/* $NetBSD: xform.c,v 1.14 2005/05/29 21:23:17 christos Exp $ */ /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.1.2.1 2002/11/21 23:34:23 sam Exp $ */ /* $OpenBSD: xform.c,v 1.19 2002/08/16 22:47:25 dhartmei Exp $ */ /* * The authors of this code are John Ioannidis (ji@tla.org), * Angelos D. Keromytis (kermit@csd.uch.gr) and * Niels Provos (provos@physnet.uni-hamburg.de). * * This code was written by John Ioannidis for BSD/OS in Athens, Greece, * in November 1995. * * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996, * by Angelos D. Keromytis. * * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis * and Niels Provos. * * Additional features in 1999 by Angelos D. Keromytis. * * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis, * Angelos D. Keromytis and Niels Provos. * * Copyright (C) 2001, Angelos D. Keromytis. * * Permission to use, copy, and modify this software with or without fee * is hereby granted, provided that this entire notice is included in * all copies of any software which is or includes a copy or * modification of this software. * You may use this code under the GNU public license if you so wish. Please * contribute changes back to the authors under this freer than GPL license * so that we may further the use of strong encryption without limitations to * all. * * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR * PURPOSE. */ #include __KERNEL_RCSID(0, "$NetBSD: xform.c,v 1.14 2005/05/29 21:23:17 christos Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void null_encrypt(caddr_t, u_int8_t *); static void null_decrypt(caddr_t, u_int8_t *); static int null_setkey(u_int8_t **, const u_int8_t *, int); static void null_zerokey(u_int8_t **); static int des1_setkey(u_int8_t **, const u_int8_t *, int); static int des3_setkey(u_int8_t **, const u_int8_t *, int); static int blf_setkey(u_int8_t **, const u_int8_t *, int); static int cast5_setkey(u_int8_t **, const u_int8_t *, int); static int skipjack_setkey(u_int8_t **, const u_int8_t *, int); static int rijndael128_setkey(u_int8_t **, const u_int8_t *, int); static void des1_encrypt(caddr_t, u_int8_t *); static void des3_encrypt(caddr_t, u_int8_t *); static void blf_encrypt(caddr_t, u_int8_t *); static void cast5_encrypt(caddr_t, u_int8_t *); static void skipjack_encrypt(caddr_t, u_int8_t *); static void rijndael128_encrypt(caddr_t, u_int8_t *); static void des1_decrypt(caddr_t, u_int8_t *); static void des3_decrypt(caddr_t, u_int8_t *); static void blf_decrypt(caddr_t, u_int8_t *); static void cast5_decrypt(caddr_t, u_int8_t *); static void skipjack_decrypt(caddr_t, u_int8_t *); static void rijndael128_decrypt(caddr_t, u_int8_t *); static void des1_zerokey(u_int8_t **); static void des3_zerokey(u_int8_t **); static void blf_zerokey(u_int8_t **); static void cast5_zerokey(u_int8_t **); static void skipjack_zerokey(u_int8_t **); static void rijndael128_zerokey(u_int8_t **); static void null_init(void *); static int null_update(void *, const u_int8_t *, u_int16_t); static void null_final(u_int8_t *, void *); static int MD5Update_int(void *, const u_int8_t *, u_int16_t); static void SHA1Init_int(void *); static int SHA1Update_int(void *, const u_int8_t *, u_int16_t); static void SHA1Final_int(u_int8_t *, void *); static int RMD160Update_int(void *, const u_int8_t *, u_int16_t); static int SHA1Update_int(void *, const u_int8_t *, u_int16_t); static void SHA1Final_int(u_int8_t *, void *); static int RMD160Update_int(void *, const u_int8_t *, u_int16_t); static int SHA256Update_int(void *, const u_int8_t *, u_int16_t); static int SHA384Update_int(void *, const u_int8_t *, u_int16_t); static int SHA512Update_int(void *, const u_int8_t *, u_int16_t); static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **); static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **); MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers"); /* Encryption instances */ struct enc_xform enc_xform_null = { CRYPTO_NULL_CBC, "NULL", /* NB: blocksize of 4 is to generate a properly aligned ESP header */ 4, 0, 256, /* 2048 bits, max key */ null_encrypt, null_decrypt, null_setkey, null_zerokey, }; struct enc_xform enc_xform_des = { CRYPTO_DES_CBC, "DES", 8, 8, 8, des1_encrypt, des1_decrypt, des1_setkey, des1_zerokey, }; struct enc_xform enc_xform_3des = { CRYPTO_3DES_CBC, "3DES", 8, 24, 24, des3_encrypt, des3_decrypt, des3_setkey, des3_zerokey }; struct enc_xform enc_xform_blf = { CRYPTO_BLF_CBC, "Blowfish", 8, 5, 56 /* 448 bits, max key */, blf_encrypt, blf_decrypt, blf_setkey, blf_zerokey }; struct enc_xform enc_xform_cast5 = { CRYPTO_CAST_CBC, "CAST-128", 8, 5, 16, cast5_encrypt, cast5_decrypt, cast5_setkey, cast5_zerokey }; struct enc_xform enc_xform_skipjack = { CRYPTO_SKIPJACK_CBC, "Skipjack", 8, 10, 10, skipjack_encrypt, skipjack_decrypt, skipjack_setkey, skipjack_zerokey }; struct enc_xform enc_xform_rijndael128 = { CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES", 16, 8, 32, rijndael128_encrypt, rijndael128_decrypt, rijndael128_setkey, rijndael128_zerokey, }; struct enc_xform enc_xform_arc4 = { CRYPTO_ARC4, "ARC4", 1, 1, 32, NULL, NULL, NULL, NULL, }; /* Authentication instances */ struct auth_hash auth_hash_null = { CRYPTO_NULL_HMAC, "NULL-HMAC", 0, 0, 12, sizeof(int), /* NB: context isn't used */ null_init, null_update, null_final }; struct auth_hash auth_hash_hmac_md5_96 = { CRYPTO_MD5_HMAC, "HMAC-MD5", 16, 16, 12, sizeof(MD5_CTX), (void (*) (void *)) MD5Init, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_hmac_sha1_96 = { CRYPTO_SHA1_HMAC, "HMAC-SHA1", 20, 20, 12, sizeof(SHA1_CTX), SHA1Init_int, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_hmac_ripemd_160_96 = { CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160", 20, 20, 12, sizeof(RMD160_CTX), (void (*)(void *)) RMD160Init, RMD160Update_int, (void (*)(u_int8_t *, void *)) RMD160Final }; struct auth_hash auth_hash_key_md5 = { CRYPTO_MD5_KPDK, "Keyed MD5", 0, 16, 16, sizeof(MD5_CTX), (void (*)(void *)) MD5Init, MD5Update_int, (void (*)(u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_key_sha1 = { CRYPTO_SHA1_KPDK, "Keyed SHA1", 0, 20, 20, sizeof(SHA1_CTX), SHA1Init_int, SHA1Update_int, SHA1Final_int }; struct auth_hash auth_hash_md5 = { CRYPTO_MD5, "MD5", 0, 16, 16, sizeof(MD5_CTX), (void (*) (void *)) MD5Init, MD5Update_int, (void (*) (u_int8_t *, void *)) MD5Final }; struct auth_hash auth_hash_sha1 = { CRYPTO_SHA1, "SHA1", 0, 20, 20, sizeof(SHA1_CTX), (void (*)(void *)) SHA1Init, SHA1Update_int, (void (*)(u_int8_t *, void *)) SHA1Final }; struct auth_hash auth_hash_hmac_sha2_256 = { CRYPTO_SHA2_HMAC, "HMAC-SHA2", 32, 32, 12, sizeof(SHA256_CTX), (void (*)(void *)) SHA256_Init, SHA256Update_int, (void (*)(u_int8_t *, void *)) SHA256_Final }; struct auth_hash auth_hash_hmac_sha2_384 = { CRYPTO_SHA2_HMAC, "HMAC-SHA2-384", 48, 48, 12, sizeof(SHA384_CTX), (void (*)(void *)) SHA384_Init, SHA384Update_int, (void (*)(u_int8_t *, void *)) SHA384_Final }; struct auth_hash auth_hash_hmac_sha2_512 = { CRYPTO_SHA2_HMAC, "HMAC-SHA2-512", 64, 64, 12, sizeof(SHA512_CTX), (void (*)(void *)) SHA512_Init, SHA512Update_int, (void (*)(u_int8_t *, void *)) SHA512_Final }; /* Compression instance */ struct comp_algo comp_algo_deflate = { CRYPTO_DEFLATE_COMP, "Deflate", 90, deflate_compress, deflate_decompress }; /* * Encryption wrapper routines. */ static void null_encrypt(caddr_t key, u_int8_t *blk) { } static void null_decrypt(caddr_t key, u_int8_t *blk) { } static int null_setkey(u_int8_t **sched, const u_int8_t *key, int len) { *sched = NULL; return 0; } static void null_zerokey(u_int8_t **sched) { *sched = NULL; } static void des1_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT); } static void des1_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT); } static int des1_setkey(u_int8_t **sched, const u_int8_t *key, int len) { des_key_schedule *p; int err; MALLOC(p, des_key_schedule *, sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT); if (p != NULL) { bzero(p, sizeof(des_key_schedule)); des_set_key((des_cblock *)__UNCONST(key), p[0]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des1_zerokey(u_int8_t **sched) { bzero(*sched, sizeof (des_key_schedule)); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } static void des3_encrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT); } static void des3_decrypt(caddr_t key, u_int8_t *blk) { des_cblock *cb = (des_cblock *) blk; des_key_schedule *p = (des_key_schedule *) key; des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT); } static int des3_setkey(u_int8_t **sched, const u_int8_t *key, int len) { des_key_schedule *p; int err; MALLOC(p, des_key_schedule *, 3*sizeof (des_key_schedule), M_CRYPTO_DATA, M_NOWAIT); if (p != NULL) { bzero(p, 3*sizeof(des_key_schedule)); des_set_key((des_cblock *)__UNCONST(key + 0), p[0]); des_set_key((des_cblock *)__UNCONST(key + 8), p[1]); des_set_key((des_cblock *)__UNCONST(key + 16), p[2]); err = 0; } else err = ENOMEM; *sched = (u_int8_t *) p; return err; } static void des3_zerokey(u_int8_t **sched) { bzero(*sched, 3*sizeof (des_key_schedule)); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } static void blf_encrypt(caddr_t key, u_int8_t *blk) { #if defined(__NetBSD__) BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 1); #else blf_ecb_encrypt((blf_ctx *) key, blk, 8); #endif } static void blf_decrypt(caddr_t key, u_int8_t *blk) { #if defined(__NetBSD__) BF_ecb_encrypt(blk, blk, (BF_KEY *)key, 0); #else blf_ecb_decrypt((blf_ctx *) key, blk, 8); #endif } static int blf_setkey(u_int8_t **sched, const u_int8_t *key, int len) { int err; #if defined(__FreeBSD__) || defined(__NetBSD__) #define BLF_SIZ sizeof(BF_KEY) #else #define BLF_SIZ sizeof(blf_ctx) #endif MALLOC(*sched, u_int8_t *, BLF_SIZ, M_CRYPTO_DATA, M_NOWAIT); if (*sched != NULL) { bzero(*sched, BLF_SIZ); #if defined(__FreeBSD__) || defined(__NetBSD__) BF_set_key((BF_KEY *) *sched, len, key); #else blf_key((blf_ctx *)*sched, key, len); #endif err = 0; } else err = ENOMEM; return err; } static void blf_zerokey(u_int8_t **sched) { bzero(*sched, BLF_SIZ); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } static void cast5_encrypt(caddr_t key, u_int8_t *blk) { cast128_encrypt((cast128_key *) key, blk, blk); } static void cast5_decrypt(caddr_t key, u_int8_t *blk) { cast128_decrypt((cast128_key *) key, blk, blk); } static int cast5_setkey(u_int8_t **sched, const u_int8_t *key, int len) { int err; MALLOC(*sched, u_int8_t *, sizeof(cast128_key), M_CRYPTO_DATA, M_NOWAIT); if (*sched != NULL) { bzero(*sched, sizeof(cast128_key)); cast128_setkey((cast128_key *)*sched, key, len); err = 0; } else err = ENOMEM; return err; } static void cast5_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(cast128_key)); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } static void skipjack_encrypt(caddr_t key, u_int8_t *blk) { skipjack_forwards(blk, blk, (u_int8_t **) key); } static void skipjack_decrypt(caddr_t key, u_int8_t *blk) { skipjack_backwards(blk, blk, (u_int8_t **) key); } static int skipjack_setkey(u_int8_t **sched, const u_int8_t *key, int len) { int err; /* NB: allocate all the memory that's needed at once */ /* XXX assumes bytes are aligned on sizeof(u_char) == 1 boundaries. * Will this break a pdp-10, Cray-1, or GE-645 port? */ MALLOC(*sched, u_int8_t *, 10 * (sizeof(u_int8_t *) + 0x100), M_CRYPTO_DATA, M_NOWAIT); if (*sched != NULL) { u_int8_t** key_tables = (u_int8_t**) *sched; u_int8_t* table = (u_int8_t*) &key_tables[10]; int k; bzero(*sched, 10 * sizeof(u_int8_t *)+0x100); for (k = 0; k < 10; k++) { key_tables[k] = table; table += 0x100; } subkey_table_gen(key, (u_int8_t **) *sched); err = 0; } else err = ENOMEM; return err; } static void skipjack_zerokey(u_int8_t **sched) { bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100)); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } static void rijndael128_encrypt(caddr_t key, u_int8_t *blk) { rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } static void rijndael128_decrypt(caddr_t key, u_int8_t *blk) { rijndael_decrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk); } static int rijndael128_setkey(u_int8_t **sched, const u_int8_t *key, int len) { int err; MALLOC(*sched, u_int8_t *, sizeof(rijndael_ctx), M_CRYPTO_DATA, M_WAITOK); if (*sched != NULL) { bzero(*sched, sizeof(rijndael_ctx)); rijndael_set_key((rijndael_ctx *) *sched, key, len * 8); err = 0; } else err = ENOMEM; return err; } static void rijndael128_zerokey(u_int8_t **sched) { bzero(*sched, sizeof(rijndael_ctx)); FREE(*sched, M_CRYPTO_DATA); *sched = NULL; } /* * And now for auth. */ static void null_init(void *ctx) { } static int null_update(void *ctx, const u_int8_t *buf, u_int16_t len) { return 0; } static void null_final(u_int8_t *buf, void *ctx) { if (buf != (u_int8_t *) 0) bzero(buf, 12); } static int RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { RMD160Update(ctx, buf, len); return 0; } static int MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { MD5Update(ctx, buf, len); return 0; } static void SHA1Init_int(void *ctx) { SHA1Init(ctx); } static int SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA1Update(ctx, buf, len); return 0; } static void SHA1Final_int(u_int8_t *blk, void *ctx) { SHA1Final(blk, ctx); } static int SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA256_Update(ctx, buf, len); return 0; } static int SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA384_Update(ctx, buf, len); return 0; } static int SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len) { SHA512_Update(ctx, buf, len); return 0; } /* * And compression */ static u_int32_t deflate_compress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 0, out); } static u_int32_t deflate_decompress(data, size, out) u_int8_t *data; u_int32_t size; u_int8_t **out; { return deflate_global(data, size, 1, out); }