/* $NetBSD: hpux_compat.c,v 1.91 2007/04/22 08:29:56 dsl Exp $ */ /* * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: hpux_compat.c 1.64 93/08/05$ * * @(#)hpux_compat.c 8.4 (Berkeley) 2/13/94 */ /* * Copyright (c) 1988 University of Utah. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: hpux_compat.c 1.64 93/08/05$ * * @(#)hpux_compat.c 8.4 (Berkeley) 2/13/94 */ /* * Various HP-UX compatibility routines */ #include __KERNEL_RCSID(0, "$NetBSD: hpux_compat.c,v 1.91 2007/04/22 08:29:56 dsl Exp $"); #if defined(_KERNEL_OPT) #include "opt_sysv.h" #include "opt_compat_43.h" #endif #ifndef COMPAT_43 #define COMPAT_43 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG int unimpresponse = 0; #endif static int hpuxtobsdioctl(u_long); static int hpux_scale(struct timeval *); /* * HP-UX fork and vfork need to map the EAGAIN return value appropriately. */ int hpux_sys_fork(struct lwp *l, void *v, register_t *retval) { /* struct hpux_sys_fork_args *uap = v; */ int error; error = sys_fork(l, v, retval); if (error == EAGAIN) error = OEAGAIN; return (error); } int hpux_sys_vfork(struct lwp *l, void *v, register_t *retval) { /* struct hpux_sys_vfork_args *uap = v; */ int error; error = sys_vfork(l, v, retval); if (error == EAGAIN) error = OEAGAIN; return (error); } /* * HP-UX versions of wait and wait3 actually pass the parameters * (status pointer, options, rusage) into the kernel rather than * handling it in the C library stub. We also need to map any * termination signal from BSD to HP-UX. */ int hpux_sys_wait3(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_wait3_args *uap = v; /* rusage pointer must be zero */ if (SCARG(uap, rusage)) return (EINVAL); #if __mc68k__ l->l_md.md_regs[PS] = PSL_ALLCC; l->l_md.md_regs[R0] = SCARG(uap, options); l->l_md.md_regs[R1] = SCARG(uap, rusage); #endif return (hpux_sys_wait(l, uap, retval)); } int hpux_sys_wait(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_wait_args *uap = v; struct sys_wait4_args w4; int error; int sig; size_t sz = sizeof(*SCARG(&w4, status)); int status; SCARG(&w4, rusage) = NULL; SCARG(&w4, options) = 0; if (SCARG(uap, status) == NULL) { void *sg = stackgap_init(p, 0); SCARG(&w4, status) = stackgap_alloc(p, &sg, sz); } else SCARG(&w4, status) = SCARG(uap, status); SCARG(&w4, pid) = WAIT_ANY; error = sys_wait4(l, &w4, retval); /* * HP-UX wait always returns EINTR when interrupted by a signal * (well, unless its emulating a BSD process, but we don't bother...) */ if (error == ERESTART) error = EINTR; if (error) return error; if ((error = copyin(SCARG(&w4, status), &status, sizeof(status))) != 0) return error; sig = status & 0xFF; if (sig == WSTOPPED) { sig = (status >> 8) & 0xFF; retval[1] = (bsdtohpuxsig(sig) << 8) | WSTOPPED; } else if (sig) retval[1] = (status & 0xFF00) | bsdtohpuxsig(sig & 0x7F) | (sig & 0x80); if (SCARG(uap, status) == NULL) return error; else return copyout(&retval[1], SCARG(uap, status), sizeof(retval[1])); } int hpux_sys_waitpid(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_waitpid_args /* { syscallarg(pid_t) pid; syscallarg(int *) status; syscallarg(int) options; syscallarg(struct rusage *) rusage; } */ *uap = v; int rv, sig, xstat, error; SCARG(uap, rusage) = 0; error = sys_wait4(l, uap, retval); /* * HP-UX wait always returns EINTR when interrupted by a signal * (well, unless its emulating a BSD process, but we don't bother...) */ if (error == ERESTART) error = EINTR; if (error) return (error); if (SCARG(uap, status)) { /* * Wait4 already wrote the status out to user space, * pull it back, change the signal portion, and write * it back out. */ error = copyin(SCARG(uap, status), &rv, sizeof(int)); if (error) return (error); if (WIFSTOPPED(rv)) { sig = WSTOPSIG(rv); rv = W_STOPCODE(bsdtohpuxsig(sig)); } else if (WIFSIGNALED(rv)) { sig = WTERMSIG(rv); xstat = WEXITSTATUS(rv); rv = W_EXITCODE(xstat, bsdtohpuxsig(sig)) | WCOREDUMP(rv); } error = copyout(&rv, SCARG(uap, status), sizeof(int)); } return (error); } /* * Read and write calls. Same as BSD except for non-blocking behavior. * There are three types of non-blocking reads/writes in HP-UX checked * in the following order: * * O_NONBLOCK: return -1 and errno == EAGAIN * O_NDELAY: return 0 * FIOSNBIO: return -1 and errno == EWOULDBLOCK */ int hpux_sys_read(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_read_args *uap = v; int error; error = sys_read(l, (struct sys_read_args *) uap, retval); if (error == EWOULDBLOCK) { /* sys_read validates fd before this indexing */ char *fp = &p->p_fd->fd_ofileflags[SCARG(uap, fd)]; if (*fp & HPUX_UF_NONBLOCK_ON) { *retval = -1; error = OEAGAIN; } else if (*fp & HPUX_UF_FNDELAY_ON) { *retval = 0; error = 0; } } return (error); } int hpux_sys_write(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_write_args *uap = v; int error; error = sys_write(l, (struct sys_write_args *) uap, retval); if (error == EWOULDBLOCK) { /* sys_write validates fd before this indexing */ char *fp = &p->p_fd->fd_ofileflags[SCARG(uap, fd)]; if (*fp & HPUX_UF_NONBLOCK_ON) { *retval = -1; error = OEAGAIN; } else if (*fp & HPUX_UF_FNDELAY_ON) { *retval = 0; error = 0; } } return (error); } int hpux_sys_readv(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_readv_args *uap = v; int error; error = sys_readv(l, (struct sys_readv_args *) uap, retval); if (error == EWOULDBLOCK) { /* sys_readv validates fd before this indexing */ char *fp = &p->p_fd->fd_ofileflags[SCARG(uap, fd)]; if (*fp & HPUX_UF_NONBLOCK_ON) { *retval = -1; error = OEAGAIN; } else if (*fp & HPUX_UF_FNDELAY_ON) { *retval = 0; error = 0; } } return (error); } int hpux_sys_writev(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_writev_args *uap = v; int error; if (SCARG(uap, fd) < 0) return EBADF; error = sys_writev(l, (struct sys_writev_args *) uap, retval); if (error == EWOULDBLOCK) { /* sys_writev validates fd before this indexing */ char *fp = &p->p_fd->fd_ofileflags[SCARG(uap, fd)]; if (*fp & HPUX_UF_NONBLOCK_ON) { *retval = -1; error = OEAGAIN; } else if (*fp & HPUX_UF_FNDELAY_ON) { *retval = 0; error = 0; } } return (error); } int hpux_sys_utssys(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_utssys_args *uap = v; int i; int error; struct hpux_utsname ut; switch (SCARG(uap, request)) { /* uname */ case 0: memset(&ut, 0, sizeof(ut)); strncpy(ut.sysname, ostype, sizeof(ut.sysname)); ut.sysname[sizeof(ut.sysname) - 1] = '\0'; /* copy hostname (sans domain) to nodename */ for (i = 0; i < 8 && hostname[i] != '.'; i++) ut.nodename[i] = hostname[i]; ut.nodename[i] = '\0'; strncpy(ut.release, osrelease, sizeof(ut.release)); ut.release[sizeof(ut.release) - 1] = '\0'; strncpy(ut.version, version, sizeof(ut.version)); ut.version[sizeof(ut.version) - 1] = '\0'; strncpy(ut.machine, machine, sizeof(ut.machine)); ut.machine[sizeof(ut.machine) - 1] = '\0'; error = copyout((void *)&ut, (void *)SCARG(uap, uts), sizeof(ut)); break; /* gethostname */ case 5: /* SCARG(uap, dev) is length */ i = SCARG(uap, dev); if (i < 0) { error = EINVAL; break; } else if (i > hostnamelen + 1) i = hostnamelen + 1; error = copyout((void *)hostname, (void *)SCARG(uap, uts), i); break; case 1: /* ?? */ case 2: /* ustat */ case 3: /* ?? */ case 4: /* sethostname */ default: error = EINVAL; break; } return (error); } int hpux_sys_sysconf(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_sysconf_args *uap = v; switch (SCARG(uap, name)) { case HPUX_SYSCONF_ARGMAX: *retval = ARG_MAX; break; case HPUX_SYSCONF_CHILDMAX: *retval = maxproc; break; case HPUX_SYSCONF_CLKTICK: *retval = hz; break; case HPUX_SYSCONF_NGRPMAX: *retval = NGROUPS_MAX; break; case HPUX_SYSCONF_OPENMAX: *retval = maxfiles; break; case HPUX_SYSCONF_JOBCNTRL: *retval = 1; break; case HPUX_SYSCONF_SAVEDIDS: #ifdef _POSIX_SAVED_IDS *retval = 1; #else *retval = 0; #endif break; case HPUX_SYSCONF_VERSION: *retval = 198808; break; /* architecture */ case HPUX_SYSCONF_CPUTYPE: *retval = hpux_cpu_sysconf_arch(); break; default: /* XXX */ uprintf("HP-UX sysconf(%d) not implemented\n", SCARG(uap, name)); return (EINVAL); } return (0); } int hpux_sys_ulimit(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; struct hpux_sys_ulimit_args *uap = v; struct rlimit *limp, alim; int error = 0; limp = &p->p_rlimit[RLIMIT_FSIZE]; switch (SCARG(uap, cmd)) { case 2: SCARG(uap, newlimit) *= 512; alim.rlim_cur = alim.rlim_max = SCARG(uap, newlimit); error = dosetrlimit(l, l->l_proc, RLIMIT_FSIZE, &alim); if (error) break; /* else fall into... */ case 1: *retval = limp->rlim_max / 512; break; case 3: limp = &p->p_rlimit[RLIMIT_DATA]; *retval = ctob(p->p_vmspace->vm_tsize) + limp->rlim_max; break; default: error = EINVAL; break; } return (error); } /* * Map "real time" priorities 0 (high) thru 127 (low) into nice * values -16 (high) thru -1 (low). */ int hpux_sys_rtprio(struct lwp *lp, void *v, register_t *retval) { struct hpux_sys_rtprio_args *uap = v; struct proc *p; int nice, error; if (SCARG(uap, prio) < RTPRIO_MIN && SCARG(uap, prio) > RTPRIO_MAX && SCARG(uap, prio) != RTPRIO_NOCHG && SCARG(uap, prio) != RTPRIO_RTOFF) return (EINVAL); mutex_enter(&proclist_lock); if (SCARG(uap, pid) == 0) p = lp->l_proc; else { p = p_find(SCARG(uap, pid), PFIND_LOCKED | PFIND_UNLOCK_FAIL); if (p == NULL) return ESRCH; } nice = p->p_nice - NZERO; if (nice < 0) *retval = (nice + 16) << 3; else *retval = RTPRIO_RTOFF; switch (SCARG(uap, prio)) { case RTPRIO_NOCHG: mutex_exit(&proclist_lock); return 0; case RTPRIO_RTOFF: if (nice >= 0) return (0); nice = 0; break; default: nice = (SCARG(uap, prio) >> 3) - 16; break; } mutex_enter(&p->p_mutex); error = donice(lp, p, nice); mutex_exit(&p->p_mutex); mutex_exit(&proclist_lock); if (error == EACCES) error = EPERM; return (error); } /* hpux_sys_advise() is found in hpux_machdep.c */ #if 0 /* XXX - This really, really doesn't work anymore. --scottr */ int hpux_sys_ptrace(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_ptrace_args *uap = v; int error; #if defined(PT_READ_U) || defined(PT_WRITE_U) int isps = 0; struct lwp *lp; #endif switch (SCARG(uap, req)) { /* map signal */ #if defined(PT_STEP) || defined(PT_CONTINUE) # ifdef PT_STEP case PT_STEP: # endif # ifdef PT_CONTINUE case PT_CONTINUE: # endif if (SCARG(uap, data)) { SCARG(uap, data) = hpuxtobsdsig(SCARG(uap, data)); if (SCARG(uap, data) == 0) SCARG(uap, data) = NSIG; } break; #endif /* map u-area offset */ #if defined(PT_READ_U) || defined(PT_WRITE_U) # ifdef PT_READ_U case PT_READ_U: # endif # ifdef PT_WRITE_U case PT_WRITE_U: # endif /* * Big, cheezy hack: hpux_to_bsd_uoff is really intended * to be called in the child context (procxmt) but we * do it here in the parent context to avoid hacks in * the MI sys_process.c file. This works only because * we can access the child's md_regs pointer and it * has the correct value (the child has already trapped * into the kernel). */ if ((cp = pfind(SCARG(uap, pid))) == 0) return (ESRCH); SCARG(uap, addr) = (int *)hpux_to_bsd_uoff(SCARG(uap, addr), &isps, cp); /* * Since HP-UX PS is only 16-bits in ar0, requests * to write PS actually contain the PS in the high word * and the high half of the PC (the following register) * in the low word. Move the PS value to where BSD * expects it. */ if (isps && SCARG(uap, req) == PT_WRITE_U) SCARG(uap, data) >>= 16; break; #endif } error = sys_ptrace(l, uap, retval); /* * Align PS as HP-UX expects it (see WRITE_U comment above). * Note that we do not return the high part of PC like HP-UX * would, but the HP-UX debuggers don't require it. */ #ifdef PT_READ_U if (isps && error == 0 && SCARG(uap, req) == PT_READ_U) *retval <<= 16; #endif return (error); } #endif /* * HP-UX mmap() emulation (mainly for shared library support). */ int hpux_sys_mmap(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_mmap_args *uap = v; struct sys_mmap_args /* { syscallarg(void *) addr; syscallarg(size_t) len; syscallarg(int) prot; syscallarg(int) flags; syscallarg(int) fd; syscallarg(long) pad; syscallarg(off_t) pos; } */ nargs; SCARG(&nargs, addr) = SCARG(uap, addr); SCARG(&nargs, len) = SCARG(uap, len); SCARG(&nargs, prot) = SCARG(uap, prot); SCARG(&nargs, flags) = SCARG(uap, flags) & ~(HPUXMAP_FIXED|HPUXMAP_REPLACE|HPUXMAP_ANON); if (SCARG(uap, flags) & HPUXMAP_FIXED) SCARG(&nargs, flags) |= MAP_FIXED; if (SCARG(uap, flags) & HPUXMAP_ANON) SCARG(&nargs, flags) |= MAP_ANON; SCARG(&nargs, fd) = (SCARG(&nargs, flags) & MAP_ANON) ? -1 : SCARG(uap, fd); SCARG(&nargs, pos) = SCARG(uap, pos); return (sys_mmap(l, &nargs, retval)); } static int hpuxtobsdioctl(u_long com) { switch (com) { case HPUXTIOCSLTC: com = TIOCSLTC; break; case HPUXTIOCGLTC: com = TIOCGLTC; break; case HPUXTIOCSPGRP: com = TIOCSPGRP; break; case HPUXTIOCGPGRP: com = TIOCGPGRP; break; case HPUXTIOCLBIS: com = TIOCLBIS; break; case HPUXTIOCLBIC: com = TIOCLBIC; break; case HPUXTIOCLSET: com = TIOCLSET; break; case HPUXTIOCLGET: com = TIOCLGET; break; case HPUXTIOCGWINSZ: com = TIOCGWINSZ; break; case HPUXTIOCSWINSZ: com = TIOCSWINSZ; break; } return(com); } /* * HP-UX ioctl system call. The differences here are: * IOC_IN also means IOC_VOID if the size portion is zero. * no FIOCLEX/FIONCLEX/FIOASYNC/FIOGETOWN/FIOSETOWN * the sgttyb struct is 2 bytes longer */ int hpux_sys_ioctl(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_ioctl_args /* { syscallarg(int) fd; syscallarg(int) com; syscallarg(void *) data; } */ *uap = v; struct proc *p = l->l_proc; struct filedesc *fdp = p->p_fd; struct file *fp; int com, error = 0; u_int size; void *memp = 0; #define STK_PARAMS 128 char stkbuf[STK_PARAMS]; void *dt = stkbuf; com = SCARG(uap, com); /* XXX */ if (com == HPUXTIOCGETP || com == HPUXTIOCSETP) return (getsettty(l, SCARG(uap, fd), com, SCARG(uap, data))); /* * Interpret high order word to find * amount of data to be copied to/from the * user's address space. */ size = IOCPARM_LEN(com); if (size > IOCPARM_MAX) return (ENOTTY); if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL) return (EBADF); FILE_USE(fp); if ((fp->f_flag & (FREAD|FWRITE)) == 0) { error = EBADF; goto out; } if (size > sizeof (stkbuf)) { memp = (void *)malloc((u_long)size, M_IOCTLOPS, M_WAITOK); dt = memp; } if (com&IOC_IN) { if (size) { error = copyin(SCARG(uap, data), dt, (u_int)size); if (error) goto out; } else *(void **)dt = SCARG(uap, data); } else if ((com&IOC_OUT) && size) /* * Zero the buffer so the user always * gets back something deterministic. */ memset(dt, 0, size); else if (com&IOC_VOID) *(void **)dt = SCARG(uap, data); switch (com) { case HPUXFIOSNBIO: { /* This array index is validated by fd_getfile */ char *ofp = &fdp->fd_ofileflags[SCARG(uap, fd)]; int tmp; if (*(int *)dt) *ofp |= HPUX_UF_FIONBIO_ON; else *ofp &= ~HPUX_UF_FIONBIO_ON; /* * Only set/clear if O_NONBLOCK/FNDELAY not in effect */ if ((*ofp & (HPUX_UF_NONBLOCK_ON|HPUX_UF_FNDELAY_ON)) == 0) { tmp = *ofp & HPUX_UF_FIONBIO_ON; error = (*fp->f_ops->fo_ioctl)(fp, FIONBIO, (void *)&tmp, l); } break; } case HPUXTIOCCONS: *(int *)dt = 1; error = (*fp->f_ops->fo_ioctl)(fp, TIOCCONS, dt, l); break; /* BSD-style job control ioctls */ case HPUXTIOCLBIS: case HPUXTIOCLBIC: case HPUXTIOCLSET: *(int *)dt &= HPUXLTOSTOP; if (*(int *)dt & HPUXLTOSTOP) *(int *)dt = LTOSTOP; /* fall into */ /* simple mapping cases */ case HPUXTIOCLGET: case HPUXTIOCSLTC: case HPUXTIOCGLTC: case HPUXTIOCSPGRP: case HPUXTIOCGPGRP: case HPUXTIOCGWINSZ: case HPUXTIOCSWINSZ: error = (*fp->f_ops->fo_ioctl) (fp, hpuxtobsdioctl(com), dt, l); if (error == 0 && com == HPUXTIOCLGET) { *(int *)dt &= LTOSTOP; if (*(int *)dt & LTOSTOP) *(int *)dt = HPUXLTOSTOP; } break; /* SYS 5 termio and POSIX termios */ case HPUXTCGETA: case HPUXTCSETA: case HPUXTCSETAW: case HPUXTCSETAF: case HPUXTCGETATTR: case HPUXTCSETATTR: case HPUXTCSETATTRD: case HPUXTCSETATTRF: error = hpux_termio(SCARG(uap, fd), com, dt, l); break; default: error = (*fp->f_ops->fo_ioctl)(fp, com, dt, l); break; } /* * Copy any data to user, size was * already set and checked above. */ if (error == 0 && (com&IOC_OUT) && size) error = copyout(dt, SCARG(uap, data), (u_int)size); out: FILE_UNUSE(fp, l); if (memp) free(memp, M_IOCTLOPS); return (error); } /* hpux_sys_getcontext() is found in hpux_machdep.c */ /* * This is the equivalent of BSD getpgrp but with more restrictions. * Note we do not check the real uid or "saved" uid. */ int hpux_sys_getpgrp2(struct lwp *lp, void *v, register_t *retval) { struct hpux_sys_getpgrp2_args *uap = v; struct proc *cp = lp->l_proc; struct proc *p; if (SCARG(uap, pid) == 0) SCARG(uap, pid) = cp->p_pid; mutex_enter(&proclist_lock); p = p_find(SCARG(uap, pid), PFIND_LOCKED); if (p == 0) { mutex_exit(&proclist_lock); return (ESRCH); } mutex_enter(&p->p_mutex); if (kauth_cred_geteuid(lp->l_cred) && kauth_cred_geteuid(p->p_cred) != kauth_cred_geteuid(lp->l_cred) && !inferior(p, cp)) { mutex_exit(&p->p_mutex); mutex_exit(&proclist_lock); return (EPERM); } mutex_exit(&p->p_mutex); *retval = p->p_pgid; mutex_exit(&proclist_lock); return (0); } /* * This is the equivalent of BSD setpgrp but with more restrictions. * Note we do not check the real uid or "saved" uid or pgrp. */ int hpux_sys_setpgrp2(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_setpgrp2_args *uap = v; /* empirically determined */ if (SCARG(uap, pgid) < 0 || SCARG(uap, pgid) >= 30000) return (EINVAL); return (sys_setpgid(l, uap, retval)); } /* * XXX Same as BSD setre[ug]id right now. Need to consider saved ids. */ int hpux_sys_setresuid(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_setresuid_args *uap = v; return (sys_setreuid(l, uap, retval)); } int hpux_sys_setresgid(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_setresgid_args *uap = v; return (sys_setregid(l, uap, retval)); } int hpux_sys_getrlimit(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_getrlimit_args *uap = v; struct compat_43_sys_getrlimit_args ap; if (SCARG(uap, which) > HPUXRLIMIT_NOFILE) return (EINVAL); if (SCARG(uap, which) == HPUXRLIMIT_NOFILE) SCARG(uap, which) = RLIMIT_NOFILE; SCARG(&ap, which) = SCARG(uap, which); SCARG(&ap, rlp) = SCARG(uap, rlp); return (compat_43_sys_getrlimit(l, uap, retval)); } int hpux_sys_setrlimit(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_setrlimit_args *uap = v; struct compat_43_sys_setrlimit_args ap; if (SCARG(uap, which) > HPUXRLIMIT_NOFILE) return (EINVAL); if (SCARG(uap, which) == HPUXRLIMIT_NOFILE) SCARG(uap, which) = RLIMIT_NOFILE; SCARG(&ap, which) = SCARG(uap, which); SCARG(&ap, rlp) = SCARG(uap, rlp); return (compat_43_sys_setrlimit(l, uap, retval)); } /* * XXX: simple recognition hack to see if we can make grmd work. */ int hpux_sys_lockf(struct lwp *l, void *v, register_t *retval) { /* struct hpux_sys_lockf_args *uap = v; */ return (0); } int hpux_sys_getaccess(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_getaccess_args *uap = v; int lgroups[NGROUPS]; int error = 0; kauth_cred_t cred; struct vnode *vp; struct nameidata nd; gid_t gid; /* * Build an appropriate credential structure */ cred = kauth_cred_dup(l->l_cred); switch (SCARG(uap, uid)) { case 65502: /* UID_EUID */ break; case 65503: /* UID_RUID */ kauth_cred_seteuid(cred, kauth_cred_getuid(l->l_cred)); break; case 65504: /* UID_SUID */ error = EINVAL; break; default: if (SCARG(uap, uid) > 65504) error = EINVAL; kauth_cred_seteuid(cred, SCARG(uap, uid)); break; } switch (SCARG(uap, ngroups)) { case -1: /* NGROUPS_EGID */ gid = kauth_cred_getegid(cred); kauth_cred_setgroups(cred, &gid, 1, -1); break; case -5: /* NGROUPS_EGID_SUPP */ break; case -2: /* NGROUPS_RGID */ kauth_cred_setegid(cred, kauth_cred_getgid(l->l_cred)); gid = kauth_cred_geteuid(l->l_cred); kauth_cred_setgroups(cred, &gid, 1, -1); break; case -6: /* NGROUPS_RGID_SUPP */ kauth_cred_setegid(cred, kauth_cred_getgid(l->l_cred)); break; case -3: /* NGROUPS_SGID */ case -7: /* NGROUPS_SGID_SUPP */ error = EINVAL; break; case -4: /* NGROUPS_SUPP */ if (kauth_cred_ngroups(cred) > 1) kauth_cred_setegid(cred, kauth_cred_group(cred, 1)); else error = EINVAL; break; default: if (SCARG(uap, ngroups) > 0 && SCARG(uap, ngroups) <= NGROUPS) error = copyin(SCARG(uap, gidset), &lgroups[0], SCARG(uap, ngroups) * sizeof(lgroups[0])); else error = EINVAL; if (error == 0) kauth_cred_setgroups(cred, lgroups, SCARG(uap, ngroups), -1); break; } /* * Lookup file using caller's effective IDs. */ if (error == 0) { NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_USERSPACE, SCARG(uap, path), l); error = namei(&nd); } if (error) { kauth_cred_free(cred); return (error); } /* * Use the constructed credentials for access checks. */ vp = nd.ni_vp; *retval = 0; if (VOP_ACCESS(vp, VREAD, cred, l) == 0) *retval |= R_OK; if (vn_writechk(vp) == 0 && VOP_ACCESS(vp, VWRITE, cred, l) == 0) *retval |= W_OK; if (VOP_ACCESS(vp, VEXEC, cred, l) == 0) *retval |= X_OK; vput(vp); kauth_cred_free(cred); return (error); } /* hpux_to_bsd_uoff() is found in hpux_machdep.c */ /* * Ancient HP-UX system calls. Some 9.x executables even use them! */ #define HPUX_HZ 50 #include /* * SYS V style setpgrp() */ int hpux_sys_setpgrp_6x(struct lwp *l, void *v, register_t *retval) { struct proc *p = l->l_proc; if (p->p_pid != p->p_pgid) enterpgrp(p, p->p_pid, p->p_pid, 0); *retval = p->p_pgid; return (0); } int hpux_sys_time_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_time_6x_args /* { syscallarg(time_t *) t; } */ *uap = v; int error = 0; struct timeval tv; microtime(&tv); if (SCARG(uap, t) != NULL) error = copyout(&tv.tv_sec, SCARG(uap, t), sizeof(time_t)); *retval = (register_t)tv.tv_sec; return (error); } int hpux_sys_stime_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_stime_6x_args /* { syscallarg(int) time; } */ *uap = v; struct timeval tv; #ifdef __HAVE_TIMECOUNTER struct timespec ts; #endif int s, error; tv.tv_sec = SCARG(uap, time); tv.tv_usec = 0; if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL))) return (error); /* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */ boottime.tv_sec += tv.tv_sec - time_second; s = splclock(); #ifdef __HAVE_TIMECOUNTER TIMEVAL_TO_TIMESPEC(&tv, &ts); tc_setclock(&ts); #else time = tv; #endif splx(s); resettodr(); return (0); } int hpux_sys_ftime_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_ftime_6x_args /* { syscallarg(struct hpux_timeb *) tp; } */ *uap = v; struct hpux_otimeb tb; struct timeval tv; microtime(&tv); tb.time = tv.tv_sec; tb.millitm = tv.tv_usec / 1000; /* NetBSD has no kernel notion of timezone -- fake it. */ tb.timezone = 0; tb.dstflag = 0; return (copyout((void *)&tb, (void *)SCARG(uap, tp), sizeof (tb))); } int hpux_sys_alarm_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_alarm_6x_args /* { syscallarg(int) deltat; } */ *uap = v; struct proc *p = l->l_proc; int s; struct itimerval *itp, it; struct ptimer *ptp; struct timeval tv; if (p->p_timers && p->p_timers->pts_timers[ITIMER_REAL]) { ptp = p->p_timers->pts_timers[ITIMER_REAL]; itp = &ptp->pt_time; } else itp = NULL; s = splhigh(); /* * Clear any pending timer alarms. */ if (itp) { callout_stop(&p->p_timers->pts_timers[ITIMER_REAL]->pt_ch); timerclear(&itp->it_interval); microtime(&tv); if (timerisset(&itp->it_value) && timercmp(&itp->it_value, &tv, >)) timersub(&itp->it_value, &tv, &itp->it_value); /* * Return how many seconds were left (rounded up) */ retval[0] = itp->it_value.tv_sec; if (itp->it_value.tv_usec) retval[0]++; } else { retval[0] = 0; } /* * alarm(0) just resets the timer. */ if (SCARG(uap, deltat) == 0) { if (itp) timerclear(&itp->it_value); splx(s); return (0); } /* * Check the new alarm time for sanity, and set it. */ timerclear(&it.it_interval); it.it_value.tv_sec = SCARG(uap, deltat); it.it_value.tv_usec = 0; if (itimerfix(&it.it_value) || itimerfix(&it.it_interval)) { splx(s); return (EINVAL); } if (p->p_timers == NULL) timers_alloc(p); ptp = p->p_timers->pts_timers[ITIMER_REAL]; if (ptp == NULL) { ptp = pool_get(&ptimer_pool, PR_WAITOK); ptp->pt_ev.sigev_notify = SIGEV_SIGNAL; ptp->pt_ev.sigev_signo = SIGALRM; ptp->pt_overruns = 0; ptp->pt_proc = p; ptp->pt_type = CLOCK_REALTIME; ptp->pt_entry = CLOCK_REALTIME; p->p_timers->pts_timers[ITIMER_REAL] = ptp; callout_init(&ptp->pt_ch); } if (timerisset(&it.it_value)) { /* * We don't need to check the hzto() return value, here. * callout_reset() does it for us. */ microtime(&tv); timeradd(&it.it_value, &tv, &it.it_value); callout_reset(&ptp->pt_ch, hzto(&ptp->pt_time.it_value), realtimerexpire, ptp); } ptp->pt_time = it; splx(s); return (0); } int hpux_sys_nice_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_nice_6x_args /* { syscallarg(int) nval; } */ *uap = v; struct proc *p = l->l_proc; int error; mutex_enter(&p->p_mutex); error = donice(l, p, (p->p_nice - NZERO) + SCARG(uap, nval)); mutex_exit(&p->p_mutex); if (error == 0) *retval = p->p_nice - NZERO; return (error); } int hpux_sys_times_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_times_6x_args /* { syscallarg(struct tms *) tms; } */ *uap = v; struct proc *p = l->l_proc; struct timeval ru, rs, tv; struct tms atms; int error; mutex_enter(&p->p_smutex); calcru(p, &ru, &rs, NULL, NULL); mutex_exit(&p->p_smutex); atms.tms_utime = hpux_scale(&ru); atms.tms_stime = hpux_scale(&rs); atms.tms_cutime = hpux_scale(&p->p_stats->p_cru.ru_utime); atms.tms_cstime = hpux_scale(&p->p_stats->p_cru.ru_stime); error = copyout((void *)&atms, (void *)SCARG(uap, tms), sizeof (atms)); if (error == 0) { microtime(&tv); *(time_t *)retval = hpux_scale(&tv) - hpux_scale(&boottime); } return (error); } /* * Doesn't exactly do what the documentation says. * What we really do is return 1/HPUX_HZ-th of a second since that * is what HP-UX returns. */ static int hpux_scale(struct timeval *tvp) { return (tvp->tv_sec * HPUX_HZ + tvp->tv_usec * HPUX_HZ / 1000000); } /* * Set IUPD and IACC times on file. * Can't set ICHG. */ int hpux_sys_utime_6x(struct lwp *l, void *v, register_t *retval) { struct hpux_sys_utime_6x_args /* { syscallarg(char *) fname; syscallarg(time_t *) tptr; } */ *uap = v; struct vnode *vp; struct vattr vattr; time_t tv[2]; int error; struct nameidata nd; if (SCARG(uap, tptr)) { error = copyin((void *)SCARG(uap, tptr), (void *)tv, sizeof (tv)); if (error) return (error); } else tv[0] = tv[1] = time_second; vattr_null(&vattr); vattr.va_atime.tv_sec = tv[0]; vattr.va_atime.tv_nsec = 0; vattr.va_mtime.tv_sec = tv[1]; vattr.va_mtime.tv_nsec = 0; NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_USERSPACE, SCARG(uap, fname), l); if ((error = namei(&nd))) return (error); vp = nd.ni_vp; if (vp->v_mount->mnt_flag & MNT_RDONLY) error = EROFS; else error = VOP_SETATTR(vp, &vattr, nd.ni_cnd.cn_cred, l); vput(vp); return (error); } int hpux_sys_pause_6x(struct lwp *l, void *v, register_t *retval) { return (sigsuspend1(l, &l->l_sigmask)); }