/* $NetBSD: if_vge.c,v 1.7 2005/11/21 20:25:15 martin Exp $ */ /*- * Copyright (c) 2004 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * FreeBSD: src/sys/dev/vge/if_vge.c,v 1.5 2005/02/07 19:39:29 glebius Exp */ #include __KERNEL_RCSID(0, "$NetBSD: if_vge.c,v 1.7 2005/11/21 20:25:15 martin Exp $"); /* * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that * combines a tri-speed ethernet MAC and PHY, with the following * features: * * o Jumbo frame support up to 16K * o Transmit and receive flow control * o IPv4 checksum offload * o VLAN tag insertion and stripping * o TCP large send * o 64-bit multicast hash table filter * o 64 entry CAM filter * o 16K RX FIFO and 48K TX FIFO memory * o Interrupt moderation * * The VT6122 supports up to four transmit DMA queues. The descriptors * in the transmit ring can address up to 7 data fragments; frames which * span more than 7 data buffers must be coalesced, but in general the * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments * long. The receive descriptors address only a single buffer. * * There are two peculiar design issues with the VT6122. One is that * receive data buffers must be aligned on a 32-bit boundary. This is * not a problem where the VT6122 is used as a LOM device in x86-based * systems, but on architectures that generate unaligned access traps, we * have to do some copying. * * The other issue has to do with the way 64-bit addresses are handled. * The DMA descriptors only allow you to specify 48 bits of addressing * information. The remaining 16 bits are specified using one of the * I/O registers. If you only have a 32-bit system, then this isn't * an issue, but if you have a 64-bit system and more than 4GB of * memory, you must have to make sure your network data buffers reside * in the same 48-bit 'segment.' * * Special thanks to Ryan Fu at VIA Networking for providing documentation * and sample NICs for testing. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int vge_probe (struct device *, struct cfdata *, void *); static void vge_attach (struct device *, struct device *, void *); static int vge_encap (struct vge_softc *, struct mbuf *, int); static int vge_dma_map_rx_desc (struct vge_softc *, int); static void vge_dma_map_tx_desc (struct vge_softc *, struct mbuf *, int, int); static int vge_allocmem (struct vge_softc *); static int vge_newbuf (struct vge_softc *, int, struct mbuf *); static int vge_rx_list_init (struct vge_softc *); static int vge_tx_list_init (struct vge_softc *); #ifdef VGE_FIXUP_RX static __inline void vge_fixup_rx (struct mbuf *); #endif static void vge_rxeof (struct vge_softc *); static void vge_txeof (struct vge_softc *); static int vge_intr (void *); static void vge_tick (void *); static void vge_start (struct ifnet *); static int vge_ioctl (struct ifnet *, u_long, caddr_t); static int vge_init (struct ifnet *); static void vge_stop (struct vge_softc *); static void vge_watchdog (struct ifnet *); #if VGE_POWER_MANAGEMENT static int vge_suspend (struct device *); static int vge_resume (struct device *); #endif static void vge_shutdown (void *); static int vge_ifmedia_upd (struct ifnet *); static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *); static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *); static void vge_read_eeprom (struct vge_softc *, caddr_t, int, int, int); static void vge_miipoll_start (struct vge_softc *); static void vge_miipoll_stop (struct vge_softc *); static int vge_miibus_readreg (struct device *, int, int); static void vge_miibus_writereg (struct device *, int, int, int); static void vge_miibus_statchg (struct device *); static void vge_cam_clear (struct vge_softc *); static int vge_cam_set (struct vge_softc *, uint8_t *); static void vge_setmulti (struct vge_softc *); static void vge_reset (struct vge_softc *); #define VGE_PCI_LOIO 0x10 #define VGE_PCI_LOMEM 0x14 CFATTACH_DECL(vge, sizeof(struct vge_softc), vge_probe, vge_attach, NULL, NULL); /* * Defragment mbuf chain contents to be as linear as possible. * Returns new mbuf chain on success, NULL on failure. Old mbuf * chain is always freed. * XXX temporary until there would be generic function doing this. */ #define m_defrag vge_m_defrag struct mbuf * vge_m_defrag(struct mbuf *, int); struct mbuf * vge_m_defrag(struct mbuf *mold, int flags) { struct mbuf *m0, *mn, *n; size_t sz = mold->m_pkthdr.len; #ifdef DIAGNOSTIC if ((mold->m_flags & M_PKTHDR) == 0) panic("m_defrag: not a mbuf chain header"); #endif MGETHDR(m0, flags, MT_DATA); if (m0 == NULL) return NULL; m0->m_pkthdr.len = mold->m_pkthdr.len; mn = m0; do { if (sz > MHLEN) { MCLGET(mn, M_DONTWAIT); if ((mn->m_flags & M_EXT) == 0) { m_freem(m0); return NULL; } } mn->m_len = MIN(sz, MCLBYTES); m_copydata(mold, mold->m_pkthdr.len - sz, mn->m_len, mtod(mn, caddr_t)); sz -= mn->m_len; if (sz > 0) { /* need more mbufs */ MGET(n, M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m0); return NULL; } mn->m_next = n; mn = n; } } while (sz > 0); return m0; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void vge_eeprom_getword(sc, addr, dest) struct vge_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* * Enter EEPROM embedded programming mode. In order to * access the EEPROM at all, we first have to set the * EELOAD bit in the CHIPCFG2 register. */ CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); /* Select the address of the word we want to read */ CSR_WRITE_1(sc, VGE_EEADDR, addr); /* Issue read command */ CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD); /* Wait for the done bit to be set. */ for (i = 0; i < VGE_TIMEOUT; i++) { if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname); *dest = 0; return; } /* Read the result */ word = CSR_READ_2(sc, VGE_EERDDAT); /* Turn off EEPROM access mode. */ CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/); CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ static void vge_read_eeprom(sc, dest, off, cnt, swap) struct vge_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { vge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } static void vge_miipoll_stop(sc) struct vge_softc *sc; { int i; CSR_WRITE_1(sc, VGE_MIICMD, 0); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to idle MII autopoll\n", sc->sc_dev.dv_xname); } return; } static void vge_miipoll_start(sc) struct vge_softc *sc; { int i; /* First, make sure we're idle. */ CSR_WRITE_1(sc, VGE_MIICMD, 0); CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to idle MII autopoll\n", sc->sc_dev.dv_xname); return; } /* Now enable auto poll mode. */ CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO); /* And make sure it started. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: failed to start MII autopoll\n", sc->sc_dev.dv_xname); } } static int vge_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct vge_softc *sc = (struct vge_softc *)dev; int i; u_int16_t rval = 0; if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return(0); VGE_LOCK(sc); vge_miipoll_stop(sc); /* Specify the register we want to read. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Issue read command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD); /* Wait for the read command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0) break; } if (i == VGE_TIMEOUT) printf("%s: MII read timed out\n", sc->sc_dev.dv_xname); else rval = CSR_READ_2(sc, VGE_MIIDATA); vge_miipoll_start(sc); VGE_UNLOCK(sc); return (rval); } static void vge_miibus_writereg(dev, phy, reg, data) struct device *dev; int phy, reg, data; { struct vge_softc *sc = (struct vge_softc *)dev; int i; if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F)) return; VGE_LOCK(sc); vge_miipoll_stop(sc); /* Specify the register we want to write. */ CSR_WRITE_1(sc, VGE_MIIADDR, reg); /* Specify the data we want to write. */ CSR_WRITE_2(sc, VGE_MIIDATA, data); /* Issue write command. */ CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD); /* Wait for the write command bit to self-clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: MII write timed out\n", sc->sc_dev.dv_xname); } vge_miipoll_start(sc); VGE_UNLOCK(sc); } static void vge_cam_clear(sc) struct vge_softc *sc; { int i; /* * Turn off all the mask bits. This tells the chip * that none of the entries in the CAM filter are valid. * desired entries will be enabled as we fill the filter in. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); /* Clear the VLAN filter too. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0); for (i = 0; i < 8; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, 0); CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); sc->vge_camidx = 0; return; } static int vge_cam_set(sc, addr) struct vge_softc *sc; uint8_t *addr; { int i, error = 0; if (sc->vge_camidx == VGE_CAM_MAXADDRS) return(ENOSPC); /* Select the CAM data page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA); /* Set the filter entry we want to update and enable writing. */ CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx); /* Write the address to the CAM registers */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]); /* Issue a write command. */ CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE); /* Wake for it to clear. */ for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(1); if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: setting CAM filter failed\n", sc->sc_dev.dv_xname); error = EIO; goto fail; } /* Select the CAM mask page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK); /* Set the mask bit that enables this filter. */ CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8), 1<<(sc->vge_camidx & 7)); sc->vge_camidx++; fail: /* Turn off access to CAM. */ CSR_WRITE_1(sc, VGE_CAMADDR, 0); CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); return (error); } /* * Program the multicast filter. We use the 64-entry CAM filter * for perfect filtering. If there's more than 64 multicast addresses, * we use the hash filter insted. */ static void vge_setmulti(sc) struct vge_softc *sc; { struct ifnet *ifp; int error = 0; u_int32_t h, hashes[2] = { 0, 0 }; struct ether_multi *enm; struct ether_multistep step; ifp = &sc->sc_ethercom.ec_if; /* First, zot all the multicast entries. */ vge_cam_clear(sc); CSR_WRITE_4(sc, VGE_MAR0, 0); CSR_WRITE_4(sc, VGE_MAR1, 0); ifp->if_flags &= ~IFF_ALLMULTI; /* * If the user wants allmulti or promisc mode, enable reception * of all multicast frames. */ if (ifp->if_flags & IFF_PROMISC) { allmulti: CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF); ifp->if_flags |= IFF_ALLMULTI; return; } /* Now program new ones */ ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); while(enm != NULL) { /* * If multicast range, fall back to ALLMULTI. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; error = vge_cam_set(sc, enm->enm_addrlo); if (error) break; ETHER_NEXT_MULTI(step, enm); } /* If there were too many addresses, use the hash filter. */ if (error) { vge_cam_clear(sc); ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm); while(enm != NULL) { /* * If multicast range, fall back to ALLMULTI. */ if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) goto allmulti; h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; hashes[h >> 5] |= 1 << (h & 0x1f); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, VGE_MAR0, hashes[0]); CSR_WRITE_4(sc, VGE_MAR1, hashes[1]); } return; } static void vge_reset(sc) struct vge_softc *sc; { register int i; CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: soft reset timed out", sc->sc_dev.dv_xname); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE); DELAY(2000); } DELAY(5000); CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD); for (i = 0; i < VGE_TIMEOUT; i++) { DELAY(5); if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0) break; } if (i == VGE_TIMEOUT) { printf("%s: EEPROM reload timed out\n", sc->sc_dev.dv_xname); return; } CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI); return; } /* * Probe for a VIA gigabit chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int vge_probe(struct device *parent, struct cfdata *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_VIATECH && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_VIATECH_VT612X) return 1; return (0); } static int vge_dma_map_rx_desc(sc, idx) struct vge_softc *sc; int idx; { struct vge_rx_desc *d = NULL; bus_dma_segment_t *segs; /* * Map the segment array into descriptors. */ d = &sc->vge_ldata.vge_rx_list[idx]; /* If this descriptor is still owned by the chip, bail. */ if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) { printf("%s: tried to map busy descriptor\n", sc->sc_dev.dv_xname); return (EBUSY); } segs = sc->vge_ldata.vge_rx_dmamap[idx]->dm_segs; d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I); d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); d->vge_sts = 0; d->vge_ctl = 0; return (0); } static void vge_dma_map_tx_desc(sc, m0, idx, flags) struct vge_softc *sc; struct mbuf *m0; int idx, flags; { struct vge_tx_desc *d = &sc->vge_ldata.vge_tx_list[idx]; struct vge_tx_frag *f; int i = 0; bus_dma_segment_t *segs; size_t sz; bus_dmamap_t map = sc->vge_ldata.vge_tx_dmamap[idx]; /* Map the segment array into descriptors. */ segs = map->dm_segs; for (i = 0; i < map->dm_nsegs; i++) { f = &d->vge_frag[i]; f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len)); f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF); } /* Argh. This chip does not autopad short frames */ sz = m0->m_pkthdr.len; if (m0->m_pkthdr.len < VGE_MIN_FRAMELEN) { f = &d->vge_frag[i]; f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN - sz)); f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr)); f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF); sz = VGE_MIN_FRAMELEN; i++; } /* * When telling the chip how many segments there are, we * must use nsegs + 1 instead of just nsegs. Darned if I * know why. */ i++; d->vge_sts = sz << 16; d->vge_ctl = flags|(i << 28)|VGE_TD_LS_NORM; if (sz > ETHERMTU + ETHER_HDR_LEN) d->vge_ctl |= VGE_TDCTL_JUMBO; } static int vge_allocmem(sc) struct vge_softc *sc; { int error; int nseg; int i; bus_dma_segment_t seg; /* * Allocate map for TX descriptor list. */ error = bus_dmamap_create(sc->vge_dmat, round_page(VGE_TX_LIST_SZ), 1, round_page(VGE_TX_LIST_SZ), 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &sc->vge_ldata.vge_tx_list_map); if (error) { printf("%s: could not allocate TX dma list map\n", sc->sc_dev.dv_xname); return (ENOMEM); } /* * Allocate memory for TX descriptor list. */ error = bus_dmamem_alloc(sc->vge_dmat, VGE_TX_LIST_SZ, VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (error) { printf("%s: could not allocate TX ring dma memory\n", sc->sc_dev.dv_xname); return (ENOMEM); } /* Map the memory to kernel VA space */ error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len, (caddr_t *) &sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT); if (error) { printf("%s: could not map TX ring dma memory\n", sc->sc_dev.dv_xname); return (ENOMEM); } /* Load the map for the TX ring. */ error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: could not load TX ring dma memory\n", sc->sc_dev.dv_xname); return (ENOMEM); } sc->vge_ldata.vge_tx_list_addr = sc->vge_ldata.vge_tx_list_map->dm_segs[0].ds_addr; /* Create DMA maps for TX buffers */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->vge_dmat, VGE_TX_MAXLEN, VGE_TX_FRAGS, VGE_TX_MAXLEN, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_tx_dmamap[i]); if (error) { printf("%s: can't create DMA map for TX\n", sc->sc_dev.dv_xname); return (ENOMEM); } } /* * Allocate map for RX descriptor list. */ error = bus_dmamap_create(sc->vge_dmat, round_page(VGE_RX_LIST_SZ), 1, round_page(VGE_RX_LIST_SZ), 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &sc->vge_ldata.vge_rx_list_map); if (error) { printf("%s: could not allocate RX dma list map\n", sc->sc_dev.dv_xname); return (ENOMEM); } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamem_alloc(sc->vge_dmat, VGE_RX_LIST_SZ, VGE_RING_ALIGN, 0, &seg, 1, &nseg, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Map the memory to kernel VA space */ error = bus_dmamem_map(sc->vge_dmat, &seg, nseg, seg.ds_len, (caddr_t *) &sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT); if (error) return (ENOMEM); /* Load the map for the RX ring. */ error = bus_dmamap_load(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list, seg.ds_len, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: could not load RX ring dma memory\n", sc->sc_dev.dv_xname); return (ENOMEM); } sc->vge_ldata.vge_rx_list_addr = sc->vge_ldata.vge_rx_list_map->dm_segs[0].ds_addr; /* Create DMA maps for RX buffers */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->vge_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_rx_dmamap[i]); if (error) { printf("%s: can't create DMA map for RX\n", sc->sc_dev.dv_xname); return (ENOMEM); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void vge_attach(struct device *parent, struct device *self, void *aux) { u_char eaddr[ETHER_ADDR_LEN]; struct vge_softc *sc = (struct vge_softc *)self; struct ifnet *ifp; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; const char *intrstr; pci_intr_handle_t ih; aprint_normal(": VIA VT612X Gigabit Ethernet (rev. %#x)\n", PCI_REVISION(pa->pa_class)); /* Make sure bus-mastering is enabled */ pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) | PCI_COMMAND_MASTER_ENABLE); /* * Map control/status registers. */ if (0 != pci_mapreg_map(pa, VGE_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->vge_btag, &sc->vge_bhandle, NULL, NULL)) { aprint_error("%s: couldn't map memory\n", sc->sc_dev.dv_xname); return; } /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error("%s: unable to map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->vge_intrhand = pci_intr_establish(pc, ih, IPL_NET, vge_intr, sc); if (sc->vge_intrhand == NULL) { printf("%s: unable to establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); /* Reset the adapter. */ vge_reset(sc); /* * Get station address from the EEPROM. */ vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0); bcopy(eaddr, (char *)&sc->vge_eaddr, ETHER_ADDR_LEN); printf("%s: Ethernet address: %s\n", sc->sc_dev.dv_xname, ether_sprintf(eaddr)); /* * Use the 32bit tag. Hardware supports 48bit physical addresses, * but we don't use that for now. */ sc->vge_dmat = pa->pa_dmat; if (vge_allocmem(sc)) return; ifp = &sc->sc_ethercom.ec_if; ifp->if_softc = sc; strcpy(ifp->if_xname, sc->sc_dev.dv_xname); ifp->if_mtu = ETHERMTU; ifp->if_baudrate = IF_Gbps(1); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vge_ioctl; ifp->if_start = vge_start; /* * We can support 802.1Q VLAN-sized frames and jumbo * Ethernet frames. */ sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_HWTAGGING; /* * We can do IPv4/TCPv4/UDPv4 checksums in hardware. */ ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; #ifdef DEVICE_POLLING #ifdef IFCAP_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif #endif ifp->if_watchdog = vge_watchdog; ifp->if_init = vge_init; IFQ_SET_MAXLEN(&ifp->if_snd, max(VGE_IFQ_MAXLEN, IFQ_MAXLEN)); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = vge_miibus_readreg; sc->sc_mii.mii_writereg = vge_miibus_writereg; sc->sc_mii.mii_statchg = vge_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, vge_ifmedia_upd, vge_ifmedia_sts); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp, eaddr); callout_init(&sc->vge_timeout); callout_setfunc(&sc->vge_timeout, vge_tick, sc); /* * Make sure the interface is shutdown during reboot. */ if (shutdownhook_establish(vge_shutdown, sc) == NULL) { printf("%s: WARNING: unable to establish shutdown hook\n", sc->sc_dev.dv_xname); } } static int vge_newbuf(sc, idx, m) struct vge_softc *sc; int idx; struct mbuf *m; { struct mbuf *n = NULL; int i, error; if (m == NULL) { n = m_gethdr(M_DONTWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); m_clget(n, M_DONTWAIT); if ((n->m_flags & M_EXT) == 0) { m_freem(n); return (ENOBUFS); } m = n; } else m->m_data = m->m_ext.ext_buf; #ifdef VGE_FIXUP_RX /* * This is part of an evil trick to deal with non-x86 platforms. * The VIA chip requires RX buffers to be aligned on 32-bit * boundaries, but that will hose non-x86 machines. To get around * this, we leave some empty space at the start of each buffer * and for non-x86 hosts, we copy the buffer back two bytes * to achieve word alignment. This is slightly more efficient * than allocating a new buffer, copying the contents, and * discarding the old buffer. */ m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN; m_adj(m, VGE_ETHER_ALIGN); #else m->m_len = m->m_pkthdr.len = MCLBYTES; #endif error = bus_dmamap_load_mbuf(sc->vge_dmat, sc->vge_ldata.vge_rx_dmamap[idx], m, BUS_DMA_NOWAIT); if (error || vge_dma_map_rx_desc(sc, idx)) { if (n != NULL) m_freem(n); return (ENOMEM); } /* * Note: the manual fails to document the fact that for * proper opration, the driver needs to replentish the RX * DMA ring 4 descriptors at a time (rather than one at a * time, like most chips). We can allocate the new buffers * but we should not set the OWN bits until we're ready * to hand back 4 of them in one shot. */ #define VGE_RXCHUNK 4 sc->vge_rx_consumed++; if (sc->vge_rx_consumed == VGE_RXCHUNK) { for (i = idx; i != idx - sc->vge_rx_consumed; i--) sc->vge_ldata.vge_rx_list[i].vge_sts |= htole32(VGE_RDSTS_OWN); sc->vge_rx_consumed = 0; } sc->vge_ldata.vge_rx_mbuf[idx] = m; bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_rx_dmamap[idx], 0, sc->vge_ldata.vge_rx_dmamap[idx]->dm_mapsize, BUS_DMASYNC_PREREAD); return (0); } static int vge_tx_list_init(sc) struct vge_softc *sc; { bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_tx_mbuf, (VGE_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->vge_ldata.vge_tx_prodidx = 0; sc->vge_ldata.vge_tx_considx = 0; sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT; return (0); } static int vge_rx_list_init(sc) struct vge_softc *sc; { int i; bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ); bzero ((char *)&sc->vge_ldata.vge_rx_mbuf, (VGE_RX_DESC_CNT * sizeof(struct mbuf *))); sc->vge_rx_consumed = 0; for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (vge_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = 0; sc->vge_rx_consumed = 0; sc->vge_head = sc->vge_tail = NULL; return (0); } #ifdef VGE_FIXUP_RX static __inline void vge_fixup_rx(m) struct mbuf *m; { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - 1; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= ETHER_ALIGN; return; } #endif /* * RX handler. We support the reception of jumbo frames that have * been fragmented across multiple 2K mbuf cluster buffers. */ static void vge_rxeof(sc) struct vge_softc *sc; { struct mbuf *m; struct ifnet *ifp; int i, total_len; int lim = 0; struct vge_rx_desc *cur_rx; u_int32_t rxstat, rxctl; VGE_LOCK_ASSERT(sc); ifp = &sc->sc_ethercom.ec_if; i = sc->vge_ldata.vge_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) { #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif /* DEVICE_POLLING */ cur_rx = &sc->vge_ldata.vge_rx_list[i]; m = sc->vge_ldata.vge_rx_mbuf[i]; total_len = VGE_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->vge_sts); rxctl = le32toh(cur_rx->vge_ctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_rx_dmamap[i], 0, sc->vge_ldata.vge_rx_dmamap[i]->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->vge_dmat, sc->vge_ldata.vge_rx_dmamap[i]); /* * If the 'start of frame' bit is set, this indicates * either the first fragment in a multi-fragment receive, * or an intermediate fragment. Either way, we want to * accumulate the buffers. */ if (rxstat & VGE_RXPKT_SOF) { m->m_len = MCLBYTES - VGE_ETHER_ALIGN; if (sc->vge_head == NULL) sc->vge_head = sc->vge_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; sc->vge_tail = m; } vge_newbuf(sc, i, NULL); VGE_RX_DESC_INC(i); continue; } /* * Bad/error frames will have the RXOK bit cleared. * However, there's one error case we want to allow: * if a VLAN tagged frame arrives and the chip can't * match it against the CAM filter, it considers this * a 'VLAN CAM filter miss' and clears the 'RXOK' bit. * We don't want to drop the frame though: our VLAN * filtering is done in software. */ if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) && !(rxstat & VGE_RDSTS_CSUMERR)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } vge_newbuf(sc, i, m); VGE_RX_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (vge_newbuf(sc, i, NULL)) { ifp->if_ierrors++; if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } vge_newbuf(sc, i, m); VGE_RX_DESC_INC(i); continue; } VGE_RX_DESC_INC(i); if (sc->vge_head != NULL) { m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN); /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->vge_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->vge_tail->m_next = m; } m = sc->vge_head; sc->vge_head = sc->vge_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); #ifdef VGE_FIXUP_RX vge_fixup_rx(m); #endif ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if (ifp->if_csum_flags_rx & M_CSUM_IPv4) { /* Check IP header checksum */ if (rxctl & VGE_RDCTL_IPPKT) m->m_pkthdr.csum_flags |= M_CSUM_IPv4; if ((rxctl & VGE_RDCTL_IPCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; } if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { /* Check UDP checksum */ if (rxctl & VGE_RDCTL_TCPPKT) m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (ifp->if_csum_flags_rx & M_CSUM_UDPv4) { /* Check UDP checksum */ if (rxctl & VGE_RDCTL_UDPPKT) m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; if ((rxctl & VGE_RDCTL_PROTOCSUMOK) == 0) m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; } if (rxstat & VGE_RDSTS_VTAG) VLAN_INPUT_TAG(ifp, m, ntohs((rxctl & VGE_RDCTL_VLANID)), continue); #if NBPFILTER > 0 /* * Handle BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif VGE_UNLOCK(sc); (*ifp->if_input)(ifp, m); VGE_LOCK(sc); lim++; if (lim == VGE_RX_DESC_CNT) break; } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_rx_list_map, 0, sc->vge_ldata.vge_rx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->vge_ldata.vge_rx_prodidx = i; CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim); return; } static void vge_txeof(sc) struct vge_softc *sc; { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = &sc->sc_ethercom.ec_if; idx = sc->vge_ldata.vge_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_POSTREAD); while (idx != sc->vge_ldata.vge_tx_prodidx) { txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts); if (txstat & VGE_TDSTS_OWN) break; m_freem(sc->vge_ldata.vge_tx_mbuf[idx]); sc->vge_ldata.vge_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->vge_dmat, sc->vge_ldata.vge_tx_dmamap[idx]); if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL)) ifp->if_collisions++; if (txstat & VGE_TDSTS_TXERR) ifp->if_oerrors++; else ifp->if_opackets++; sc->vge_ldata.vge_tx_free++; VGE_TX_DESC_INC(idx); } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->vge_ldata.vge_tx_considx) { sc->vge_ldata.vge_tx_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) { CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); } return; } static void vge_tick(xsc) void *xsc; { struct vge_softc *sc = xsc; struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mii_data *mii = &sc->sc_mii; int s; s = splnet(); VGE_LOCK(sc); callout_schedule(&sc->vge_timeout, hz); mii_tick(mii); if (sc->vge_link) { if (!(mii->mii_media_status & IFM_ACTIVE)) sc->vge_link = 0; } else { if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->vge_link = 1; if (!IFQ_IS_EMPTY(&ifp->if_snd)) vge_start(ifp); } } VGE_UNLOCK(sc); splx(s); } #ifdef DEVICE_POLLING static void vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) { struct vge_softc *sc = ifp->if_softc; VGE_LOCK(sc); #ifdef IFCAP_POLLING if (!(ifp->if_capenable & IFCAP_POLLING)) { ether_poll_deregister(ifp); cmd = POLL_DEREGISTER; } #endif if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); goto done; } sc->rxcycles = count; vge_rxeof(sc); vge_txeof(sc); #if __FreeBSD_version < 502114 if (ifp->if_snd.ifq_head != NULL) #else if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) #endif taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int32_t status; status = CSR_READ_4(sc, VGE_ISR); if (status == 0xFFFFFFFF) goto done; if (status) CSR_WRITE_4(sc, VGE_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & VGE_ISR_TXDMA_STALL || status & VGE_ISR_RXDMA_STALL) vge_init(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc); ifp->if_ierrors++; CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } } done: VGE_UNLOCK(sc); } #endif /* DEVICE_POLLING */ static int vge_intr(arg) void *arg; { struct vge_softc *sc = arg; struct ifnet *ifp = &sc->sc_ethercom.ec_if; u_int32_t status; int claim = 0; if (sc->suspended) { return claim; } VGE_LOCK(sc); if (!(ifp->if_flags & IFF_UP)) { VGE_UNLOCK(sc); return claim; } #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if ( #ifdef IFCAP_POLLING (ifp->if_capenable & IFCAP_POLLING) && #endif ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_4(sc, VGE_IMR, 0); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); vge_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ /* Disable interrupts */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); for (;;) { status = CSR_READ_4(sc, VGE_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xFFFFFFFF) break; if (status) { claim = 1; CSR_WRITE_4(sc, VGE_ISR, status); } if ((status & VGE_INTRS) == 0) break; if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO)) vge_rxeof(sc); if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) { vge_rxeof(sc); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); } if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0)) vge_txeof(sc); if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) vge_init(ifp); if (status & VGE_ISR_LINKSTS) vge_tick(sc); } /* Re-enable interrupts */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); #ifdef DEVICE_POLLING done: #endif VGE_UNLOCK(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) vge_start(ifp); return claim; } static int vge_encap(sc, m_head, idx) struct vge_softc *sc; struct mbuf *m_head; int idx; { struct mbuf *m_new = NULL; bus_dmamap_t map; int error, flags; struct m_tag *mtag; /* If this descriptor is still owned by the chip, bail. */ if (sc->vge_ldata.vge_tx_free <= 2 || le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts) & VGE_TDSTS_OWN) return (ENOBUFS); flags = 0; if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) flags |= VGE_TDCTL_IPCSUM; if (m_head->m_pkthdr.csum_flags & M_CSUM_TCPv4) flags |= VGE_TDCTL_TCPCSUM; if (m_head->m_pkthdr.csum_flags & M_CSUM_UDPv4) flags |= VGE_TDCTL_UDPCSUM; map = sc->vge_ldata.vge_tx_dmamap[idx]; error = bus_dmamap_load_mbuf(sc->vge_dmat, map, m_head, BUS_DMA_NOWAIT); /* If too many segments to map, coalesce */ if (error == EFBIG) { m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) return (error); error = bus_dmamap_load_mbuf(sc->vge_dmat, map, m_new, BUS_DMA_NOWAIT); if (error) { m_freem(m_new); return (error); } m_head = m_new; } else if (error) return (error); vge_dma_map_tx_desc(sc, m_head, idx, flags); sc->vge_ldata.vge_tx_mbuf[idx] = m_head; sc->vge_ldata.vge_tx_free--; /* * Set up hardware VLAN tagging. */ mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m_head); if (mtag != NULL) sc->vge_ldata.vge_tx_list[idx].vge_ctl |= htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG); sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN); return (0); } /* * Main transmit routine. */ static void vge_start(ifp) struct ifnet *ifp; { struct vge_softc *sc; struct mbuf *m_head = NULL; int idx, pidx = 0, error; sc = ifp->if_softc; VGE_LOCK(sc); if (!sc->vge_link || (ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) { VGE_UNLOCK(sc); return; } idx = sc->vge_ldata.vge_tx_prodidx; pidx = idx - 1; if (pidx < 0) pidx = VGE_TX_DESC_CNT - 1; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for(;;) { /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sc->vge_ldata.vge_tx_mbuf[idx] != NULL) { /* * Slot already used, stop for now. */ ifp->if_flags |= IFF_OACTIVE; break; } if ((error = vge_encap(sc, m_head, idx))) { if (error == EFBIG) { printf("%s: Tx packet consumes too many " "DMA segments, dropping...\n", sc->sc_dev.dv_xname); IFQ_DEQUEUE(&ifp->if_snd, m_head); m_freem(m_head); continue; } /* * Short on resources, just stop for now. */ if (error == ENOBUFS) ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m_head); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |= htole16(VGE_TXDESC_Q); if (sc->vge_ldata.vge_tx_mbuf[idx] != m_head) { m_freem(m_head); m_head = sc->vge_ldata.vge_tx_mbuf[idx]; } pidx = idx; VGE_TX_DESC_INC(idx); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } if (idx == sc->vge_ldata.vge_tx_prodidx) { VGE_UNLOCK(sc); return; } /* Flush the TX descriptors */ bus_dmamap_sync(sc->vge_dmat, sc->vge_ldata.vge_tx_list_map, 0, sc->vge_ldata.vge_tx_list_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Issue a transmit command. */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0); sc->vge_ldata.vge_tx_prodidx = idx; /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the SSTIMER register, and then trigger an * interrupt. Each time we set the TIMER0_ENABLE bit, the * the timer count is reloaded. Only when the transmitter * is idle will the timer hit 0 and an interrupt fire. */ CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE); VGE_UNLOCK(sc); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static int vge_init(ifp) struct ifnet *ifp; { struct vge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; int i; VGE_LOCK(sc); /* * Cancel pending I/O and free all RX/TX buffers. */ vge_stop(sc); vge_reset(sc); /* * Initialize the RX and TX descriptors and mbufs. */ vge_rx_list_init(sc); vge_tx_list_init(sc); /* Set our station address */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VGE_PAR0 + i, sc->vge_eaddr[i]); /* * Set receive FIFO threshold. Also allow transmission and * reception of VLAN tagged frames. */ CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT); CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2); /* Set DMA burst length */ CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN); CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128); CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK); /* Set collision backoff algorithm */ CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM| VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT); CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET); /* Disable LPSEL field in priority resolution */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS); /* * Load the addresses of the DMA queues into the chip. * Note that we only use one transmit queue. */ CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0, VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr)); CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr)); CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1); CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT); /* Enable and wake up the RX descriptor queue */ CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN); CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK); /* Enable the TX descriptor queue */ CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0); /* Set up the receive filter -- allow large frames for VLANs. */ CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); } /* Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST); } /* Set multicast bit to capture multicast frames. */ if (ifp->if_flags & IFF_MULTICAST) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST); } /* Init the cam filter. */ vge_cam_clear(sc); /* Init the multicast filter. */ vge_setmulti(sc); /* Enable flow control */ CSR_WRITE_1(sc, VGE_CRS2, 0x8B); /* Enable jumbo frame reception (if desired) */ /* Start the MAC. */ CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP); CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START); /* * Configure one-shot timer for microsecond * resulution and load it for 500 usecs. */ CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES); CSR_WRITE_2(sc, VGE_SSTIMER, 400); /* * Configure interrupt moderation for receive. Enable * the holdoff counter and load it, and set the RX * suppression count to the number of descriptors we * want to allow before triggering an interrupt. * The holdoff timer is in units of 20 usecs. */ #ifdef notyet CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE); /* Select the interrupt holdoff timer page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF); CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */ /* Enable use of the holdoff timer. */ CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF); CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD); /* Select the RX suppression threshold page. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR); CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */ /* Restore the page select bits. */ CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL); CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR); #endif #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) { CSR_WRITE_4(sc, VGE_IMR, 0); CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); } else /* otherwise ... */ #endif /* DEVICE_POLLING */ { /* * Enable interrupts. */ CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS); CSR_WRITE_4(sc, VGE_ISR, 0); CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK); } mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->vge_if_flags = 0; sc->vge_link = 0; VGE_UNLOCK(sc); callout_schedule(&sc->vge_timeout, hz); return (0); } /* * Set media options. */ static int vge_ifmedia_upd(ifp) struct ifnet *ifp; { struct vge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_mediachg(mii); return (0); } /* * Report current media status. */ static void vge_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct vge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static void vge_miibus_statchg(self) struct device *self; { struct vge_softc *sc = (struct vge_softc *) self; struct mii_data *mii = &sc->sc_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; /* * If the user manually selects a media mode, we need to turn * on the forced MAC mode bit in the DIAGCTL register. If the * user happens to choose a full duplex mode, we also need to * set the 'force full duplex' bit. This applies only to * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC * mode is disabled, and in 1000baseT mode, full duplex is * always implied, so we turn on the forced mode bit but leave * the FDX bit cleared. */ switch (IFM_SUBTYPE(ife->ifm_media)) { case IFM_AUTO: CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_1000_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); break; case IFM_100_TX: case IFM_10_T: CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE); if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) { CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } else { CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE); } break; default: printf("%s: unknown media type: %x\n", sc->sc_dev.dv_xname, IFM_SUBTYPE(ife->ifm_media)); break; } return; } static int vge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct vge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splnet(); switch (command) { case SIOCSIFMTU: if (ifr->ifr_mtu > VGE_JUMBO_MTU) error = EINVAL; ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->vge_if_flags & IFF_PROMISC)) { CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->vge_if_flags & IFF_PROMISC) { CSR_CLRBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC); vge_setmulti(sc); } else vge_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) vge_stop(sc); } sc->vge_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_ethercom) : ether_delmulti(ifr, &sc->sc_ethercom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) vge_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } splx(s); return (error); } static void vge_watchdog(ifp) struct ifnet *ifp; { struct vge_softc *sc; sc = ifp->if_softc; VGE_LOCK(sc); printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; vge_txeof(sc); vge_rxeof(sc); vge_init(ifp); VGE_UNLOCK(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void vge_stop(sc) struct vge_softc *sc; { register int i; struct ifnet *ifp = &sc->sc_ethercom.ec_if; VGE_LOCK(sc); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK); CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP); CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF); CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF); CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF); CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0); if (sc->vge_head != NULL) { m_freem(sc->vge_head); sc->vge_head = sc->vge_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < VGE_TX_DESC_CNT; i++) { if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->vge_dmat, sc->vge_ldata.vge_tx_dmamap[i]); m_freem(sc->vge_ldata.vge_tx_mbuf[i]); sc->vge_ldata.vge_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < VGE_RX_DESC_CNT; i++) { if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->vge_dmat, sc->vge_ldata.vge_rx_dmamap[i]); m_freem(sc->vge_ldata.vge_rx_mbuf[i]); sc->vge_ldata.vge_rx_mbuf[i] = NULL; } } VGE_UNLOCK(sc); return; } #if VGE_POWER_MANAGEMENT /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int vge_suspend(dev) struct device * dev; { struct vge_softc *sc; int i; sc = device_get_softc(dev); vge_stop(sc); for (i = 0; i < 5; i++) sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int vge_resume(dev) struct device * dev; { struct vge_softc *sc = (struct vge_softc *)dev; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int i; /* better way to do this? */ for (i = 0; i < 5; i++) pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); /* reenable busmastering */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) vge_init(sc); sc->suspended = 0; return (0); } #endif /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void vge_shutdown(arg) void *arg; { struct vge_softc *sc = (struct vge_softc *)arg; vge_stop(sc); }