64 ", min=%" PRIu64 ", max=%" PRIu64 "\n", (uint64_t)sz, (uint64_t)align, (uint64_t)phase, (uint64_t)nocross, (uint64_t)minaddr, (uint64_t)maxaddr); rc = vmem_xalloc(vm, sz, align, phase, nocross, minaddr, maxaddr, strat|VM_SLEEP, &p); } else { x = false; printf("=== alloc %" PRIu64 "\n", (uint64_t)sz); rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p); } printf("-> %" PRIu64 "\n", (uint64_t)p); vmem_dump(vm, vmem_printf); if (rc != 0) { if (x) { continue; } break; } nreg++; reg = realloc(reg, sizeof(*reg) * nreg); r = ®[nreg - 1]; r->p = p; r->sz = sz; r->x = x; total += sz; nalloc++; } else if (nreg != 0) { /* free */ r = ®[rand() % nreg]; printf("=== free %" PRIu64 ", %" PRIu64 "\n", (uint64_t)r->p, (uint64_t)r->sz); if (r->x) { vmem_xfree(vm, r->p, r->sz); } else { vmem_free(vm, r->p, r->sz); } total -= r->sz; vmem_dump(vm, vmem_printf); *r = reg[nreg - 1]; nreg--; nfree++; } printf("total=%" PRIu64 "\n", (uint64_t)total); } fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n", (uint64_t)total, nalloc, nfree); exit(EXIT_SUCCESS); } #endif /* defined(UNITTEST) */